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Abstract

Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this
study, indigenous microbial enhanced oil recovery (IMEOR) in a post-polymer flooded reservoir was performed. The succession
of microbial communities was revealed by high-throughput sequencing of 16S rRNA genes and changes of incremental oil were
analyzed. The results indicated that the abundances of reservoir microorganisms significantly increased, with alpha diversities
decreased in the IMEOR process. With the intermittent nutrient injection, microbial communities showed a regular change and
were alternately dominated by minority populations: Pseudomonas and Acinetobacter significantly increased when nutrients
were injected; Thauera, Azovibrio, Arcobacter, Helicobacter, Desulfitobacterium, and Clostridium increased in the following
water-flooding process. Accompanied by the stimulated populations, higher oil production was obtained. However, these
populations did not contribute a persistent level of incremental oil in the reservoir. In summary, this study revealed the alternative
succession of microbial communities and the changes of incremental oil in a post-polymer flooded reservoir with intermittent
nutrient stimulation process.
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Introduction

Polymer flooding is a method of tertiary oil recovery for high
water-cut reservoirs. This technique generally employs
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polyacrylamide to improve the flooding area by sealing main-
stream channels and increasing the viscosity of displacing
phase (Goodyear et al. 1995). However, large pore paths usu-
ally form during and after long-term polyacrylamide flooding
(Le etal. 2014). As a result, the injected displacing fluid flows
out of oil-bearing strata quickly, with the water content of the
produced liquid maintained at a very high level. Further ex-
ploitation of the residual oil underground in post-polymer
flooded high water-cut reservoirs is becoming increasingly
challengeable for oil industry.

Indigenous microbial enhanced oil recovery (IMEOR)
may be a promising alternative oil-recovery technique for
the post-polymer flooded reservoirs. IMEOR is driven by
the synergistic effects of reservoir microorganisms and
their metabolites, which can lower oil viscosity and inter-
facial tension and block undesired flow paths to improve
the recovery of residual crude oil (Ivanov et al. 1993;
Magot et al. 2000; Youssef et al. 2009; Voordouw 2011;
Zhu et al. 2013). As was previously proved by Ivanov et al.
(1993), in the case of the biotechnology based on the oxi-
dation of residual oil by oilfield microorganisms, injection
of dissolved oxygen (as a water-air mixture) and of
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nitrogen and phosphorus mineral salts initially stimulated
the growth of aerobic hydrocarbon-degrading bacteria. The
products of oil oxidation (fatty acids, alcohols, and
surface-active agents), as well as nutrients, are transported
in the reservoir strata along with the injected water flow. At
this stage, fermentative and methanogenic microorganisms
further degrade these compounds producing microbial bio-
mass and gas, which improve oil recovery via reservoir re-
pressurization, oil swelling, decrease of oil viscosity, and
modification of the oilfield hydrodynamic flows. In other
biotechnologies, nitrates are added in order to activate the
growth of denitrifying bacteria to control microbial in-
volvement in oil souring (Gieg et al. 2011; Gassara et al.
2015; Suri et al. 2017).

Compared with polyacrylamide flooding, IMEOR is of
low energy consumption, low environmental impact, and
cost-effective (Youssef et al. 2009; Voordouw 2011). This
technique has been intensively developed and successful-
ly applied in water-flooded reservoirs worldwide (Wang
et al. 2014; Li et al. 2014; Gassara et al. 2015; Le et al.
2015; You et al. 2016); yet, little information is available
for post-polymer flooded high water-cut reservoirs. In this
study, considering the existing large pore paths of post-
polymer flooded reservoirs, an improved indigenous mi-
crobial enhanced oil recovery (IMEOR) process with
small polymer and nutrient packages alternately and inter-
mittently pumped into oil strata was designed and tested
in a post-polymer flooded reservoir located in Daqing Oil
Field, Northeast China. IMEOR benefits from increasing
understanding of the assemblages of microbial communi-
ties underground. Therefore, the succession of microbial
communities during the intermittent IMEOR process was
analyzed by 16S rRNA high-throughput sequencing. The
changes of incremental oil were analyzed to reveal the
relationships with the stimulated microbial communities
during the long-term IMEOR process.

Materials and methods
Reservoir information and IMEOR strategy

The reservoir is a homogeneous sandstone reservoir locat-
ed in Daqing Oil Field, Northeast China. The tested block
includes injection well N2-2-P40 and oil production wells
N2-D2-P40, N2-2-P140, N2-2-P141, and N2-D3-P40 in a
relatively closed site (0.12 km?), with an average inter-well
spacing of 250 m (Fig. 1a). The temperature of the oil-
bearing strata is 44.6 °C. The average permeability of the
oil-bearing strata is 0.414 um?. The block was exploited by
polymer flooding from April 1999 to March 2005.
Subsequently, water-flooding was employed to recover
the remaining oil from April 2005. When the IMEOR
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process was performed (November 2011), approximately
61.89% oil reserve had been extracted, and water content
of the produced liquid reached 93.29%. The injection wa-
ter and the formation production fluid in the test area were
6130 and 4540 mg/L, respectively.

According to the culture-dependent experiments and phys-
ical simulations of oil displacement carried out in the labora-
tory, an optimal nutrient medium, which consisted of 14 g
corn steep powder, 1.5 g (NH4),HPO,, and 2.5 g NaNO;,
was selected (Le et al. 2014). To avoid the injected nutrients
rapidly flowing out along the large pore paths, a small amount
of polyacrylamide (2000 mg L") was first injected into the oil
strata through the injection well to seal the mainstream chan-
nels. From 7 December 2011 to 30 April 2012 and 5
December 2012 to 30 April 2013, two rounds with a total of
5387 m® (0.00175 PV) polyacrylamide and 15,605 m® (0.065
PV) nutrient medium prepared by formation brine were alter-
nately and intermittently injected into the block (Fig. 1b, c).

Sample collection and DNA extraction

Microbial communities and production performances of the
tested block were constantly monitored from August 2011 to
October 2014 (Fig. 1b). Oil-water mixture samples were tak-
en using the sampling valves located at the wellhead of the
four oil production wells. The collected samples completely
filled 10-L sterilized plastic buckets, which were immediately
sealed with screw caps to avoid contamination and oxygen
intrusion. DNA extraction was performed within 24 h after
sample collection. Microbial cells were collected from 2-L
water samples by centrifugation at 4 °C and 10,000xg for
15 min in a high-speed centrifuge (Beckman, USA). Total
genomic DNA was extracted using a bead shaker treatment
and the AxyPrep™ Genomic DNA Miniprep Kit (Axygen,
USA) as previously described (Gao et al. 2016).

16S rRNA gene sequencing and statistical analyses

The universal primer set 515f (5'-GTG CCA GCM GCC
GCG GTAA-3’) and 806r (5'-GGA CTA CHV GGG TWT
CTA AT-3") were used to amplify the microbial 16S rRNA
gene V4 region (300-350 bp), according to the previously
described protocol (Caporaso et al. 2011; Caporaso et al.
2012). PCR products in triplicate of the same sample were
mixed to avoid PCR artifacts. Amplicon sequencing on
the Illumina MiSeq platform was performed by
Novogene Co., Beijing, China. Pairs of reads from the
original DNA fragments were merged using fast length
adjustment of short reads (FLASH) (Magoc and
Salzberg 2011). Sequences were then demultiplexed and
quality filtered using the Quantitative Insights into
Microbial Ecology (QIIME) software package (Caporaso
et al. 2010). An average of 40,698 16S rRNA gene
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Fig. 1 Tested block and study design. a Location of the field trial block
and distribution of the targeted oil production wells. b Sampling timeline.
The solid red circles indicate the sampling time points. ¢ Polymer and
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of polyacrylamide was firstly injected into oil strata to seal the
mainstream channels to avoid the injected nutrients rapidly flow out

along with the large pore paths
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fragments was obtained for each sample. To reduce se-
quencing deviation, 16,650 sequences were drawn out at
random for each sample to calculate the microbial alpha
diversity, which included observed operational taxonomic
units (OTUs), Shannon, and Chaol indices. The OTU
clustering pipeline UPARSE was used to select OTUs
with 97% similarity (Edgar 2013). The alpha diversity
indices Chaol, Shannon, and observed OTUs were calcu-
lated using QIIME. The representative sequence sets were
aligned and given a taxonomic classification using the
Ribosomal Database Project at an 80% confidence level
(Wang et al. 2007). Principal coordinate analysis (PCoA)
was implemented using QIIME based on weighted-
UniFrac distances and was used to investigate the distri-
bution of microbial communities. Linear discriminative
analysis (LDA) effect size (LEfSe) analysis was used to
determine the populations with statistically significant dif-
ferences http://huttenhower.sph.harvard.edu/galaxy
(Segata et al. 2011).
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Quantitative PCR

The 16S rRNA gene was used as a molecular marker to quan-
tify the abundances of microbial communities during the
IMEOR field trial as previously described (Li et al. 2014).
Quantitative PCR (qPCR) was performed using the FastStart
Universal SYBR Green Master PCR mix (Roche Applied
Science, Germany) in a Bio-Rad 1Q5 sequence detection sys-
tem (Applied Biosystems, California, USA). The microbial
16S rRNA gene was amplified with the primer set 8F (5'-
AGA GTT TGA T(CT)(AC) TGG CTC-3") and 338R (5'-
GCT GCC TCC CGT AGG AGT-3").

Data accessibility

The raw reads were deposited in the GenBank at the National
Center for Biotechnology Information (BioProject ID:
PRINA 349240, https://submit.ncbi.nlm.nih.gov/subs/
bioproject/SUB2027000/overview).
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Fig. 3 Compositions of microbial communities in the IMEOR process
based on high-throughput sequencing of the 16S rRNA genes. a The
dominant microbial populations at class level and b the shared microbial

Results

Abundances and diversities of microbial communities
in the nutrient injection process

Based on 16S rRNA gene sequencing, microbial alpha diver-
sities, including the observed OTUs, Shannon, and Chaol
indices, were calculated. As shown in Table S1, there were
obvious changes in alpha-diversity indices along with the nu-
trient injection process (Fig. 2a). Compared with the water
samples obtained before nutrient injection, fewer species and
lower Chaol and Shannon indices were observed when nutri-
ents were injected. After the IMEOR process, microbial alpha
diversity increased. qPCR indicated that the community abun-
dances obviously increased during the nutrient stimulation
process (Fig. 2b). Assuming that one bacterial cell contains

Water
flooding

Others
u Other class
Acidobacteria

® Anaerolineae
Thermoleophilia
B Acidobacteria-6
® Planctomycetia
B Deferribacteres
Actinobacteria

u Sphingobacteriia

W Bacteroidia

B Spirochaetes

W Bacilli

u Clostridia

u Deltaproteobacteria

u Epsilonproteobacteria

u Betaproteobacteria
Alphaproteobacteria

B Gammaproteobacteria

Unclassified taxa

m Other genera
Desulfomicrobium
Syntrophus
Magnetospirillum
Flexistipes
Rhodobacter

B Desulfovibrio
Rubrivivax

¥ Dechloromonas

u Treponema

u Tepidimonas

B Parvibaculum

B Azovibrio

B Pelotomaculum

B Phenylobacterium

Hydrogenophaga
s[sls] (s[5[s5/sls(o[3 s[3[ssl5[slslg olg] wanoor
Bldld & &S || BB of BB | | o | | B | & | = Azorhizophilus
QA9 %1918 AiRIRIGI]]lal] Acinetobacter
z|212| Z|z|2 2191z|z|2|z|z|2|2|2|Z|S| - Helicobacter

B Thauera
Dec-13 Feb-14 Apr-14 | Jun-14 | Aug-14 ¥ Pseudomonas

populations. The taxa were classified based on the OTUs that were
clustered at a 97% cutoff

3.6 copy numbers of 16S rRNA genes (Li et al. 2010), the total
number of microorganisms reached 10—100-folds.

Succession of microbial communities
with the intermittent nutrient injection process

Based on phylogenetic analysis, 17 dominant microbial
classes were detected during the IMEOR field trial.
These taxa accounted for an average of 97.82% of the
whole community in every sample, while the other clas-
sifiable classes only accounted for an average of 1.56%
(Fig. 3). Compared with the control samples (August
2011), Gammaproteobacteria obviously increased in the
water of each production well after nutrient injection
(March 2012 and May 2012), with an average increase in relative
abundance of 22.8%. Epsilonproteobacteria obviously
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Fig. 4 Principal coordinate analysis (PCoA) of all samples before and after the IMEOR process. PCoA was performed based on weighted-UniFrac
distances. The arrows represent the control samples obtained before the IMEOR process

decreased in the water of each production well, with an aver-
age decrease in relative abundance of 8.5%. In the fol-
lowing water-flooding process, particularly in July 2012,
Gammaproteobacteria and Alphaproteobacteria obvious-
ly decreased, with an average decrease in relative abundance of
43.85 and 15.87%, respectively. At this stage, Betaproteobacteria,
Epsilonproteobacteria, and Deltaproteobacteria obviously in-
creased, with an average increase in relative abundance of
27.19, 27.38, and 5.58%, respectively. When the nutrients were
injected again (February 2013 and April 2013), the microbial
communities changed again, but had similar community
structures to the samples from the first round of nutrient injection
(March 2012 and May 2012). Gammaproteobacteria and
Alphaproteobacteria significantly increased, while
Betaproteobacteria, Epsilonproteobacteria, and
Deltaproteobacteria significantly decreased. In the following
water-flooding process (July 2013 and December
2013), Gammaproteobacteria and Alphaproteobacteria
significantly decreased, while Betaproteobacteria,
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Epsilonproteobacteria, and Clostridia significantly increased. In
Gammaproteobacteria, Pseudomonas and Acinetobacter were
the dominant genera. Thauera and Azovibrio were the dominant
Betaproteobacterial genera. In Alphaproteobacteria,
Hyphomonas and Phenylobacterium were the dominant genera.
In Epsilonproteobacteria, Arcobacter and Helicobacter were the
dominant genera. In Clostridia, Desulfitobacterium and
Clostridium were the dominant genera.

PCoA based on weighted UniFrac distances were per-
formed to reveal the succession of the microbial commu-
nities along with the intermittent nutrient injection process
(Fig. 4 and Fig. S1). In the PCoA plots, sample points that
are close together are more similar in their community
composition than those that are far apart. PCoA indicated
that the reservoir microorganisms showed responses to the
injected nutrient solution, with observed changes in the
community structures between the nutrient injection
(March 2012, May 2012, February 2013, and April 2013)
and following water-flooding processes (July 2012,
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processes. Asterisk refers to significant correlations (P <0.01)

July 2013, and December 2013). Correlation analysis
showed that the fractions of microbial populations showed
low correlation between the nutrient injection and follow-
ing water-flooding processes (r=0.42, P<0.01, Fig. 5a,
and » =0.51, P<0.01, Fig. 5f). Moreover, the microbial
communities regularly changed with the intermittent nutri-
ent injection. As shown in Fig. 5, the fractions of microbial
populations in the first round of nutrient injection showed
positively correlated with those in the second round of
nutrient injection (r=0.95, P<0.01, Fig. 5b). Similarly,
positive correlation was observed between the first round
and second round of following water-flooding process (r =
0.89, P<0.01, Fig. 5e). These observations suggest the
controllability and variability of microbial communities
along with nutrient injection process.

Dominant microbial populations before and
after the nutrient injection process

LEfSe analysis was performed to determine the popula-
tions with significant differences before and after the nu-
trient injection processes (Fig. 6). The results indicated
that Gammaproteobacteria, Alphaproteobacteria,
Betaproteobacteria, Epsilonproteobacteria,
Deltaproteobacteria, and Clostridia were the dominant
different biomarkers with the intermittent nutrient injec-
tion (P<0.05). For example, Gammaproteobacteria and
Alphaproteobacteria in nutrient injection phase (Mar.
2012, May. 2012, Feb. 2013, and Apr. 2013) were found
significantly different with those in the following water-
flooding phase (Jul. 2012, Nov. 012, and Jul. 2013),
while Epsilonproteobacteria and Deltaproteobacteria in

the following water-flooding phase showed significantly
different with those in the nutrient injection phase (Fig.
6b, d). Among them, Pseudomonas, Hyphomonas, and
Arcobacter were the dominant different genera between
the nutrient injection phase and following water-
flooding phase (P <0.05). Overall, these determined bio-
markers showed a high consistency with the succession
of the community compositions in the IMEOR process.

Shared microbial populations during the IMEOR filed
trial

Despite the diverse community structures, representatives of
21 microbial taxa were found always existed and dominated
the tested block before and after the IMEOR process (Fig. 3b).
These populations accounted for an average of 63.22% of the
whole community in each sample, while the other classifiable
Prokaryotes only accounted for an average of 6.86%. These
shared populations contained representatives of the genera
(such as Pseudomonas, Acinetobacter, Thauera,
Phenylobacterium, Arcobacter, and Helicobacter) that domi-
nated the changes of microbial communities with intermittent
nutrient injection process.

Oil production performances with the intermittent
nutrient injection process

The oil production performances were compared before and
after the intermittent nutrient injection processes (Fig. 7 and
Fig. S2). Before the nutrient stimulation (from October 2010
to December 2011), oil production of the tested block was
gradually decreasing, while the water content was gradually

@ Springer



2014

Appl Microbiol Biotechnol (2018) 102:2007-2017

A I Control (Aug. 2011)
|

b

mm a: Solibacteres
mm b: Actinobacteria

mm c: Flavobacteriia

mm d: Sphingobacteriia

mm c: Oscillatoriophycideae
mm f: Planctomycetia

mm g: Alphaproteobacteria
mm h: Epsiloproteobacteria
mm i: Opitutae

. mmm |: Spartobacteria

Nutrients injection (%V[ar. 2012, May. 2012,
Feb. 2013, Apr. 2013)

Cyanobacteria

mm a: Armatimonadia
== b: Flavobacteriia
mm c: Planctomycetia
mm d: Alphaproteobacteria
mm ¢: Deltaproteobacteria

Nutrients injection
Feb. 2013, Apr. 201

I Water flooding (Jul. 2012,

R ..-. .‘\Y \

(%\;lar. 2012, May. 2012,
Nov. 2012, Jul. 2013)

mm f: Epsilonproteobacteria
mm o: Gammaproteobacteria

d

mmm Water flooding
(Mar. 2012, May. 2012, (Jul. 2012, Nov. 2012,
 Feb. 2013, Apr. 2013) Jul.2013)

Campylobacterales I
Epsilonproteobacteridi
Helicobacteracea i
Helicobacter I
Campylobacteraceac NN

@ Nutrients injection

Acrobacter I
Desulfobacteraceae| N
Desulfurispora I

Desulfococcus =

Desulfomonile
Ruminococcus

W5 I

Deltaproteobacteridii N

Desulfovibrionales NN
Flavobacteriidi

Flavobacterialesi

Flavobacterium N
Flavobacteriacea R

Telmatospirillurm I
Armatimonadales | RN
Moorella IR
I

Thermoanaerobacteracea
Armatimonadaceae RN
CLO_1 I
Armatimonadia NG
Aeromicrobiym | NG
Hydrocarboniphag i
Denitrovibrio R
Prosthecobacte/ R
Nevskia I
TTA Bo I
Ec I
Desulfobacterales .
Desulfobobulbus I

Desulfobulbaceac |
Sulfurospirillum NG
|

Y

Planctomycetes

mm a: Solibacteres

mm b: Actinobacteria
mm c: Nitriliruptoria
mm d: Rubrobacteria

C HE Control (Aug. 2011)
[ Water flooding (Feb. 2014 to Oct. 2014)

Cranobacreria

mm f: Flavobacteriia

mm i: Clostridia
mm j: Planctomycetia

mm |: Spirochates

mm m: Leptospirae
mm n: Optiutae

x .

mm o: Spartobacteria
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increasing. During the IMEOR process, a clear improvement
in oil production performances was observed. The incremen-
tal oil in the first round of nutrient injection and the following
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water-flooding process were more remarkable than those in
the second round of nutrient injection. Compared with the
control (from October 2010 to December 2011), the oil
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production was maintained at a relatively high level after the
nutrient injection (from December 2013 to June 2015). Based
on the decline curve, a cumulative incremental oil production
of 6234 t was obtained by the end of June 2015. Based on the
oil production before the IMEOR process (November 2011), a
total of 3593 t incremental oil was obtained.

Discussion

This study reveals the alternative succession of microbial
communities and the changes of incremental oil during inter-
mittent nutrient injection process in a post-polymer flooded
reservoir. When the IMEOR process was performed in the
post-polymer flooded reservoir, only 38.11% oil reserve
remained underground, with an average water content of pro-
duced liquid of 93.29%. Considering the existed large pore
paths in the post-polymer flooded reservoir, a small amount of
polymer was first injected to avoid the injected nutrients rap-
idly flowing out along the large pore paths. The nutrient solu-
tions were intermittently injected to investigate the succession
of microbial communities and the changes of incremental oil.

Microbial alpha diversity decreased during the nutrient
stimulation process. Although reservoirs harbor diverse mi-
crobial populations, it seems that the injected nutrients only
enriched some microbial populations, resulting in them dom-
inating in communities. The growth of these stimulated pop-
ulations made other low-abundance populations hard to detect
using routine sequencing techniques. This is consistent with
the results of community quantification, which showed that
the total number of microorganisms obviously increased.
Community analysis also demonstrated that minority micro-
bial populations were selectively activated when nutrients
were injected into the reservoir.

IMEOR studies center on how microbial communities
change with nutrient injection. Studies have demonstrated that
microbial communities showed positive responses to nutrient

stimulation in laboratory and field trials (Liu et al. 2005; Li et al.
2014; Wang et al. 2015; Chai et al. 2015; Xiao et al. 2016). In
this study, the microbial communities, in particular, the domi-
nant microbial populations, regularly changed with the inter-
mittent nutrient injection process. When the eutrophic solutions
were injected into the reservoir (March 2012, February 2013,
and April 2012), Pseudomonas and Actinobacteria increased in
each production well, while Arcobacter and Helicobacter de-
creased. At this stage, Thauera, Azovibrio, Arcobacter,
Helicobacter, Desulfitobacterium, and Clostridium also existed
with lower relative abundances. In the following water-
flooding process (July 2012 and July 2013), Pseudomonas,
Actinobacteria, Hyphomonas, and Phenylobacterium signifi-
cantly decreased, while anaerobic microorganisms, such as
Thauera, Azovibrio, Arcobacter, Helicobacter,
Desulfitobacterium, and Clostridium, increased. The results in-
dicated the alternative succession and controllability of micro-
bial communities during long-term IMEOR process. The sta-
bility of microbial communities may contribute a persistent
level of incremental oil in IMEOR process.

Environmental variables, such as temperature, chemical
composition of the formation brine, spatial isolation, low
permeability of reservoir strata, and stochastic processes
(Stegen et al. 2012; Zhou et al. 2014; Ren et al. 2015; Gao
et al. 2016; Nie et al. 2016; Song et al. 2017), have all
been found to be important drivers of distinct microbial
assemblages in oil reservoirs. Despite of the highly di-
verse community structures, some microbial populations
are always found across different reservoir environments
(Gao et al. 2016). Here, shared microbial populations
were detected in the tested reservoir block, implying that
these populations play key roles in recycle of substance
and energy in IMEOR process (Gray et al. 2010). The
phenomena have also been reported in marine environ-
ments (Gibbons et al. 2013) and sewage treatment plants
(Zhang et al. 2012). Can these shared populations drive
the IMEOR process? As reported previously, many
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species affiliated with Pseudomonas, Rhodobacter,
Parvibaculum, and Pelotomaculum are able to degrade
hydrocarbon or produce surfactants. However, we did
not observed the markedly decrease in surface tension of
the produced liquids. The phenomenon may be related
with the amount of surfactant production and dilution ef-
fect of displacing fluid when flowing into oil production
wells. On the other hand, the acetate in produced liquids
increased after 60-day nutrient stimulation. Species from
Thauera, Azoarcus, Azorhizophilus, and Azovibrio play
important roles in nitrogen cycle. Thauera can also anaer-
obically degrade aromatic compounds and is among the
important genera in nitrate-based souring control strate-
gies (Gieg et al. 2011). Tepidimonas are aerobic
organotrophic bacteria (Nazina et al. 2017) and facultative
sulfur-oxidizing bacteria. Desulfovibrio and
Desulfomicrobium are generally detected sulfate-reducing
bacteria in reservoirs. In addition, there are
Hydrogenophaga, a type of facultative hydrogen autotro-
phic bacteria, and syntrophic propionate-oxidizing bacte-
ria Pelotomaculum and Syntrophus. These populations
may play important roles in supporting the growth and
metabolism of methanogens in reservoirs. It seems that
these populations can conduct the biogeochemical cycles
of oil reservoirs, such as the carbon, nitrogen, and sulfur
cycles. More importantly, these shared microbial popula-
tions with greater abundance may contribute to a more
robust function of the reservoir microbial ecosystem
(Wittebolle et al. 2009).

Although IMEOR has been successfully applied in im-
proving oil recovery in oil field, our knowledge about the
successions of microbial communities and changes of in-
cremental oil with intermittent nutrient injection process is
very limited. Here, despite injection of a larger amount of
nutrients and similar community compositions, the incre-
mental oil in the second round of nutrient injection and
the following water-flooding process were significantly
lower than those in the first round of nutrient injection
process. The result indicated that higher oil increment
mainly appeared in the initial stage of the IMEOR process
in the post-polymer flooded reservoir. This phenomenon
suggests that the enhancement of oil recovery is not only
driven by the stimulated microorganisms, but also influ-
enced by the distribution of residual oil and the complex
geological features of the oil-bearing strata.

In summary, this study demonstrated the application poten-
tial of IMEOR process in a post-polymer flooded reservoir. The
results revealed the alternative succession of microbial commu-
nities and the changes of incremental oil during a long-term
IMEOR process in a post-polymer flooded reservoir.
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