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Abstract
Cold atmospheric pressure plasma (CAP) does not cause thermal damage or generate toxic residues; hence, it is projected as an
alternative agent for sterilization in food and pharmaceutical industries. The fungicidal effects of CAP have not yet been
investigated as extensively as its bactericidal effects. We herein examined the effects of CAP on yeast proteins using a new
CAP system with an improved processing capacity. We demonstrated that protein ubiquitination and the formation of protein
aggregates were induced in the cytoplasm of yeast cells by the CAP treatment. GFP-tagged Tsa1 and Ssa1, an H2O2-responsive
molecular chaperone and constitutively expressed Hsp70, respectively, formed cytoplasmic foci in CAP-treated cells.
Furthermore, Tsa1 was essential for the formation of Ssa1-GFP foci. These results indicate that the denaturation of yeast proteins
was caused by CAP, at least partially, in a H2O2-dependent manner. Furthermore, misfolded protein levels in the endoplasmic
reticulum (ER) and the oligomerization of Ire1, a key sensor of ER stress, were enhanced by the treatment with CAP, indicating
that CAP causes ER stress in yeast cells as a specific phenomenon to eukaryotic cells. The pretreatment of yeast cells at 37 °C
significantly alleviated cell death caused by CAP. Our results strongly suggest that the induction of protein denaturation is a
primary mechanism of the fungicidal effects of CAP.
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Introduction

Cold atmospheric pressure plasma (CAP) mainly consists of
ions and electrons and emits reactive species and UV photons
(Gaunt et al. 2006). CAP has been used in various medical
applications including wound healing and non-inflammatory
anti-cancer therapy (Kong et al. 2009; Weltmann and von
Woedtke 2016; Tanaka and Hori 2017). Especially, argon
(Ar)-based CAP is widely used for coagulation therapy
(Manner 2008) and known to enhance wettability and

osseointegration on dental implant metals (Duske et al.
2012; Giro et al. 2013; Canullo et al. 2016). Additionally,
exposure to CAP is projected as a new sterilization method
in the fields of food processing, sanitation, and medicine
(Heinlin et al. 2010; Hoffmann et al. 2013; Shaw et al. 2015;
Mir et al. 2016). The CAP system as a sterilization technique
is advantageous because of the low-associated costs and min-
imal generation of residual toxicity and thermal damage
(Hoffmann et al. 2013; Lackmann and Bandow 2014).
Previous studies reported the sterilization effects of CAP on
bacterial cells such as Escherichia coli, Salmonella enterica,
and Staphylococcus aureus (Klämfl et al. 2012; Maisch et al.
2012a, b; Fernández et al. 2013; Homma et al. 2013; Niemira
et al. 2014; Sun et al. 2014; Ziuzina et al. 2014; Maeda et al.
2015). Bacterial cells are mainly inactivated by reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS) in-
duced by CAP exposure (Gaunt et al. 2006; van Gils et al.
2013; Lackmann and Bandow 2014).

Inactivation of spoilage yeasts including Saccharomyces
cerevisiae is an important issue to be solved in food industries
(Loureiro and Malfeito-Ferreira 2003; Krisch et al. 2016), and
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CAP exposure is expected as an effective way to prevent the
spoilage. However, the fungicidal effects of CAP have not yet
been investigated as extensively as its bactericidal effects.
Previous studies reported that yeast cells were also inactivated
by a CAP treatment via the accumulation of ROS and RNS
(Feng et al. 2010; Koban et al. 2010; Maisch et al. 2012a, b;
Ryu et al. 2013). However, the fungicidal mechanisms of CAP
and the cellular responses of eukaryotic microorganisms to
CAP stress have not yet been elucidated in detail.

We recently demonstrated via a fluorescence microscopic
analysis that CAP promoted the formation of Hsp104 aggre-
gates (Itooka et al. 2016). Hsp104 is a stress-responsive chap-
erone that plays a role in the segregation of denatured proteins
(Glover and Lindquist 1998; Bösl et al. 2006). Since Hsp104
forms complexes with denatured proteins, it is possible to
visualize protein aggregates using Hsp104-GFP (Liu et al.
2010; Zhou et al. 2011; Escusa-Toret et al. 2013; Wallace
et al. 2015). Therefore, our finding of the formation of
Hsp104-GFP aggregates following a CAP treatment strongly
suggests that CAP promotes the denaturation of yeast pro-
teins. Additionally, we found that CAP induced changes in
the intracellular localization of Ire1, a key sensor of ER stress
and trigger of the unfolded protein response (UPR) (Kimata
et al. 2003, 2004, 2007; Mori 2009). Yeast UPR is induced via
the activation of the Ire1-Hac1 pathway (Mori et al. 1996;
Mori 2009; Brodsky and Skach 2011). The accumulation of
misfolded proteins in the endoplasmic reticulum (ER) leads to
the activation of Ire1 via the self-association and oligomeriza-
tion of Ire1 in yeast cells (Kimata et al. 2007). Activated Ire1
subsequently splices HAC1 mRNA, leading to the synthesis
of the Hac1 protein, which functions as a transcription factor
and induces the transcriptional activation of UPR-related
genes (Chapman and Walter 1997; Kawahara et al. 1997).
Although the non-activated form of Ire1-GFP diffuses
throughout the ER, highly self-oligomerized Ire1-GFP ex-
hibits a punctate intracellular localization (Kimata et al.
2007; Promlek et al. 2011; Mathuranyanon et al. 2015;
Kawazoe et al. 2017). Since Ire1-GFP in CAP-treated cells
shows a punctate localization (Itooka et al. 2016), CAP has
been proposed to cause ER stress in yeast cells.

Although the findings of our previous fluorescence micros-
copy study suggested that CAP causes protein denaturation
and ER stress in yeast (Itooka et al. 2016), it was almost
impossible to perform more detailed analyses because of the
limited processing capacity of the CAP system used in that
study. In order to conduct biochemical and molecular biolog-
ical analyses, we developed a new CAP system using a glass
funnel with improved processing capacity. We herein demon-
strated that CAP elevated the levels of insoluble aggregated
proteins and ubiquitinated proteins and also impaired protein
folding in the ER. Additionally, we found that the pretreat-
ment of yeast cells at 37 °C alleviated damage and cell death
caused by CAP exposure. Our results strongly indicate that the

fungicidal effects of CAP are partially derived from protein
damage.

Materials and methods

Strains and medium

S. cerevisiae YPH250 (MATα trp1-1 his3-200 lys2-801 leu2-
1 ade2-101 ura3-52) and its isogenic tsa1Δ null mutant were
used in the present study. The tsa1Δ null mutant was con-
structed by introducing the DNA fragment encoding
tsa1Δ::kanMX, which was amplified from the genomic
DNA of the tsa1Δ::kanMX strain in the Yeast Knockout
Collection (Open Biosystems Inc., Huntsville, AL). In order
to monitor the localization of Ire1-GFP, KMY1015 (MATα
leu2-3112 ura3-52 his3-Δ200 trp1-Δ901 lys2-801
i re1Δ : : TRP1 ) exp r e s s i ng I r e 1 -GFP was u s ed
(Mathuranyanon et al. 2015). The methods of cell cultivation
and medium were described in our previous study (Itooka
et al. 2016). Exponentially growing cells were harvested at
an optical density at 600 nm (OD600) of 0.5 and treated with
CAP.

The CAP system and CAP treatment

CAP was produced in dielectric barrier discharges on a glass
funnel. Copper tape (5.0 mm in width) was attached to the
inner and outer surfaces of the funnel (Fig. 1). A high voltage
of 20.0 kV was applied at 11 kHz between the outer and inner
tapes. The inner tape was grounded for an electrical circuit. Ar
gas was introduced into the funnel at a flow rate of 0.8 stan-
dard liters per minute (SLM), and the distance between the
bottom of the glass funnel and ground was adjusted to
3.0 mm. Copper tape was cooled by a blower (YMS-A107,
Yamazen, Osaka, Japan) to prevent overheating. In the CAP
treatment of yeast cells, 25 ml of the liquid culture (OD600 =
0.5) was centrifuged, and precipitated cells were resuspended
in 2 ml of fresh SD medium. The cell solution was added to a
petri dish (diameter, 53 mm; Corning Falcon® 351007) and
exposed to CAP. The CAP treatment was carried out in a room
at 25 °C, and the sample temperature was measured using a
radiation thermometer (AD-5611A, A&D Company, Limited,
Tokyo, Japan).

Plasmid construction

YIp-SSA1-GFP A part of the open reading frame (ORF) of
SSA1 was amplified by a polymerase chain reaction (PCR)
using the primers 5′-GGACCCAGTTGAAAAGGTCT
AGAGAGATGCTAAATTGGACAAATCTC-3′ and 5′-
CGTTATTATTCAATTGCCGCACCAATCTCGAG
AATCACTTCTTCAAC-3′. The amplicon was cloned into
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the XbaI/XhoI sites of YIp-SSA4-GFP (Itooka et al. 2016) after
digestion with XbaI/XhoI to construct YIp-SSA1-GFP.
Regarding the integration of the SSA1-GFP gene at the chro-
mosomal SSA1 locus, YIp-SSA1-GFP was linearized by SalI
and introduced into cells.

YIp-TSA1-GFP A part of the ORF of TSA1 was amplified by
PCR using the primers 5′-CAACCGAGCTCATTGCTTTC
TCAGAAGCTGCTAAG-3′ and 5′-GCAAGCTCGAGATT
TGTTGGCAGCTTCGAAGTATT-3′. The amplicon was
digested with SacI/XhoI and cloned into the SacI/XhoI sites
of YIp-SSA4-GFP to construct YIp-TSA1-GFP. YIp-TSA1-
GFP was linearized by BstXI and introduced into yeast cells.

The construction of the YIp-HSP104-GFP plasmid was
previously described (Itooka et al. 2016).

Western blotting analysis

A BiP aggregation analysis was performed as described by
Promlek et al. (2011). Briefly, total cell lysates treated with
CAP were fractionated by centrifugation at 19,300×g for
10 min. Pellet samples were applied to a 8.0% polyacrylamide
gel for an SDS-PAGE analysis. BiP protein levels were mon-
itored using an anti-BiP antibody and quantified using ImageJ
software (http://imagej.nih.gov/ij/).

Protein ubiquitination was analyzed as described by
Collins et al. (2010). Extracted proteins were resolved on an
8.0% polyacrylamide gel for the SDS-PAGE analysis.

Ubiquitinated proteins were detected using an anti-ubiquitin
antibody (P4D1, Santa Cruz Biotechnology, Dallas, TX).
Ponceau S staining was used for the verification and normal-
ization of protein loading abundance.

Measurement of insoluble aggregated proteins

Insoluble aggregated proteins were analyzed as described by
Koplin et al. (2010) with modifications. In order to prepare
cell lysates, cells were frozen rapidly in liquid nitrogen and
resuspended in lysis buffer (50 mM potassium phosphate
buffer, pH 7.0, 1.0 mM EDTA, and 5% glycerol). After an
incubation with Zymolyase 20 T (2.5 mg/ml) and protease
inhibitors at 25 °C for 20 min, cells were disrupted by
vortexing with glass beads. In order to remove intact cells,
samples were centrifuged at 200×g for 20 min. The total pro-
tein concentration of each sample was measured using the
Protein Assay CBB Solution kit (Nacalai Tesque, Kyoto,
Japan) and normalized. Insoluble aggregated proteins were
obtained by centrifugation at 16,000×g for 20 min. These
proteins were washed twice with lysis buffer containing 2%
Nonidet® P-40 (NP-40), and centrifuged at 16,000×g at 4 °C
for 20 min to remove membrane proteins. The final sediment
proteins were solubilized in 50 μl of urea buffer (50 mM Tris-
HCl, pH 7.5, 6.0 M urea, and 5% SDS), separated by a 10%
polyacrylamide gel, and visualized by silver staining using
Sil-Best Stain One (Nacalai Tesque, Kyoto, Japan). The quan-
tities of insoluble aggregated proteins were measured by the

Fig. 1 Schematic of the experimental setup for CAP exposure. a CAP
was produced in dielectric barrier discharges on a glass funnel. Copper
tape (5.0 mm in width) was attached to the inner and outer surfaces of the
funnel. A high voltage of 20.0 kV at 11 kHz between the inside and
outside copper tape caused a barrier discharge using a dielectric of the
glass. Ar gas was fed to the funnel at a flow rate of 0.8 SLM. Samples in a

petri dish were exposed to CAP produced inside the funnel. b, c Yeast
cells in SDmediumwere treated with CAP (closed circles and black bars)
or Ar gas alone (open squares and white bars). b The relative survival rate
was calculated as colony-forming units (CFU). c Intracellular oxidation
levels were assayed using an oxidant-sensitive probe H2DCFDA. Data
are shown as the mean ± SE (n = 3)
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BCA assay using the Protein Assay Bicinchoninate kit
(Nacalai Tesque, Kyoto, Japan).

Microscopic analysis and survival assay

A fluorescence microscope system (IX83, Olympus, Tokyo,
Japan) was used for the microscopic analysis. Cells treated with
CAP were immediately observed without fixation. The relative
survival rate was calculated as colony-forming units (CFU), as
previously described (Itooka et al. 2016). Levels of intracellular
oxidation were measured using an oxidant-sensitive probe
2′,7′-dichlorofluorescein diacetate (H2DCFDA; Molecular
Probes, OR, USA) as described previously (Allen et al. 2010;
Itooka et al. 2016).

Results

Fungicidal activity of the new CAP system

In our previous study, we used a typical laboratory-scale CAP
system that processes only 100 μl of culture medium each
time (Itooka et al. 2016). In order to increase this capacity,
we developed a new CAP system using a glass funnel that
functions as a non-conductor as well as a cover. This allows
the efficient exposure of CAP to the target via the retention of
Ar plasma inside the funnel (Fig. 1a). We initially examined
the effects of the new CAP system on the survival of yeast
cells (Fig. 1b). The CAP exposure efficiently killed yeast cells,
while exposure of Ar gas alone did not kill yeast cells.
Furthermore, the CAP treatment for 20 min elevated the level
of intracellular oxidation (Fig. 1c). On the other hand, expo-
sure of Ar gas alone did not elevate the intracellular oxidation
level, as reported previously (Itooka et al. 2016). The sample
temperature hardly changed before and after CAP exposure
for 25 min (from 23.6 ± 0.3 to 23.5 ± 0.4 °C). These results
were consistent with previous findings (Koban et al. 2010;
Maisch et al. 2012a, b; Itooka et al. 2016), and clearly indicate
an improvement of the processing capacity of our CAP sys-
tems; the new CAP system processed 2 ml of culture medium
each time and efficiently killed yeast cells without thermal
stress.

CAP increased insoluble aggregated protein levels
in yeast cells

Since we succeeded to improve the processing capacity of our
CAP system (from 100 μl to 2 ml), it became possible to
conduct biochemical andmolecular biological analyses to find
out more about the effects of CAP on yeast cells. Previous
studies reported that CAP causes the inactivation and denatur-
ation of bacterial proteins (Yasuda et al. 2008; Lackmann et al.
2013; Lackmann and Bandow 2014). We also demonstrated

that Hsp104-GFP, a marker of insoluble protein aggregation
(Liu et al. 2010; Zhou et al. 2011; Escusa-Toret et al. 2013;
Wallace et al. 2015), formed foci in CAP-treated yeast cells
(Itooka et al. 2016). This finding suggested that CAP causes
the accumulation of denatured proteins in yeast cells. In order
to verify this possibility, we used the new system to examine
whether CAP promotes the formation of insoluble protein
aggregates. Consistent with our previous study, the new
CAP system also induced the formation of Hsp104-GFP foci
(Fig. 2a). We reconfirmed that the formation of Hsp104-GFP
foci was not induced by exposure of Ar gas alone (data not
shown), as reported in our previous report (Itooka et al. 2016).
We assayed the levels of insoluble aggregated proteins in
CAP-treated cells. As shown in Fig. 2b, c, the CAP treatment
for more than 20 min significantly elevated the levels of in-
soluble aggregated proteins to a similar extent as those in cells
exposed to heat shock at 42 °C. These results clearly indicate
that CAP induces the denaturation of yeast proteins.

CAP promoted protein ubiquitination

In the ubiquitin-proteasome system, ubiquitin functions as a
signal for protein degradation. Denatured proteins conjugated
with ubiquitin are degraded via the proteasome (Finley et al.
2012; Amm et al. 2014). Since CAP induced the denaturation
of yeast proteins (Fig. 2), we performed western blotting using
an anti-ubiquitin antibody to examine whether protein
ubiquitination is enhanced in cells treated with CAP. The
CAP treatment, as well as heat shock at 42 °C, significantly
increased the levels of ubiquitinated proteins (Fig. 3). This
result supports the finding that CAP induces protein denatur-
ation in yeast cells.

H2O2-dependent protein aggregation was induced
in CAP-treated cells

Tsa1, a major thioredoxin peroxidase in yeast (Garrido and
Grant 2002), is a molecular chaperone and protects against
the accumulation of H2O2-induced denatured protein aggre-
gates (Jang et al. 2004; Rand and Grant 2006; Hanzén et al.
2016). Since sulfenylated Tsa1 recruits Hsp70 to denatured
proteins in a H2O2-dependent manner and forms aggregates,
Tsa1-GFP and Ssa1-GFP form foci in the cytoplasm under
H2O2 stress, but not under heat shock conditions (Hanzén
et al. 2016; Hill et al. 2017). We verified that the formation
of the Tsa1-GFP focus was induced by H2O2, but not by heat
shock, and the formation of Tsa1-GFP focus was also induced
by the treatment with CAP (Fig. 4a). Additionally, the forma-
tion of the Ssa1-GFP focus was not observed in tsa1Δ cells
treated with CAP (Fig. 4b). These results suggest that the
formation of protein aggregates in CAP-treated cells was in-
duced, at least partially, in a H2O2-dependent manner.
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The CAP treatment promoted the accumulation
of unfolded proteins in the ER

We previously reported that CAP but not Ar gas alone induced
changes in the localization of Ire1, a key sensor of ER stress
(Kimata et al. 2003, 2004, 2007; Mori 2009), which suggests
that CAP causes the oligomerization of Ire1 and ER stress in

yeast cells (Itooka et al. 2016). In the present study, we inves-
tigated whether CAP enhances the levels of unfolded proteins
in the ER. Previous studies reported that BiP, a major ER
chaperone (Rose et al. 1989; Mori et al. 1996), binds unfolded
proteins to form aggregates under ER stress conditions
(Kimata et al. 2003). Therefore, it is possible to detect ER
stress by measuring the levels of sedimentable BiP (Promlek
et al. 2011; Kawazoe et al. 2017). A treatment with dithiothre-
itol (DTT), an ER stress inducer that disrupts disulfide bond
formation (Kimata et al. 2003, 2007), elevated the levels of
sedimentable BiP (Fig. 5a). The treatment with CAP also in-
creased the levels of sedimentable BiP over time in the pellet
fraction. The levels of sedimentable BiP in cells treated with
CAP for 25 min were similar to those in cells treated with
DTT. These results clearly indicate that the CAP treatment
promotes the formation of unfolded protein aggregates in the
yeast ER.

Since BiP levels in the pellet fraction were increased by
CAP, the oligomerization of Ire1 was re-examined using the
new CAP system. We observed that Ire1-GFP formed punc-
tate foci following the CAP treatment (Fig. 5b), confirming
that CAP induced the oligomerization of Ire1 and ER stress in
yeast cells.

A pretreatment with mild heat shock improved yeast
resistance to CAP

Since we found that, as described above, CAP as well as heat
shock induced protein denaturation, we next examined wheth-
er the pretreatment of cells with mild heat shock improves cell
survival under CAP stress. Cells pretreated with sublethal
mild heat shock at 37 °C exhibit increased resistance to sub-
sequent severe stress because the pretreatment causes adaptive

Fig. 2 CAP enhanced insoluble aggregated protein levels in yeast cells. a
Cells carrying a GFP-tagged chromosomal copy of HSP104 were treated
with CAP for 20 min. GFP signals were immediately observed after the
treatment without cell fixation. BF bright field. The white bar indicates
3 μm. b, cCell lysates were prepared after the treatment with CAP or heat
shocked at 42 °C for the indicated time. Insoluble aggregated proteins
were isolated by centrifugation and washed with NP-40 containing buffer,

and then solubilized in buffer containing urea and SDS. b Samples were
separated using 10% polyacrylamide gel electrophoresis and visualized
by silver staining. c The quantities of insoluble aggregated proteins were
measured by the BCA assay. The levels of insoluble aggregated proteins
in non-stressed cells were considered to be onefold. Data are represented
as the mean ± SE (n = 3)

Fig. 3 CAP promoted protein ubiquitination. Cells were treated with
CAP for the indicated time or heat shocked at 42 °C for 30 min and
then lysed using glass beads in EZ buffer. Extracted proteins were
resolved on an 8% polyacrylamide gel, and ubiquitinated proteins were
detected by western blotting using an anti-ubiquitin antibody. The protein
loading quantity was verified by Ponceau S staining
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responses including the induced expression of molecular
chaperones and intracellular accumulation of trehalose via

the activation of the stress-responsive transcription factors
Hsf1 (heat shock factor 1) and Msn2/Msn4 (general stress

Fig. 4 CAP caused the formation
of the Tsa1-GFP focus in the
cytoplasm. a Yeast cells carrying
the GFP-tagged chromosomal
copy of TSA1 were treated with
CAP or the indicated stress
conditions. Tsa1-GFP was
immediately observed after the
CAP treatment without fixation. b
Wild-type and tsa1Δ cells
carrying a GFP-tagged
chromosomal copy of SSA1 were
treated with CAP for 20 min. BF
bright field. The white bar
indicates 3 μm

Fig. 5 CAP increased BiP
aggregate levels in the ER. aAfter
the treatment with CAP or 10mM
DTT for the indicated time, total
cell lysates were prepared using
glass beads in Triton X-100-
containing buffer. Pellet fractions
were prepared by the
centrifugation of total cell lysates
and subjected to a western
blotting analysis with an anti-BiP
antibody. The protein levels of
sedimentable BiP were quantified
using ImageJ, and the intensity of
the BiP band in cells treated
without stress was considered to
be onefold. Data are shown as the
mean ± SE (n = 3). b Cells were
treated with CAP for the indicated
time or with 10 mM DTT for
60 min. Ire1-GFP was
immediately observed after the
CAP treatment
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responsive transcription factors) (Sanchez and Lindquist
1990; Izawa et al. 2004; Morano et al. 2012; Verghese et al.
2012; Gibney et al. 2013). In order to examine the effects of
the pretreatment on yeast resistance to CAP, cells in the expo-
nential phase were pretreated at 37 °C for 1 h and then ex-
posed to CAP. We found that the survival rate under CAP
stress was significantly increased by the pretreatment at
37 °C (Fig. 6a), indicating that the pretreatment with mild heat
shock improved resistance to the subsequent CAP treatment.

The pretreatment also affected the formation of Hsp104-
GFP foci upon CAP exposure. The formation of Hsp104-GFP
foci was significantly less in cells treated with CAP after the
treatment at 37 °C for 1 h than in those directly challenged
with the CAP treatment (Fig. 6b). Additionally, the oligomer-
ization of Ire1-GFP was hardly induced by CAP in pretreated
cells (Fig. 6b). These results suggest that the pretreatment at
37 °C alleviated the accumulation of denatured proteins in
CAP-treated yeast cells.

Discussion

In the present study, we improved the processing capacity of
our CAP system by preventing the rapid diffusion of Ar plas-
ma using a glass funnel as a cover.We increased the amount of
culture medium that may be processed by CAP each time,
with efficient fungicidal effects. Therefore, this system be-
came available to perform molecular biological analyses in
order to confirm that CAP causes protein denaturation in yeast
cells. CAP led to increased levels of insoluble protein aggre-
gates and ubiquitinated proteins, clearly indicating that CAP
causes severe damage to yeast proteins. Protein denaturation
appears to have strongly contributed to the inactivation of
yeast cells by CAP. Previous studies reported that CAP causes
protein denaturation in bacterial cells (Yasuda et al. 2008;
Lackmann et al. 2013; Lackmann and Bandow 2014). Thus,
the induction of protein denaturation may be a common cyto-
toxic activity utilized by CAP against bacteria and eukaryotic
microorganisms.

However, ER stress is a phenomenon specific to eukaryotic
cells. CAP enhanced the levels of unfolded proteins in the ER
as well as Ire1 oligomerization, indicating that CAP induces
ER stress. The induction of ER stress by CAP indicates that
CAP damages not only preexisting proteins but also newly
synthesized secretory and transmembrane proteins in yeast
cells. The accumulation of these inadequacies may lead to
the quick inactivation of yeast cells by CAP.

This idea may be supported by our novel result showing
that the pretreatment at 37 °C alleviated cell death caused by
CAP (Fig. 6). A treatment with mild heat shock induces the
expression of molecular chaperones via the activation of Hsf1
andMsn2/Msn4, and they counteract protein denaturation and
prevent intracellular disorder (Vabulas et al. 2010; Kim et al.
2013; Mackenzie et al. 2016). Therefore, pretreated cells ap-
pear to have an enhanced ability to cope with protein damage
caused by CAP and improved tolerance to CAP stress.

CAP emits ROS and causes the endogenous production of
ROS in yeast cells (Ryu et al. 2013). Indeed, we observed
elevated levels of intracellular oxidation in cells treated with
CAP (Fig. 1c) (Itooka et al. 2016). ROS are known to induce
protein denaturation and aggregation in yeast cells (Costa and
Moradas-Ferreira 2001; Hanzén et al. 2016; Weids et al.
2016). Additionally, the formation of the Tsa1-GFP focus in
the cytoplasm, which is induced in a H2O2-dependent manner
and forms aggregates with denatured proteins (Hanzén et al.
2016; Hill et al. 2017), was also induced in CAP-treated yeast
cells. Collectively, these results indicate that ROS, including
H2O2, are the main cause of protein denaturation in the cyto-
plasm of CAP-treated cells. Another possible cause of protein
denaturation is UV photons derived from CAP (Park et al.
2003; Heise et al. 2004; Gaunt et al. 2006). It is widely known
that UV radiation causes modifications to proteins in cells via
ROS production (Ichihashi et al. 2003) and a direct

Fig. 6 A pretreatment with mild heat shock alleviated cell death caused
by CAP. Cells were pretreated with or without mild heat shock at 37 °C
for 1 h prior to the CAP treatment. a The relative survival rate was
calculated as colony-forming units (CFU). Data are shown as the mean
± SE (n = 3). b Cells were treated with CAP for 20 min after or without
the pretreatment at 37 °C for 1 h. The intracellular localization of Hsp104-
GFP and Ire1-GFP was immediately observed after the stress treatment
without fixation. The white bar indicates 3 μm
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photochemical reaction (Pattison and Davies 2006; Pattison
et al. 2012). Lackmann et al. (2013) demonstrated the syner-
gistic effects of UV photons and particles, such as ROS, on
enzyme activities and protein structures; thus, ROS and UV
photons may synergistically contribute to protein denaturation
in yeast cells treated with CAP.

Although CAP is projected as an alternative method of
sterilization in various fields, its fungicidal effects have not
fully been examined. Only a small amount of samples may be
processed each time in the typical laboratory-scale CAP sys-
tem; therefore, we improved the processing capacity of CAP
in order to acquire sufficient amounts of CAP-treated cells for
biochemical and molecular biological analyses. In the present
study, we demonstrated that CAP caused the denaturation of
yeast proteins, at least partially, in a H2O2-dependent manner.
We also showed that CAP-induced ER stress in yeast was
specific to eukaryotic cells. Furthermore, a pretreatment at
37 °C significantly alleviated cell death caused by CAP. Our
results strongly suggest that the induction of protein denatur-
ation is a common cytotoxic function of CAP against prokary-
otic and eukaryotic microorganisms.
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