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Abstract
Butyl butyrate (BB) has been widely used as a flavor and fragrance compound in the beverage, food, perfume, and cosmetic
industries. Currently, BB is produced through two-step processes; butanol and butyrate are first produced and are used as
precursors for the esterification reactions to yield BB in the next step. Recently, an alternative process to the current process
has been developed by using microorganisms for the one-pot BB production. In the one-pot BB process, alcohol acyl transferases
(AATs) and lipases play roles in the esterification of butanol together with their co-substrates butyryl-CoA and butyrate,
respectively. In this paper, we review the characteristics of two enzymes including AAT and lipase in the esterification reaction.
Also, we review the one-pot processes for BB production by employing the wild-type and engineeredClostridium species and the
engineered Escherichia coli strains, with the combination of AATs and lipases.
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Introduction

Butyl butyrate (BB) is one of the short-chain esters known as a
flavor and fragrance compound (Matte et al. 2016; Varma and
Madras 2008; Zabetakis and Holden 1997). In nature, BB has
routinely been found in flowers, fruits, and fermented bever-
ages. The sweet and sour flavor found in nature is often due to
the presence of BB together with other short-chain esters.
Thus, BB has been used as a flavoring agent in the beverages,
foods, perfumes, and cosmetic industries (Jenkins et al. 2013;
Santos et al. 2007).

For the industrial-scale production of BB, the catalytic and
enzymatic processes have been developed and used. In the cat-
alytic BB process, the esterification reaction has been performed
under the high temperature and pressure conditions by supply-
ing precursors butanol and butyrate and using hydrofluoric acid
and sulfuric acid as catalysts (Han and Zhou 2011). By using
such acid catalysts, the process has caused some problems in
terms of corrosiveness, formation of environmentally hazardous
byproducts, and difficulty in catalyst recovery (Han and Zhou
2011; Liu and Zhang 2018; Park et al. 2017a). To overcome
such problems in BB production, an enzymatic process has been
developed by employing immobilized lipases, which catalyze
esterification reaction under atmospheric condition (Kirdi et al.
2017; Yeom and Go 2018). It has been demonstrated that the
lipase-catalyzed esterification reaction allowed production of
various esters including BB with high conversion yields
(Chowdary and Prapulla 2002; Dhake et al. 2012; Gim and
Kim 2018; Lozano et al. 2002; Park et al. 2005).

In both current catalytic and enzymatic processes for BB
production, the precursors butanol and butyrate should be ex-
ternally supplemented. Thus, the current BB processes typi-
cally comprise two independent steps including the precursor
production step and the esterification reaction step. As an al-
ternative to the current processes, one-pot processes have re-
cently been developed for BB production by employing mi-
croorganisms (Horton and Bennett 2006; Rodriguez et al.
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2014). In these alternative processes, the precursors are pro-
duced as metabolic intermediates (or end-products) in micro-
organisms including Clostridium species and engineered
Escherichia coli strains (Layton and Trinh 2014; Noh et al.
2018; Rodriguez et al. 2014).

In this paper, the characteristics of two key enzyme alcohol
acyltransferase (AAT) and lipase involved in the esterification
reaction for BB production in the one-pot processes are
reviewed. The metabolic engineering strategies employed
for BB production by microorganisms including
C. acetobutylicum and E. coli are also reviewed.
Furthermore, BB production by employing Clostridium spe-
cies together with the extracellular lipases is reviewed. Finally,
perspectives and future research directions are suggested.

AAT and lipase

AAT and lipase are used as key enzymes in the recent studies
on the development of the one-pot processes for BB produc-
tion (Horton et al. 2003; Langrand et al. 1990; Layton and
Trinh 2016b). Thus, this section begins with a brief overview
of their characteristics, which play important roles in the es-
terification reaction.

AAT

AAT is an enzyme catalyzing the condensation reaction of alco-
hols together with acyl-CoA to produce esters including BB
(Fig. 1) (Günther et al. 2011; Nancolas et al. 2017; Olias et al.
1995; Salas 2004). Various AATs are found in yeasts as well as
fruits including strawberry, banana, melon, and apple (Balbontin
et al. 2010; Defilippi et al. 2005; Kruis et al. 2017). AATs are
distinguished fromwax synthase/diacylglycerol acyltransferases
(WS/DGATs) by the substrate preference towards relatively
shorter carbon length (Menendez-Bravo et al. 2017). For this
reason, AATs have been employed for the production of short

carbon chain esters like BB, while WS/DGATs have been used
for the production of long carbon chain esters like biodiesel
(d’Espaux et al. 2015; Kalscheuer et al. 2006; Kumar et al.
2018; Li et al. 2008; Park et al. 2017b; Sudheer et al. 2017).

In wild-type Saccharomyces cerevisiae, the AATs, ATF1
and ATF2, are encoded by the genes ATF1 and ATF2, respec-
tively (Saerens et al. 2010). ATF1 and ATF2 are mainly in-
volved in the formation of acetate esters in S. cerevisiae (Kruis
et al. 2017; Li et al. 2018; Nancolas et al. 2017; Zhang et al.
2013). While a recent report indicated that ATF1 had a sub-
strate preference for C4 to C6 alcohols and acetyl-CoA in an
engineered E. coli strain (Layton and Trinh 2016a), the sub-
strate preference of ATF2 has not yet been defined in detail.
The homologs of ATF1 and ATF2 have been identified in
other yeast strains, including Saccharomyces carlsbergensis,
Candida glabrata, andKluyveromyces lactis (Fujii et al. 1996;
Fujiwara et al. 1999; Kim et al. 2017; Schneiderbanger et al.
2016; Van Laere et al. 2008; Zhang et al. 2014).

AATs have also been isolated from fruits, such as strawber-
ry (SAAT and FaAAT2 from Fragaria × ananassa, VAAT
fromFragaria vesca, and FcAAT1 fromFragaria chiloensis),
banana (BanAAT from Musa sapientum), melon (MAAT
from Cucumis melo), and apple (AAAT from Malus sp.)
(Beekwilder et al. 2004; Defilippi et al. 2005). The AATs from
such fruits have wide substrate specificities that range fromC1
alcohols to C10 or higher alcohols (Beekwilder et al. 2004).
Beekwilder et al. (2004) reported that SAAT exhibited its
highest activity in a reaction supplemented with geraniol and
acetyl-CoA, but this activity was reduced to 5% and 11% of
the highest activity when geraniol was replaced by methanol
and butanol, respectively. When butyryl-CoAwas supplied as
a co-substrate in the SAAT-mediated esterification reaction,
the highest activity was reported when octanol was used as
the second substrate, and 81% of this activity level was
retained when butanol was used as the second substrate for
BB production (Beekwilder et al. 2004). However, in the re-
action of butanol together with butyryl-CoA, the exact kinet-
ics were limited by FaAAT2, which has a Kcat/KM value of
0.04/s/μM (Cumplido-Laso et al. 2012).

Lipase

In contrast to AATs, which catalyze the esterification of alcohols
with acyl-CoA, lipases catalyze the esterification of alcohols
with acids to yield esters in the organic phase (Kim 2017).
Thus, during the lipase-mediated production of BB, butanol
and butyrate are used as precursors (Fig. 1). Lipase reacts with
butyrate to yield a lipase-butyrate complex, followed by isom-
erization of the complex to form acyl-lipase intermediate. In the
next step, acyl-lipase catches butanol to yield another complex,
followed by isomerization of the complex to form butyl
butyrate–lipase complex. In final, BB was released from the
complex. Lipases can also catalyze the hydrolysis of fatty acid
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Fig. 1 Esterification reactions mediated by alcohol acyltransferases
(AATs) and lipases to yield BB
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esters, including triacylglycerol, via their α/β-hydrolase activity
(Haque et al. 2018; Jung et al. 2010; Langrand et al. 1990;
Mancheno et al. 2003; Yu et al. 2012).

Lipases have been identified from various microorganisms,
including Achromobacter sp., Bacillus sp., Burkholderia sp.,
Thermomyces lanuginosus, Candida antarctica, and
Candida rugosa (Gupta et al. 2004; Martins et al. 2013;
Selvam et al. 2013). In particular, Candida antarctica lipase

B (CALB) is a well-known enzyme that robustly catalyzes
diverse reactions, including the syntheses of flavor and fra-
grance esters (short-chain esters), biodiesels (long-chain es-
ters), and modified glycerides. For commercial applications,
CALB is typically used in an immobilized form under biphas-
ic conditions because the free enzyme is unstable in the aque-
ous condition (Dhake et al. 2012; Hasan et al. 2006; Kim and
Suh 2016). In a study for BB synthesis, kinetic parameters of a
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Fig. 2 Metabolic pathway of the
engineered C. acetobutylicum
strain harboring the AAT genes for
BB production (Noh et al. 2018).
The SAAT and AAAT genes were
introduced from Fragaria ×
ananassa andMalus sp., respec-
tively, into C. acetobutylicum.
Gene abbreviations encoding en-
zymes: ctfAB, CoA transferase;
adhE1, aldehyde/alcohol dehy-
drogenase; buk, butyrate kinase;
ptb, phosphotransbutyrylase; thl,
thiolase; hbd, 3-hydroxybutyrate
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Table 1 Butyl butyrate production using the engineered microorganisms containing the heterologous AAT genes

Microorganisms Constructed pathway for
forming precursors

AATsa Externally added
precursors

Titer (mg/L) Selectivityb

(%)
References

C. acetobutylicum (wild-type) Native pathway SAAT (Fr) None 50.07 84.8 (Noh et al. 2018)

C. acetobutylicum (wild-type) Native pathway AAAT (Mal) None 40.60 87.4 (Noh et al. 2018)

E. coli (ΔadhE, Δfrd, ΔldhA,
Δpta,ΔpflB,Δfnr,ΔyqhD,
ΔadhP, ΔeutG, ΔyiaY,
ΔyjgB, ΔfucO)

KDHC operon
(bkdA1-bkdA2-
bkdB-lpdV)

EHT1 (Sc) 3 g/L 2-Ketovalerate
and 3 g/L butanol

14.9 100 (Rodriguez
et al. 2014)

E. coli (ΔadhE, Δfrd, ΔldhA,
Δpta,ΔpflB,Δfnr,ΔyqhD,
ΔadhP, ΔeutG, ΔyiaY,
ΔyjgB, ΔfucO)

KDHC operon
(bkdA1-bkdA2-
bkdB-lpdV)

cat 3 g/L 2-Ketovalerate
and 3 g/L butanol

10.6 100 (Rodriguez
et al. 2014)

E. coli (Δzwf, Δndh, ΔsfcA,
ΔmaeB, ΔldhA, ΔfrdA,
ΔpoxB, Δpta, ΔfadE)

Acyl-CoA and ethanol
pathways (atoB, hbd,
crt, ter, pdc, adhB)

SAAT (Fr) None 36.83c 1.98 (Layton and
Trinh 2014)

E. coli (Δzwf, Δndh, ΔsfcA,
ΔmaeB, ΔldhA, ΔfrdA,
ΔpoxB, Δpta, ΔfadE)

Acid-to-alcohol pathways
(pct, pdc, adhB)

SAAT (Fr) 2 g/L Butyrate 47.63 26 (Layton and
Trinh 2016a)

E. coli (Δzwf, Δndh, ΔsfcA,
ΔmaeB, ΔldhA, ΔfrdA,
ΔpoxB, Δpta, ΔfadE)

Acid-to-alcohol and
isobutanol pathway
(alsS, ilvC, ilvD, kivd,
adhE, pct)

SAAT (Fr) 2 g/L Butyrate 21.34 32 (Layton and
Trinh 2016b)

aFr, Fragaria × ananassa; Mal, Malus sp.; Sc, Saccharomyces cerevisiae; and cat, chloramphenicol resistance gene
b BB selectivity to total esters produced
c The value was obtained from the fermentation with in situ recovery system

Appl Microbiol Biotechnol (2019) 103:2079–2086 2081



CALB lipase immobilized on acrylic resin, Novozym 435,
were determined in the absence of the product: Vmax of
2.22 mol/g/h, KM with butanol of 530 mM, and KM with
butyrate of 350 mM (Varma and Madras 2008). The
immobilized CALB used in such work is routinely produced
from recombinant yeast and fungi (Emond et al. 2010; Han
et al. 2009; Tamalampudi et al. 2007).

Metabolic engineering of microorganisms
for AAT-mediated BB production

In recent studies, AATs have been used to construct synthetic
pathways for BB production in C. acetobutylicum and E. coli
(Layton and Trinh 2014, 2016a, b; Noh et al. 2018). In the
engineered microorganisms, BB was formed via butanol and
butyryl-CoA, which were obtained from glucose catabolism
or external supplementation. To generate these two precursors
for BB production, the native pathway was used in
C. acetobutylicum, whereas a synthetic pathway was con-
structed in E. coli (Layton and Trinh 2014; Noh et al. 2018;
Rodriguez et al. 2014).

Wild-type C. acetobutylicum forms butanol via butyryl-
CoA from glucose (Fig. 2), making the strain a promising host
for BB production (Desai et al. 1999; Horton et al. 2003; Noh
et al. 2018; Woo et al. 2018). In this organism, butyryl-CoA
and butanol are formed from the sequential transformation of
two acetyl-CoA molecules by four enzymes: thiolase, 3-
hydroxybutyryl-CoA dehydrogenase, crotonase, and butyryl-
CoA dehydrogenase (Jang et al. 2012; Wiesenborn et al. 1988;
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Fig. 3 Metabolic pathway of the engineered E. coli strains harboring the
AAT genes for BB production. a Butyryl-CoA was formed from the ex-
ternally added 2-ketovalerate through the branched-chain keto acid dehy-
drogenase complex (KDHC) encoded from the P. putida bkdA1, bkdA2,
bkdB, and lpdV genes (Rodriguez et al. 2014). The other precursor buta-
nol was also externally supplied for BB production. The S. cerevisiae
EHT1 and the chloramphenicol resistant cat genes were used for the
esterification reaction. b Butyryl-CoAwas formed from glucose through
the chimeric butanol pathway involving the enzymes encoded from the
atoB, hbd, crt, and ter genes (Layton and Trinh 2014). Butanol could
form through enzymes encoded from the adh and adhB genes. The
Fragaria × ananassa SAAT gene was used for the esterification reaction.
c Butyryl-CoA was formed from the externally added butyrate through
the acyl-CoA transferase encoded from the C. propionicum pct gene
(Layton and Trinh 2016a). The other precursor butanol was formed from
butyryl-CoA via the enzymes encoded from the adhB and endogenous
adhE genes. The Fragaria × ananassa SAAT and Fragaria vesca VAAT
genes were used for the esterification reaction. Abbreviations for micro-
organisms: Pp, P. putida; Zm, Z. mobilis; Ca, C. acetobutylicum; Td,
Treponema denticola; Ec, E. coli; Cp, C. propionicum. Gene abbrevia-
tions encoding enzymes: bkdA1, 2-oxoisovalerate dehydrogenase α sub-
unit; bkdA2, 2-oxoisovalerate dehydrogenase β subunit; bkdB,
dihydrolipoyl transacylase; lpdV, dihydrolipoamide dehydrogenase;
atoB, acetyl-CoA acetyltransferase; hbd, 3-hydroxybutyrate dehydroge-
nase; crt, crotonase; ter, trans-2-enoyl-CoA reductase; adhE, alcohol de-
hydrogenase; adhB, alcohol dehydrogenase II; pdc, pyruvate decarbox-
ylase, pct, propionyl-CoA transferase

�
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Yeon et al. 2016). Butyryl-CoA can also be formed by the
reassimilation of butyric acid by CoA transferase (Desai et al.
1999; Lee et al. 2012; Wiesenborn et al. 1988). In a recent
study, SAAT and AAAT from F. ananassa and Malus sp.,
respectively, were introduced into C. acetobutylicum (Fig. 2).
The codon-optimized SAAT and AAAT genes were expressed
under the control of the thl promoter (Noh et al. 2018). In
anaerobic cultures of the engineeredC. acetobutylicum strains,
BB productions of 50.07 mg/L (SAAT) and 40.60 mg/L
(AAAT) were achieved without precursor feeding (Table 1).
The BB selectivity of this ester production was 84.8% and
87.4% for C. acetobutylicum strains harboring the SAAT and
AAAT genes, respectively (Noh et al. 2018).

Unlike C. acetobutylicum, wild-type E. coli does not pos-
sess a native pathway for forming butanol and butyryl-CoA.
Thus, genetic modules must be heterologously introduced to
enable the generation of precursors if the goal is to produce
BB in E. coli. In one study, to supply butyryl-CoA for BB
production, Rodriguez et al. (2014) engineered an E. colimu-
tant, that had low levels of aldehyde and alcohol dehydroge-
nase activity, by introducing the branched-chain keto acid de-
hydrogenase complex (KDHC) operon from Pseudomonas
putida. 2-Ketovalerate was externally supplied to yield
butyryl-CoA via KDHC, as was butanol, which was not pro-
duced by the mutant E. coli (Fig. 3a). For BB production, the
engineeredE. coli strain was further transformed by constructs
encoding one of two AATs: EHT1 from S. cerevisiae or the
chloramphenicol acetyltransferase-encoding cat gene
(Rodriguez et al. 2014). When the final strains were cultured
in medium containing 3 g/L of 2-ketovalerate and 3 g/L buta-
nol, the BB productions were 14.9 mg/L (ETH1 strain) and
10.6 mg/L (cat strain) (Table 1).

In the same year, another group used two different modules
to generate butyryl-CoA and alcohol in an engineered E. coli
(Layton and Trinh 2014). The butyryl-CoA-producing mod-
ule was constructed on the basis of the butanol pathway
known inC. acetobutylicum and previouswork demonstrating
butanol production in E. coli (Inui et al. 2008). An alcohol
production module was constructed by cloning the
Zymomonas mobilis adhB and pdc genes, which encode alco-
hol dehydrogenase II and pyruvate decarboxylase, respective-
ly (Fig. 3b). To enable the esterification reaction, the SAAT
gene was incorporated downstream of the T7 promoter in the
butyryl-CoA production module. Culture of the mutant E. coli
strain harboring these modules without feeding of any precur-
sor yielded production of 0.75 mg/L for BB and 37.16 mg/L
for ethyl butyrate (Layton and Trinh 2014). In a fermentation
with in situ recovery using the same strain, Layton and Trinh
(2014) obtained production of 36.83 mg/L for BB and
134.00 mg/L for ethyl butyrate (Table 1).

In subsequent studies, the same research group replaced the
butyryl-CoA production module with the acyl-CoA transferase
encoded by the Clostridium propionicum pct gene (Layton and

Trinh 2016a, b). Butyrate was externally fed to form butyryl-
CoA through acyl-CoA transferase in the engineered E. coli
(Fig. 3c). Layton and Trinh (2016a) used the alcohol-forming
enzymes encoded from the adhB and pdc genes and tested five
different AATs for the esterification reaction in the mutant
E. coli. Among the engineered E. coli strains, those harboring
the SAATand VAAT genes yielded BB productions of 47.63 mg/
L and 2.76mg/L, respectively, and ethyl butyrate productions of
134.43 mg/L and 141.60 mg/L, respectively (Layton and Trinh
2016a). Conversely, strains expressing ATF1, ATF2, and
AeAT9 (Actinidia eriantha) exhibited negligible BB produc-
tions of 0.17–0.28 mg/L (Layton and Trinh 2016a).
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Fig. 4 Production of BB using Clostridium species together with lipases.
a BB production using the solventogenic C. acetobutylicum, Clostridium
sp. BOH3, and C. beijerinckii spo0A mutant (Seo et al. 2017; van den
Berg et al. 2013; Xin et al. 2016). b BB production using the acidogenic
C. tyrobutyricum (Zhang et al. 2017). Abbreviations: LCREx, externally
added Candida rugosa lipase; CALBEx, externally added C. antarctica
lipase B; LipaseBOH3, native lipase secreted from Clostridium sp. BOH3;
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butyrate. Gene abbreviations encoding enzymes: thl, thiolase; hbd, 3-
hydroxybutyrate dehydrogenase; crt, crotonase; bcd, butyryl-CoA dehy-
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BB production by employing Clostridium
species and lipase supplementation

As Clostridium species can generate precursors for BB produc-
tion, some studies have employedC. acetobutylicum,Clostridium
beijerinckii, andClostridium tyrobutyricum, together with lipases,
to produce BB (Fig. 4 and Table 2). For example, hexadecane-
extractive fed-batch fermentation of C. acetobutylicum in the
presence of beads harboring immobilized Candida antarctica
lipase B (CALB) yielded a BB production of 4.9 g/L from glu-
cose (van den Berg et al. 2013).

Clostridium sp. strain BOH3, which harbors native lipase
activity, was recently used for BB production (Xin et al.
2016). This strain yielded 1.7 g/L BB from xylose under olive
oil–based lipase induction and 6.3 g/L BB from xylose using
an oil sludge remover for lipase induction and extraction (Xin
et al. 2016). In the same study, BB production of 22.4 g/L was
achieved from 70 g/L xylose and 7.9 g/L exogenous butyrate
in kerosene-extractive fed-batch fermentation with externally
supplemented Candida rugosa lipase (Table 2).

The C. beijerinckii spo0Amutant has also been tested for BB
production, as it has a high capability for producing butanol and
butyrate (Seo et al. 2017). In hexadecane-extractive batch-fer-
mentation using the spo0A mutant, 3.32 g/L BB was produced
from 60 g/L glucose and 5 g/L exogenous butanol (Table 2).

In a more recent study, the hyper butyrate producer,
C. tyrobutyricum, was tested for BB production in medium
containing exogenous butanol and CALB (Zhang et al.
2017). In hexadecane-extractive fermentation using
C. tyrobutyricum, 34.7 g/L BB production was achieved by
CALB from 80 g/L glucose and 10 g/L butanol (Table 2).

Conclusions

One-pot processes for producing BB have been developed by
employing wild-type and engineered Clostridium species as

well as engineered E. coli strains. In these processes, AATs
and lipases contribute to esterifying butanol together with
butyryl-CoA and butyrate, respectively, to yield BB. Butanol,
butyryl-CoA, and butyrate are formed as metabolites in wild-
type Clostridium species, and a number of studies have shown
that these strains are promising hosts for BB production (Noh
et al. 2018; Seo et al. 2017; van den Berg et al. 2013; Xin et al.
2016; Zhang et al. 2017). On the other hand, as wild-type
E. coli does not produce butanol and butyryl-CoA, synthetic
modules were constructed to form precursors for BB produc-
tion in the engineered strains (Layton and Trinh 2014, 2016a, b;
Rodriguez et al. 2014). Although the engineered and/or exter-
nally supplementedAATs and lipases function properly in these
one-pot processes, the BB yields obtained to date are not suffi-
cient to allow these strategies to replace the current catalytic and
enzymatic processes. To overcome this hurdle, it will be nec-
essary to improve the affinity (KM) of AATs for butanol and
butyryl-CoA by evolutionary enzyme engineering. Moreover,
for processes involving lipases, system metabolic engineering
could be used to optimize the metabolic pathways of
Clostridium to produce butanol and butyrate at a proper precur-
sor ratio for BB production.
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Table 2 Butyl butyrate production using Clostridium species and lipases

Microorganisms Lipasesa Externally added
precursors

Extractants
(or inducers)

Fermentation conditions Titer (g/L) References

Clostridium
acetobutylicum

Candida antarctica
lipase B (CALB)

Butyric acidb Hexadecane Fed-batch fermentation with
40 g/L initial glucose

4.9 (van den Berg
et al. 2013)

Clostridium sp. strain
BOH3

Native lipase None Olive oil Batch fermentation with
70 g/L xylose

1.7 (Xin et al. 2016)

Clostridium sp. strain
BOH3

Candida rugosa lipase
(LCR)

7.9 g/L Sodium butyrate Kerosene Fed-batch fermentation with
70 g/L initial xylose

22.4 (Xin et al. 2016)

Clostridium beijerinckii
spo0A mutant

Candida antarctica
lipase B (CALB)

5 g/L Butanol Hexadecane Batch fermentation with
60 g/L glucose

3.32 (Seo et al. 2017)

Clostridium
tyrobutyricum

Candida antarctica
lipase B (CALB)

10 g/L Butanol Hexadecane Batch fermentation with
80 g/L glucose

34.7 (Zhang et al.
2017)

a CALB and LCR were externally added in the culture
b The exact butyrate feeding was not reported. Feeding solution contained 80 g/L glucose and 160 g/L butyrate
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