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Biosynthesis and production of sabinene: current state and perspectives
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Abstract
Sabinene is an important naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine
chemicals, and advanced biofuels. Up to now, this valuable terpene is commercially unavailable since there is no applicable
manufacturing process. Microbial synthesis can be a promising route for sabinene production. In this review, we summarize
knowledge about the metabolic pathway and key enzymes for sabinene biosynthesis. Recent advances that have been made in
production of sabinene by microbial fermentation are highlighted. In these studies, researchers have identified the general
synthetic pathway of sabinene from simple intermediate metabolites. Sabinene synthases of different origins were also cloned
and characterized. Additionally, heterologous systems of the model microbes Escherichia coli and Saccharomyces cerevisiae
were constructed to produce sabinene. This review also suggests new directions and attempts to gain some insights for achieving
an industrial level production of sabinene. The combination of traditional molecular biology with new genome and proteome
analysis tools will provide a better view of sabinene biosynthesis and a greater potential of microbial production.
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Introduction

S a b i n e n e ( C 1 0 H 1 6 , 4 - m e t h y l e n e - 1 - ( 1 -
methylethyl)bicyclo[3.1.0]hexane) is a naturally occurring bicy-
clic unsaturated monoterpene, which exists as (+)- and (−)-enan-
tiomers (Fig. 1). Sabinene can be emitted by a number of plants
(Hakola et al. 2003) and has been found in different plant essen-
tial oils (Rossi et al. 2007). It is an important component in
culinary spices for the special odor (Menon and Padmakumari
2005), as well as being used for perfume additives and fine
chemicals. Sabinene possesses anti-fungal (Yamasaki et al.
2007) and anti-inflammatory (Valente et al. 2013) activities, thus
playing a role in pharmaceutical industry. Due to its compact
structure compared to ordinary hydrocarbons, sabinene has a
high density and a high combustion heat. It shows the potential

to serve as a feedstock for advanced biofuels (Peralta-Yahya et al.
2011; Renninger et al. 2008).

The chemical catalysis synthetic route of sabinene has been
established by organic chemists (Urabe et al. 1997;
Zaidlewicz and Gimiñska 1997). However, the complicated
ring structure of this monoterpene makes it difficult to be
produced by chemical processes. Sabinene could also be ex-
tracted from plants, but it requires considerable expenditure of
natural resources since its content is low in plants (Woguem
et al. 2013). Moreover, the occurrence of other similar ter-
penes makes the separation of this valuable monoterpene from
natural sources complex and inefficient. Up to now, there is no
commercial manufacturing method for sabinene. Therefore,
the development of biosynthetic routes for the production of
sabinene from renewable sugar is gaining interest. Compared
with the traditional chemical synthesis and plant tissue extrac-
tion methods, microbial synthesis of sabinene offers many
technical advantages, e.g., mild reaction conditions, negligible
environmental pollution, and no requirement for arable land.

This review provides information on the biosynthesis and
production of sabinene, which gives an alternative to conven-
tional routes. In the following, we briefly summarize recent
progresses in the metabolic pathway, key enzymes, and engi-
neering approaches for the production of sabinene.
Advancements of modern molecular biology techniques
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greatly enhance the engineering of microbes to produce this
monoterpene. We hope that this review can give some impli-
cations to further improve current sabinene biosynthesis
systems.

Metabolic pathway for sabinene biosynthesis

Like many other terpenoids, sabinene is synthesized from the
isoprene unit. The key intermediates of this pathway are two
common C5 precursors, isopentenyl pyrophosphate (IPP) and
its isomer dimethylallyl pyrophosphate (DMAPP) (Guan et al.
2015). IPP and DMAPP can be produced from the mevalonate
(MVA) pathway or the methylerythritol 4-phosphate (MEP)
pathway (Vranová et al. 2013). The C5 backbone is responsi-
ble for biosynthesis of the C10 unit geranyl pyrophosphate
(GPP), the direct precursor of sabinene. The metabolic path-
way of sabinene from the general carbon source glucose is
shown in Fig. 2.

The MVA pathway starts from the central metabolite ace-
tyl-CoA. Two molecules of acetyl-CoA are condensed by
acetoacetyl-CoA thiolase (AACT) to generate acetoacetyl-
CoA, and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) synthase further adds one acetyl-CoA to acetoacetyl-
CoA, resulting HMG-CoA (Bach et al. 1990). Then, HMG-
CoA is reduced by the enzyme HMG-CoA reductase
(HMGR) to yield MVA. In certain bacteria, the AACT and
HMGR are encoded by a dual-function polypeptide (Hedl
et al. 2002; Yang et al. 2012). In the next steps, MVA is
sequentially phosphorylated by MVA kinase (MK) and
phosphomevalonate kinase (PMK), which convert MVA to
MVA 5-pyrophosphate (MVAPP). Finally, MVAPP decarbox-
ylase (MVD) catalyzes the decarboxylation of MVAPP to IPP
(Pérez-Gil and Rodríguez-Concepción 2013). TheMVA path-
way is present in the cytosol of plants, animals, fungi, archaea,
and some Gram-positive bacteria.

In the 1990s, a non-MVA pathway for the early steps of
terpenoid biosynthesis was identified (Rohmer et al. 1993).
Using 13C isotope-labeled substrates, the C5 framework of
the isoprene unit was found to be synthesized from the con-
densation of pyruvate and a triose phosphate. By the joint
effects of many different labs, this novel pathway was

completely elucidated (Lichtenthaler et al. 1997; Rohdich
et al. 2002). It starts from a transketolase-type condensation
of two metabolites of glycolysis, pyruvate, and glyceralde-
hyde-3-phosphate, forming 1-deoxy-D-xylulose 5-phosphate
(DXP), followed by the rearrangement and reduction of DXP
to MEP. Since MEP and DXP are the key intermediates, it is
termed as MEP pathway or DXP pathway. MEP is then con-
verted to 2-methylerythritol-2,4-cycloyrophosphate (cMEPP)
under the sequential action of three enzymes. The ring of
cMEPP is reductively opened to 1-hydroxy-2-methyl-2-
butenyl-4-pyrophosphate (HMBPP). Finally, HMBPP is fur-
ther reduced to DMAPP by a reductase (Adam et al. 2002;
Partow et al. 2012). The MEP pathway is generally found in
most bacteria and chloroplasts of plants.

The two pathways are quite different in terms of precursors,
reaction steps, and coenzyme consumption. Figure 3 shows
the overall stoichiometries of conversing glucose to IPP/
DMAPP through glycolysis (Steinbüchel 2003). MEP path-
way has a higher theoretical yield with only one glucose mol-
ecule required for DMAPP/IPP synthesis compared with 1.5
glucose molecules required by the MVA pathway. In contrast,
MVA pathway is more energetically favorable as it has a net
gain in NAD(P)H reducing equivalents, and MEP pathway
requires ATP and NAD(P)H for metabolic balance
(Gruchattka et al. 2013). Therefore, MVA pathway could be
coupled with other biosynthesis process for NAD(P)H
recycling.

The IPP/DMAPP ratio is critical for subsequential terpe-
noid biosynthesis, and IPP isomerase (IPI) could catalyze the
reversible inter-conversion of IPP and DMAPP (Ramos-
Valdivia et al. 1997). After the synthesis of the C5 units IPP
and DMAPP either by the MVA or MEP pathways, the next
step for sabinene biosynthesis is chain elongation, which is
called the prenyl pyrophosphate pathway. GPP is generated
from the head-to-tail condensation of the IPP with DMAPP,
catalyzed by GPP synthase (Jongedijk et al. 2016). GPP is the
direct precursor for all monoterpenoids. GPP can be further
elongated through the prenyl pyrophosphate pathway to gen-
erate farnesyl pyrophosphate (FPP) and geranylgeranyl pyro-
phosphate (GGPP), which can be used for the synthesis of
sesquiterpenoids and diterpenoids (Majdi et al. 2016).

Sabinene synthase—the key enzyme
for sabinene biosynthesis

The enzymatic cyclization of the precursor GPP leading to
monoterpene has been well characterized in different organ-
isms (Degenhardt et al. 2009). Among them, sabinene syn-
thase (SabS) catalyzes the committed step for sabinene bio-
synthesis through a polycyclization reaction. A potential
mechanism for sabinene cyclization has been postulated and
is shown in Fig. 4 (Peters and Croteau 2003). GPP is first

Fig. 1 Structure of (+)-sabinene and (−)-sabinene
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isomerized to form 3R-linalyl pyrophosphate by the rotation
of the C2-C3 single bond to the cisoid conformer. 3R-linalyl
pyrophosphate promotes electrophilic attack on the C6-C7
double bond by C1, resulting in the carbocationic intermedi-
ate. Further cyclization of this key intermediate leads to the
formation of sabinene (Adam and Croteau 1998; Wise et al.
1998).

A number of plants and fungi have the ability to emit
sabinene. However, only nine SabSs have been cloned and

characterized from plants so far (Table 1). These plant sources
include common sage (Salvia officinalis), Salvia pomifera,
rough lemon (Citrus jambhiri), Citrus unshiu, sitka spruce
(Picea sitchensis), Thuja plicata, Hedychium coronarium,
and Murraya koenigii. Amino acid sequence alignment of
the nine known SabSs is shown in Fig. 5. These SabSs show
55.37% identity to each other. Similar to many other terpene
cyclases, all the nine SabSs have a highly conserved prenyl
pyrophosphate substrate binding site with an aspartate-rich

Fig. 2 Metabolic pathway for
sabinene biosynthesis. Enzymes
involved in the MEP pathway
include the following: Dxs, 1-
deoxy-D-xylulose-5-phosphate
synthase; Dxr, 1-deoxy-D-
xylulose 5-phosphate
reductoisomerase; IspD, 4-
pyrophosphocytidyl-2-
methylerythritol synthase; IspE,
4-pyrophosphocytidyl-2-
methylerythritol kinase; IspF, 2-
methylerythritol 2,4-
cyclopyrophosphate synthase;
IspG, 4-hydroxy-3-methylbut-2-
enyl pyrophosphate synthase;
IspH, 1-hydroxy-2-methyl-
butenyl 4-pyrophosphate
reductase. Enzymes involved in
the MVA pathway include the
following: MvaE, acetyl-CoA
acetyltransferase/HMG-CoA
reductase; MvaS, HMG-CoA
synthase; MK, MVA kinase;
PMK, phosphomevalonate
kinase; MVD, MVA 5-
pyrophosphate decarboxylase.
IPI, isopentenyl pyrophosphate
isomerase; GPPS, GPP synthase;
SabS, sabinene synthase

Fig. 3 The overall stoichiometries of the conversion of glucose to IPP/DMAPP by MVA or MEP pathways
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DDXXD motif, which is responsible for the coordination of
divalent cations (Starks et al. 1997). The N-terminal
RR(X)8W motif essential for the enzymatic activity of many
monoterpene synthases is also found in the SabSs (Bohlmann
et al. 1998). In addition, a conserved GTXXEL/I sequence
adjacent to DDXXD might also participate in the enzymatic
catalysis process.

Although sabinene is the primary product of all the SabSs,
a variety of similar monoterpenes can also be generated as the
by-products during sabinene biosynthesis, which include α-
pinene (Kampranis et al. 2007), myrcene (Foster et al. 2013),
and 3-carene (Roach et al. 2014). It has the potential to further
improve the SabSs’ selectivity towards sabinene. Protein en-
gineering is an important means to enhance the catalytic ac-
tivity and specificity of enzymes. However, the structures of
these SabSs have not been resolved up to now. Advancements
in understanding the reaction mechanism (Kampranis et al.
2007; Roach et al. 2014) would enable to develop mutant
SabSs with improved activity and selectivity. Moreover, di-
rected evolution which has been applied for engineering of
other terpene synthases (Furubayashi et al. 2014; Tashiro
et al. 2016) might also be employed to enhance the catalytic
activity of SabSs.

Biotechnological production of sabinene

A variety of microorganisms have been investigated for
sabinene production. These microorganisms include fungi,
bacteria, and yeast. In addition, cell-free production of

sabinene was also achieved with encouraging results. Recent
advances of sabinene production using different systems are
summarized in Table 2 and described below.

Natural producers and mutant strains

Although SabSs were mainly identified in plants, several mi-
crobial species could also produce this valuable monoterpene.
For instance, an endophytic fungus, Phomopsis sp. EC-4,
showed the ability to emit sabinene as a primary component
of its volatile organic compounds (VOCs). Meanwhile,
isopentanol, isobutanol, and phenylethanol were also detected
in the mixture of volatiles. The total measurable VOC produc-
tion was only 18.4 ppmv, representing a very low sabinene
concentration (Singh et al. 2011). Another endophytic fungus
Hypoxylon sp. CI-4 could also synthesize a number of ter-
penes as its VOCs. The traditional random mutation and
screening method has been very effective for isolating strains
which could synthesize novel compounds despite the consid-
erable amount of time and resources it demands. Therefore,
the wild-type strain was treated by two chemical mutagens,
suberoylanilide hydroxamic acid and 5-azacytidine, and the
resulting variants were able to produce an array of terpenes,
such as sabinene, α-thujene, γ-terpinene, α-terpinolene, and
β-selinene. However, sabinene was not the major component
among all the VOCs (Ul-Hassan et al. 2012). To make these
producing systems economically feasible, further work is re-
quired to increase the productivity and reduce the by-products.
Up to now, the genetic engineering technique for these strains
is not yet established. It is urgent to develop genetic modifi-

Table 1 NCBI accession
numbers of functionally
characterized sabinene synthases

Species Product selectivity Accession no. References

S. officinalis (+)-sabinene, 63% AAC26018 (Wise et al. 1998)

S. pomifera 86.8% ABH07678 (Kampranis et al. 2007)

C. jambhiri – BAF73933 (Kohzaki et al. 2009)

C. unshiu – DM464100 (Sakai and Ito 2009)

P. sitchensis (+)-sabinene ADU85930 (Hall et al. 2011)

T. plicata (+)-sabinene, 86.5% AGO02736 (Foster et al. 2013)

P. sitchensis (−)-sabinene, 44.7% ADU85930 (Roach et al. 2014)

H. coronarium 74.1% AHJ57305 (Yue et al. 2014)

M. koenigii (−)-sabinene AQT33224 (Meena et al. 2017)

–, unidentified

Fig. 4 Proposed mechanism for
product formation catalyzed by
sabinene synthase
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Fig. 5 Amino acid sequence alignment of nine sabinene synthases.
SoSabS, SabS of S. officinalis; SpSabS, SabS of S. pomifera; CjSabS,
SabS of C. jambhiri; CuSabS, SabS of C. unshiu; PsSabS1, SabS of P.
sitchensis susceptible to weevil, PsSabS2, SabS of P. sitchensis with

weevil resistance, TpSabS, SabS of T. plicata, HcSabS, SabS of H.
coronarium, MkSabS, Murraya koenigii. The conserved motifs are
marked by rectangles
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cation tools for these fungi in spite of the diverse genomics
and biochemical machinery (Deng et al. 2017).

Engineered strains

Escherichia coli is a good candidate for the production of
value-added chemicals (Cao et al. 2015). It was extensively
studied to biosynthesize terpenoids due to the easiness of ge-
netic modifications and vast molecular resources. Reiling
et al. (2004) first constructed an engineered E. coli strain for
the production of sabinene. Three key enzymes in the
precursor-supplying pathway including the native DXS, IPI
from Haematococcus pluvialis and mutant of the native FPP
synthase were co-expressed to enhance the intracellular GPP
pool. A cyclase from Picea abies was further employed to
generate monoterpene. Due to its poor enzymatic activity to-
wards sabinene, the major product in this systemwas 3-carene
while sabinene accounted for only 5.9% of the dominant prod-
ucts. E. coli utilizes a native MEP pathway to synthesize IPP
andDMAPP. TheMEP pathway has a higher theoretical yield,
but it is tightly regulated by the hosts. It has been demonstrat-
ed that a heterologous MVA pathway was more effective to
increase the precursor supply for the production of terpenoids
in E. coli (Boronat and Rodríguez-Concepción 2015; Martin
et al. 2003). To construct a heterologous system for sabinene
production with high specificity, we introduced the SabS of S.
pomifera into E. coli. By assembling the biosynthetic pathway
using both the MEP and MVA pathways combined with the
GPP synthase genes, sabinene production was achievedwith a
maximum titer of 82.18 mg/L under shake-flask conditions.
Fed-batch fermentation of this engineered strain using the op-
timized culture medium and process conditions further in-
creased sabinene production to a concentration of 2.65 g/L
with a yield on glycerol of 3.49% (Zhang et al. 2014). The

MVA pathway can be divided into the upper proportion (from
acetyl-CoA to MVA) and the lower proportion (from MVA to
IPP). By using MVA as the feeding substrate for sabinene
production, sabinene titer was significantly improved to
150 mg/L by shake-flask fermentation (Liu et al. 2017). The
strategy of feeding MVA did not require the upper proportion
of MVA pathway. The reduction of heterologous
overexpressed genes could release the burden to the host and
avoid accumulation of MVA in the fermentation broth, thus
leading to an enhanced sabinene production.

Sabinene production was also accomplished using the
yeast Saccharomyces cerevisiae. Generally speaking, S.
cerevisiae was not a good candidate for monoterpene produc-
tion. The endogenous FPP synthase (encoded by Erg20) of S.
cerevisiae is more favorable to synthesize FPP from IPP and
DMAPP which might limit the precursor pool of monoter-
pene. Two of the Erg20 variants, Erg20K197G and
Erg20F96W-N127W, were found to show more GPP synthase
activity than FPP synthase activity. The intracellular GPP
levels were greatly enhanced by the FPP synthase mutants
and controlling endogenous Erg20 expression, coupled with
increasing the expression of the MVA pathway (Zhao et al.
2016). The SabS from S. pomifera was also selected to be
expressed in S. cerevisiae using a galactose-inducible expres-
sion vector, and 0.5 mg/L of sabinene was produced in a
shake-flask culture. Erg20p was engineered into a GPP syn-
thase and a 340-fold increase in sabinene yield was achieved,
that is 17.5 mg/L (Ignea et al. 2014).

As discussed above, common strategies in engineering
sabinene production are to overexpress MVA or MEP path-
way enzymes along with the SabSs. Tuning of the expres-
sion levels and catalytic specificity of GPP synthase could
greatly enhance sabinene production, indicating that this
enzyme is a second committed step for sabinene

Table 2 Microbial strains or cell-free system and the engineering strategies employed for sabinene production

Hosts Engineering strategies Advances References

Phomopsis sp. EC-4 Wild-type strain Sabinene was the primary component
of the VOCs (18.4 ppmv)

(Singh et al. 2011)

Hypoxylon sp. CI-4 Chemical mutagenesis by using suberoylanilide
hydroxamic acid and 5-azacytidine

Sabinene was detected in the VOCs (Ul-Hassan et al. 2012)

E. coli Expression of native DXS, IPI from Haematococcus
pluvialis, native FPP synthase mutant, and
monoterpene cyclase from Picea abies

Sabinene accounted for 5.9% of the
dominant products

(Reiling et al. 2004)

E. coli Biosynthetic pathway using both the MEP and MVA
pathways combining the GPP synthase genes and
sabinene synthase from S. pomifera

82.18 mg/L by flask fermentation and
2.65 g/L by fed-batch fermentation

(Zhang et al. 2014)

E. coli Using MVA as the feeding substrate 150 mg/L by flask fermentation (Liu et al. 2017)

S. cerevisiae Engineering native Erg20p into a GPP synthase and
heterologous expression of sabinene synthase from
S. pomifera

17.5 mg/L by flask fermentation (Ignea et al. 2014)

Cell-free systems 27 enzymes for the conversion of glucose into sabinene
and cofactor regeneration

15.9 g/L, 94.5% of the theoretical yield (Korman et al. 2017)
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biosynthesis in addition to the SabSs. However, overex-
pression of too many genes in multiple plasmids is a huge
metabolic burden on the host cells, which might also de-
crease the cell growth rate. Chromosome integration of
these genes might be a promising approach to achieve a
stable and long-term sabinene-producing system (Yang
et al. 2013).

Cell-free systems

In vitro biocatalytic systems have been greatly advanced
along with the development of synthetic biology, which
provides an alternative approach to biosynthesis of value-
added products. Compared with the traditional producing
systems, these cell-free systems are attractive due to their
reduced complexity as well as not requiring cell viability
(Billerbeck et al. 2013). In a recent study, a complex cell-
free system comprising 27 enzymes was designed for the
conversion of glucose into monoterpenes that generated
both NAD(P)H and ATP by a modified glucose breakdown
module and utilized these cofactors for building terpenes.
Different monoterpenes were produced in this system by
changing the terpene synthases. Among them, sabinene
titer reached 15.9 g/L with a yield of 94.5% of theoretical
limit, which was the highest report up to now (Korman
et al. 2017). Nevertheless, cell-free systems are still at its
infant stage and further research is required to reach an
industrial application. Two major factors hampering cell-
free biosynthesis are the costly coenzymes/cofactors and
the stability of the enzymes (Ullah et al. 2016). The
coenzymes/cofactors can be recycled to maintain a balance
by pathway design, and immobilization strategies can be
employed to develop stable and reusable enzymes.

Future perspectives: challenges
and opportunities

In recent years, naturally occurring terpenoids have attracted
considerable interest due to their extensive applications in a
variety of fields. Many research studies focus on the applica-
tions of these terpenoids in therapeutic and medical applica-
tions (Jaeger and Cuny 2016). Monoterpenes represent a large
class of terpenes that consist of two isoprene units. They can
be classified into acyclic monoterpenes, monocyclic monoter-
penes, and bicyclic monoterpenes (Koziol et al. 2014).
Figure 6 shows the structures of several representative mono-
terpenes. These compounds have aroused widespread con-
cerns for their unique characteristics. As an important mono-
terpene, the increasing demands of sabinene and its limited
sources have led to an extensive search for efficient and eco-
nomical manufacturing routes. Microorganism-based process-
es seem to be a reliable, economically attractive source of
sabinene and can provide an efficient way for large-scale
production.

However, the biosynthesis and production of sabinene
still face the following challenges. Microbes can suffer
from the presence of sabinene due to its anti-microbial
properties (Asili et al. 2010). This would require increasing
the product tolerance of the corresponding strains, and
promising results have been obtained for similar
monoterpene-producing strains (Brennan et al. 2015;
Tomko and Dunlop 2015). In addition, two-phase fermen-
tation could be employed to alleviate toxicity of sabinene
to microorganisms by capturing the product from the cul-
ture. Up to now, there is no separation and purification
technique for sabinene. Sabinene is a volatile hydrocarbon.
It would be taken by the off-gas especially for aerobic
fermentation. The recovery of sabinene produced by

Fig. 6 The structures of several
representative monoterpenes
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microbes could draw on the experience of the apparatus for
the purification of bio-isoprene (Feher et al. 2013).

Biosynthesis offers new opportunities and good perspec-
tives for sabinene production. Attempts at elucidating the met-
abolic pathway and key enzymes for sabinene biosynthesis
have met with mixed success. Although the sabinene yields
obtained in current studies remain low, they demonstrate the
possibility of employing genetic manipulation to modify the
metabolic pathway, which might result in a further improve-
ment in sabinene productivity. This review can serve as the
basis for the construction of much more robust strains for
sabinene production in the future. Now, we cannot accomplish
an industrial level sabinene production, but different strategies
such as fermentation engineering, enzyme engineering, and
cell engineering can be adopted to finally make the microbial
sabinene-producing system economically feasible. Advances
in genome and proteome analysis tools (Khairy et al. 2016)
will also guide the engineering of sabinene production strains.
Moreover, recent research progresses summarized here would
contribute to the microbial production of other polycyclic ter-
penes. We hope this review on the biosynthesis of sabinene
could provide useful information to the field of terpenes
production.
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