Applied Microbiology and Biotechnology (2018) 102:789-799
https://doi.org/10.1007/500253-017-8655-0

BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS

@ CrossMark

Biosynthesis of 2-aminooctanoic acid and its use to terminally modify
a lactoferricin B peptide derivative for improved antimicrobial activity

Sarah A. Almahboub - Tanja Narancic' - Marc Devocelle? - Shane T. Kenny? - William Palmer-Brown -
Cormac Murphy ' - Jasmina Nikodinovic-Runic* - Kevin E. O’Connor '

Received: 24 August 2017 /Revised: 15 November 2017 / Accepted: 15 November 2017 /Published online: 25 November 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract

Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty
acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the
use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric
excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transam-
inase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio
of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal
conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the
modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally
modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited
MIC values of 25 pg/ml for Escherichia coli, 50 pg/ml for Bacillus subtilis, 100 pug/ml for Salmonella typhimurium, 200 pg/
ml for Pseudomonas aeruginosa and 400 pg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only
peptide tested that showed complete inhibition of growth of S. aureus.

Keywords w-Transaminase - Chromobacterium violaceurn DSM30191 - Unnatural amino acids - 2-aminooctanoic acid -
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Introduction

During reductive amination, a transaminase (TA) transfers an

Electronic supplementary material The online version of this article amino group from a donor to an acceptor via a pyridoxal-5'-
(https://doi.org/10.1007/500253-017-8655-0) contains supplementary phosphate (PLP)-dependent mechanism to generate a chiral
material, which is available to authorized users. amine (Ghislieri and Tumer 2013; Humble et al. 2012). TAs

are widely used in the production of chiral amino compounds
such as the antidiabetic drug sitagliptin (Savile et al. 2010).
Enantiopure amino compounds can have bioactivity, or they
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leucine, a building block of a protease inhibitor acting on the
HIV virus, has been synthesised in a process employing a TA
from Escherichia coli (Seo 2011). The enantiomerically pure
unnatural amino acid L-homoalanine was asymmetrically syn-
thesised using an w-TA, and it is a key intermediate for the
production of pharmaceutical compounds such as antiepilep-
tic and antituberculosis drugs (Shin and Kim 2009; Zhang
et al. 2010). One of the applications of unnatural amino acids
is the synthesis of antimicrobial peptides (AMPs). The incor-
poration of unnatural amino acids in AMPs leads to increased
bioactivity and stability when compared with naturally occur-
ring peptides (Bhonsle et al. 2013).

AMPs are biomaterials evolved in virtually every class of
organisms as a host defence mechanism (Bhonsle et al. 2013;
Yeaman and Yount 2003). Increased interest in AMPs in re-
cent years is due to their activity towards a wide range of
bacteria, including some antibiotic-resistant strains, different
fungi, viruses and parasites (Ageitos et al. 2017; Hancock
2001). AMPs are usually selective and efficient (Fosgerau
and Hoffmann 2015) and unlike conventional antibiotics, they
exhibit dual activity: disrupt targeted cell membranes and
modulate the immune system (Hancock and Sahl 2006).
Bacterial resistance to AMP would require severe rearrange-
ments of the membrane structure, which would significantly
delay the emergence of the resistance (Aoki and Ueda 2013;
Chen et al. 2014). Thus, AMPs are promising candidates for
the treatment of resistant infections.

The modification of naturally occurring peptide sequences
to develop synthetic AMPs with desired properties has previ-
ously been reported (Bhonsle et al. 2013; Goodwin et al.
2012; Malina and Shai 2005; Reinhardt and Neundorf
2016). Terminal modification of peptides frequently adds hy-
drophobic moieties to increase the hydrophobicity of peptides
(Chu-Kung et al. 2010). It was demonstrated that increasing
hydrophobicity of a peptide via lipidation, either internally
(Lee et al. 2002) or terminally (Chen et al. 2016), increased
the antimicrobial activity. The modification of the N-terminus
by fatty acids has been reported previously (Chicharro et al.
2001). However, the C-terminal modification of peptides is
limited due to the need for an amino function which is absent
in fatty acids. The synthesis of unnatural amino acids with the
hydrophobic tail of fatty acids allows the N- and C-terminal
modification of peptides offering a greater diversity of
modifications.

Here we demonstrate the production of an unnatural amino
acid, 2-aminooctanoic acid (2-AOA), which was subsequently
used for the modification of N- and C-termini of a
lactoferricin-like peptide. An w-TA from Chromobacterium
violaceum DSM3019 was used for the production of 2-AOA.
The product was purified from the biotransformation reaction
using Fmoc-Cl derivatisation, which demonstrates the possi-
bility to directly apply the derivatised amino acid for peptide
synthesis. Furthermore, we demonstrated improved
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antimicrobial activity of a lactoferricin-like AMP modified
with 2-AOA, with the highest improvement (16-fold for
E. coli) though C-terminal modification.

Materials and methods

Reagents The amino group donor (S)-(-)1-phenylethylamine
(1-PEA) and the amino group acceptor 2-oxooctanoic acid (2-
OO0A), racemic (R, S)-2-aminooctanoic acid (AOA) and the
cofactor PLP were purchased from Sigma-Aldrich (Dublin,
Ireland). (S)-Fmoc-2-AOA was obtained from Eurogentec
(Liege, Belgium). Trifluoroacetic acid (TFA), isopropyl-b-D-
thiogalactopyranoside (IPTG) and imidazole were obtained
from Fisher Scientific (UK). Restriction enzymes, BamHI
and HindIIl, were obtained from Thermo Scientific (UK).
The oligonucleotide primers were synthesised by Sigma
Genosys (Dublin, Ireland). BugBuster® was purchased from
Merck Chemicals (Nottingham, UK). All other chemicals
were from Sigma-Aldrich (Dublin, Ireland).

Cloning and expression of the CV_TA Standard recombinant
DNA techniques were performed as previously described
(Sambrook et al. 1989). In brief, the CV_2025 gene (kegg.jp)
was amplified by PCR from the genomic DNA of
Chromobacterium violaceum DSM30191 using the primers
listed in Table 1 and ligated into an expression vector pET-
45b(+) (Table 1).

The CV_TA construct was introduced into E. coli BL21
(DE3) to give E. coli CV_TA. The recombinant strain was
grown in LB medium supplemented with carbenicillin
(50 pug/ml). For CV_TA expression, 1 ml of overnight culture
was inoculated in 400 ml LB medium with carbenicillin
(50 pug/ml) and grown at 37 °C, 200 rpm until an ODg of
0.5 was reached. The culture was then cooled for 30 min at
4 °C, followed by the induction with 0.5 mM IPTG and the
CV_TA was expressed for an additional 4 h. The cells were
harvested by centrifugation 6000 rpm (Sorvall RC-5,
refrigerated floor centrifuge) for 10 min at 4 °C and the pellet
was washed twice with 400 ml of 100 mM potassium phos-
phate buffer (pH 7). The protein was purified from the cells as
described previously (Hume et al. 2009) using HisTrap FF
1 mL column (Amersham Biosciences/GE Healthcare,
England) and AKTAprime chromatography system
(Amersham Biosciences/GE Healthcare, England). The frac-
tions (2 ml volume) were collected and analysed by 8% SDS-
PAGE under denaturing conditions (Laemmli 1970). The pu-
rified protein concentration was determined by bicinchoninic
acid (BCA) assay (Smith et al. 1985).

Analysis of the activity of CV_TA towards 2-O0A The activity
of purified CV_TA was tested by a spectrophotometric assay
(Schatzle et al. 2009). The biotransformation was carried out
in 200 pl total reaction volume in microtiter plate (Greiner
UV-Star® 96 well plates, Sparks) and contained in 100 mM
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Table 1 Oligonucleotides,
bacterial strains and plasmids Strain/Primer/Plasmid Relevant characteristics Reference
used in this study
CV_2025_BamHI ACGGATCCACAGATCTATGCAGAAGCAACGTACGA This work
CV_2025_HindIII TCTAAGCTTTCTAAGCTTCTAAGCCAGCCCGCGCGCCT This work
C. violaceum DSM 30191 (ATCC 12472); source of gene CV_2025 DSMZ
E. coli BL21 (DE3) F-; ompT; high level expression regulated by T7 promoter Novagen
E. coli CV_TA Expressing CV_2025 This work
pET-45b(+) Expression under T7 promoter, amp® Novagen
CV_TA pET-45b(+) containing 1380 bp fragment encoding CV_2025 This work

phosphate buffer pH 7: 2.5 mM 1-PEA, 2.5 mM 2-O0A or
pyruvate, 0.25% DMSO, 22 ug/ml (0.43 uM) CV_TA pre-
incubated with 0.2 mM PLP for 10 min at 4 °C. The conver-
sion of 1-PEA to acetophenone was monitored over 60 min at
30 °C spectrophotometrically at 245 nm (SPECTROstar
Nano, BMG LABTECH). CV_TA activity was expressed as
nmoles/min/mg. When CV_TA activity between two different
substrates was compared, relative activity (%) was used, and it
was calculated as the percentage of the activity with its native
substrate, pyruvate.

The activity of CV_TA was characterised using 10 mM 1-
PEA and 2-OOA concentrations ranging from 0.1 to 20 mM.
The course of the reaction was followed spectrophotometri-
cally as described in the previous paragraph, and the activity
was calculated from the initial rates using the molar extinction
coefficient of acetophenone (¢ = 7.03 mM ' em ). The kinet-
ic parameters were determined by non-linear regression anal-
ysis, (Enzfitter for Windows 2.0.18.0 (Elsevier, Biosoft®,
UK)).

Optimum pH and temperature for the synthesis
of 2-A0A

To determine the optimal conditions for the production of 2-
AOA, the reaction was tested in 100 mM phosphate buffers
pH range 6 to 8. The temperature optimum was determined in
100 mM phosphate buffer pH 7 at a temperature range from
25to 55 °C.

Optimisation of the production of 2-AOA Different
donor:acceptor ratios (mol:mol) 1-PEA:2-O0A =4:1, 1.7:1,
1.5:1 and 1.3:1 were employed to find the optimal ratio for
the production of 2-AOA. The reaction was performed in
10 ml of 100 mM potassium phosphate buffer pH 7, at
45 °C and with 44 pg/ml (0.86 uM) of CV_TA pre-
incubated with 0.2 mM PLP. Aliquots (0.5 ml) were sampled
at times 0 and then every 15 min until the end of the reaction
(180 min) and mixed with the same volume of 0.2% TFA to
stop the reaction, followed by tenfold dilution with potassium
phosphate buffer (100 mM, pH 7) and subjected to HPLC
analysis after derivatisation.

A sequential addition of the donor and acceptor was
attempted in order to improve the yield of 2-AOA. The reac-
tion was performed in 10 ml total volume for 6 h at 45 °C
using the donor:acceptor ratio of 4:1. The samples (0.5 ml)
were retrieved at 90, 180 and 270 min of the reaction. The
concentration of the produced AP was measured spectropho-
tometrically as described in section 2.3. Based on the estimat-
ed 1-PEA and 2-OOA consumption, the donor and the accep-
tor were added to reach 10 and 2.5 mM concentration while
maintaining the reaction volume (10 ml). Finally, using a
donor:acceptor ratio of 1.7:1, the production of 2-AOA was
tested in a 100 ml reaction volume at optimal conditions.

Derivatisation of the amino compounds and HPLC analysis
The biotransformation mixture and standard solutions of 1-
PEA and 2-AOA were derivatised with 9-
fluorenylmethyloxycarbonyl chloride (Fmoc-Cl) by mixing
150 pl of a standard/reaction mixture with 150 ul of
400 mM borate buffer pH 9 and 300 pl of 20 mM Fmoc-Cl
dissolved in acetonitrile (Jambor and Molnar-Perl 2009). The
reaction was incubated at room temperature for 20 min and
stopped by the addition of 25 pl of 100 mM heptylamine
(HEPA). The mixture was incubated for additional 3 min at
room temperature, centrifuged at 13000 rpm (Centrifuge 5430
R, Eppendorf) for 1 min, followed by the filtration of the
supernatant through 0.45 pum filter (Mini-UniPrep, GE
Healthcare).

The supernatants were analysed by a modified HPLC
method (Fabiani et al. 2002), using a C18 ACE 5 reverse
phase column (150 mm X 4.6 mm, particle size 5 um;
Advance Chromatography Technologies, Aberdeen, UK)
with the detector set at 263 nm. The samples (20 pul) were
injected at a flow rate of 1 ml/min using 50 mM acetate buffer
(pH 4.2) as eluent A and acetonitrile as eluent B. The amino
compounds were separated with the following linear gradient
elution: (min/A%): 0/40, 10/0, 13/0, 14/40, 18/40.

Purification and characterisation of 2-AOA To purify Fmoc-2-
AOA, the fractions eluted between 6.4 and 7.2 min were col-
lected using the program described above, and the purity of
samples was verified by HPLC. Accurate mass measurements
were obtained with a LCT time-of-flight mass spectrometer
(Waters Corp., Dublin, Ireland).
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Chiral HPLC To determine the enantiomeric excess of the pro-
duced 2-AOA, the commercial (§)-Fmoc-2-AOA
(Eurogentec, Belgium) and purified Fmoc-2-AOA were
analysed by normal phase HPLC (Agilent 1200 Series) using
a CHIRALPACK IC column and with the detector set at
254 nm. The sample (5 pl) was injected at a flow rate of
1 ml/min using 95% heptane to 5% ethanol.

Optical activity The 1 mg/ml solutions of the standard (S)-
Fmoc-2-AOA (Eurogentec, Belgium) and Fmoc-2-AOA pu-
rified from the biotransformation mixture were prepared in
methanol (Fisher Chemical, HPLC grade, Ireland). The rota-
tion of polarised light [x]D was recorded using a single wave-
length polarimeter (Polarimeter Model 343, PerkinElmer,
USA).

Antimicrobial peptides (AMP) synthesis and antimicrobial ac-
tivity testing The core sequence of lactoferricin B (LFcin B)
RRWQWRMKK (Wakabayashi et al. 1999) and an acylated
derivative (2-AOA)-RRWQWRMKK and amidated deriva-
tive RRWQWRMKK-(2-AOA) were chemically synthesised
in Eurogentec (Liege, Belgium).

The antimicrobial activity of the synthesised peptides was
assayed with two Gram-positive bacteria, Bacillus subtilis
(ATCC 6633) and Staphylococcus aureus (ATCC 25923),
and three Gram-negative bacteria, Escherichia coli (NCTC
9001), Pseudomonas aeruginosa (ATCC 27853) and
Salmonella typhimurium (NCTC 12023). The minimal inhib-
itory concentrations (MIC) of the peptides were determined
using the standard microdilution method (EUCAST 2003).
The bacterial strains were grown for 16 h in LB broth with
decreased NaCl (0.1%), followed by dilution with LB (0.1%
NaCl). A dilution series of synthesised AMPs were prepared
in 40% DMSO to give peptide stock concentrations from
0.125 to 4 mg/ml. The assay was performed in 96-well poly-
propylene microtiter plate (96 well cell culture cluster, Costar)
and it consisted of 20 pl of AMP at the appropriate concen-
tration, 100 pl of diluted bacterial cultures (5 x 10° CFU/ml)
and 80 pl of LB. The assay allowed bacterial growth for 18 h
at 35 °C and 200 rpm, and the growth was measured as Agyg
(JENWAY 6300 spectrophotometer). The appropriate controls
were included: growth of the strains in LB (0.1% NaCl), LB
(0.1% NaCl) with the addition of 4% DMSO, as well as non-
inoculated LB. MIC was defined as the lowest concentration
of AMP at which no bacterial growth was observed. All sam-
ples were assayed in triplicates.

Results
Gene cloning, expression and purification of CV_2025

The N-terminally histidine tagged protein CV_TA, expressed
in E. coli BL21 (DE3), was purified to homogeneity using a
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nickel-chelating column and an imidazole step gradient from
0 to 100%. The purity of CV_TA was analysed using SDS-
PAGE 8% denaturing gel (Fig. 1a). The majority of CV_TA
eluted in three fractions (Fig. la), which combined, gave
2.5 mg/ml of pure protein.

CV_TA activity towards non-native amino group
acceptor 2-00A

We have tested the production of 2-aminooctanoic acid (2-
AOA) using the purified CV_TA as a biocatalyst, (S)-(-)1-
phenylethylamine (1-PEA) as an amino donor and 2-
oxooctanoic acid (2-O0A) as an amino group acceptor using
a donor:acceptor ratio of 1:1. Using 1-PEA as a donor allows
monitoring of the reaction spectrophotometrically, as the de-
amination product, acetophenone (AP), absorbs in the UV
spectrum (Asys).

The CV_TA produced the desired product, 2-AOA, which
was confirmed by HPLC. However, the rate of the reaction
with 2-O0OA was 1.7-fold lower compared with pyruvate (Fig.
1b), considered the native substrate of CV_TA (Sayer et al.
2007).

The affinity of CV_TA towards 2-OOA is 14-fold lower
than the affinity towards pyruvate, the native substrate of the
enzyme (Table 2). This contributes significantly to a 29-fold
lower catalytic efficiency towards 2-OOA compared to pyru-
vate. Despite this lower catalytic efficiency, 45% conversion
of the acceptor into 2-AOA was observed in 60 min.

The optimal pH for the conversion of 2-OOA into 2-AOA
is pH 7 (Fig. 2a) while the optimal temperature is 45 °C (Fig.
2b).

Optimisation of 2-AOA production through alteration
of the amino donor to recipient ratio

An excess of the amino group donor is usually supplied to a
transaminase catalysed reaction, in order to drive the reaction
towards product formation (Koszelewski et al. 2010).
Different ratios of the donor, 1-PEA and the acceptor, 2-
OOA were applied in order to find the optimal donor:acceptor
ratio for the production of 2-AOA (Table 3). The biotransfor-
mation was performed in a total reaction volume of 10 ml with
44 ng/ml (0.86 uM) of CV_TA at 45 °C and pH 7. The
consumption of 1-PEA and formation of 2-AOA were quan-
tified by HPLC, which required a derivatisation of the amino
compounds using Fmoc-Cl (see section 2.6).

While the highest conversion efficiency of 2-OOA into 2-
AOA (84%) was achieved when a donor:acceptor ratio of 4:1
was applied (Table 3), the conversion of 2-OOA into 2-AOA
ataratio of 1.7:1 (entry 2) resulted in twice as much product as
the reaction with 4:1 ratio (Table 3). A further decrease in
donor:acceptor ratio decreased product yield further
(Table 3). Increasing the concentration of 1-PEA (donor) to
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Fig. 1 a SDS-PAGE analysis of His-tagged CV_TA as it appears at ~
50 kDa. Lane 1: PageRuler Pre-stained Protein Ladder (Fisher
BioReagent); lane 2: cell free extract; lanes 3—6: fractions containing pure
protein after affinity chromatography purification. b Comparison of the

15 mM and 2-O0A (recipient) to 10 mM resulted in the
highest concentration of 2-AOA but at a lower efficiency of
conversion compared to the same ratio but with 10 mM donor
and 6 mM acceptor. We therefore scaled-up the reaction to
100 ml employing the donor:acceptor ratio of 1.7:1 with
10 mM donor and 6 mM acceptor, which produced 62.2 mg
(4.1 mM) of 2-AOA (Supplemental information, Fig. S1).

A sequential addition of the substrates was investigated in
order to further improve the reaction (Supplemental informa-
tion, Fig. S2). The acceptor and the donor were added to the
reaction to maintain the initial concentrations, i.e. 10 and
2.5 mM while maintaining the volume of the reaction.
However, the highest achieved concentration of 2-AOA was
only 2.8 mM (Supplemental information, Fig. S2), most likely
due the inhibition of CV_TA (Kaulmann et al. 2007; Park
et al. 2013D).

Purification and characterisation of Fmoc-2-AOA

After the optimal donor:acceptor ratio for the conversion of 2-
OOA into 2-AOA was determined, the biotransformation was
performed under optimal conditions in order to allow product
purification and characterisation. After 180 min of the bio-
transformation, the reaction was stopped with 0.25% TFA
and subjected to derivatisation with Fmoc-Cl. The derivatised
amino compounds were separated from the rest of the reaction
mixture by HPLC and the fraction containing the derivatised
Fmoc-2-AOA collected. The collected fraction was
lyophilised, resuspended in water and re-run on HPLC to

Table 2  Kinetic constants of purified CV_TA towards pyruvate and 2-
aminooxanoic acid (2-O0A) with 10 mM of (S)-(-)-1-phenylethylamine
(1-PEA) as amino donor. CV_TA exists as a homodimer with two active
sites. The K, is therefore expressed per active site

Acceptor Kot (min 1) K, (mM) Keo/Ky (min ' mM )
Pyruvate 523 +6.1 0.03 +£0.01 1743.3
2-00A 24.7+44 041+0.15 60.2

120

100 -

80 ~

60

L

40 -

20 1

Pyruvate 2-Oxooctanoic acid

reaction rates of CV_TA towards 2.5 mM 2-OOA and pyruvate as amino
acceptors and 2.5 mM of 1-PEA as amino donor with 22 pg purified
protein/ml at 30 °C

verify the purity (Supplemental information, Fig. S3). High-
resolution mass spectrometry confirmed the presence of puri-
fied Fmoc-2-AOA (ESI-TOF) m/z: [M + Na]* Calcd for
Cy3H,7NO4Na 404.1838; Found 404.1848. The sample of
Fmoc-2-AOA purified from the biotransformation mixture
was then analysed using a chiral HPLC column
(CHIRALPACK IC). A standard for (S)-Fmoc-2-AOA
(Eurogentec, Belgium) is >98% ee and elutes from the col-
umn at 12.035 min (Fig. 3b). The Fmoc-2-AOA purified from
the biotransformation mixture eluted at time 11.985 (Fig. 3a).
A trace of dibenzofulvene, Fmoc cleavage product is observed
in the purified sample, suggesting a low level of cleavage (Fig.
3a, ¢). The observed rotation of the commercial and produced
and purified Fmoc-2-AOA was — 22°. Chiral analysis and
specific rotation strongly suggest that the produced compound
is the S-enantiomer with > 98% ee.

C- and N-terminal modification of a nine amino acid
core of lactoferricin B with 2-AOA and testing
of antimicrobial activity

The antimicrobial activity of LFcin B against a range of Gram-
positive and Gram-negative bacteria is known (Ulvatne et al.
2001). This peptide likely exhibits its antimicrobial activity
via membrane perturbation (Haukland et al. 2001); however,
the mechanism is not completely understood. A region of the
LFcin B rich with cationic amino acids, RRWQWRMKK
(Wakabayashi et al. 1999), is important for the antimicrobial
activity of LFcin B (Ulvatne et al. 2001) and was modified by
the addition of 2-AOA on either N- or C- terminus. The anti-
bacterial activities of the modified peptides were tested against
Gram-positive bacteria (Bacillus subtilis and Staphylococcus
aureus) and Gram-negative bacteria (E. coli, Pseudomonas
aeruginosa and Salmonella typhimurium) using the standard
microdilution method (EUCAST 2003). The MIC values,
which are defined as the lowest concentration that inhibits
the growth of microorganisms after 18 h of incubation with
a peptide, are summarised in Table 4.
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Fig. 2 Effect of pH (a) and temperature (b) on the activity of purified

CV_TA. The optimum pH and temperature were determined in 100 mM
potassium phosphate buffer. Activity was tested across the pH range at

Both N- and C-terminal modifications of the nonameric
peptide showed improved antimicrobial activity towards the
tested bacterial strains (Table 4, Fig. 4). The most profound
effect was observed with RRWQWRMKK-2-AOA, with
MICs determined for all tested strains, while unmodified pep-
tide inhibited only the growth of E. coli at 400 pg/ml
(Table 4). Only the C-terminally modified peptide exhibited
a bactericidal effect on S. aureus at 400 pg/ml (Table 4). The
N-terminal modified peptide inhibited growth of E. coli,
S. typhymirium and B. subtilis at 100, 200 and 400 pg/ml,
respectively (Table 4). Furthermore, even concentrations be-
low the MIC for C- and N-terminally modified peptides re-
duced growth of the tested strains up to fourfold when com-
pared to the growth in the presence of the unmodified peptide
(Fig. 4).

Discussion

For the first time, we demonstrate the process encompassing
the synthesis of an enantiomerically pure unnatural amino acid
2-aminooctanoic acid (2-AOA), its subsequent purification by
HPLC and use to terminally modify and improve the activity
of an antimicrobial peptide. Unnatural amino acids are a valu-
able toolbox for drug creation, particularly in peptide research.
Microbial transaminases (TAs) are well established for the
synthesis of chiral amines such as amino acids (Mathew and

120 -
100 .

80 s
60
a0] ¢
20
0

Relative activity (%) T

20 30 40 50 60
Temperature (°C)
30 °C and across the temperature range at pH 7.0. CV_TA activity was

determined by measuring acetophenone formation at A,4s. Data is the
average of triplicates (SD < 5%)

Yun 2012; Park et al. 2013a). We have demonstrated here the
potential to use an w-TA form Chromobacterium violaceum
to synthesise a lipophilic unnatural amino acid, 2-AOA using
2-oxooctanoic acid (2-O0OA) as an acceptor in a reductive
amination reaction. The transamination reaction is reversible,
and the desired product formation is therefore determined by
the thermodynamic equilibrium constant and the initial con-
centrations of substrates (Tufvesson et al. 2011). The kinetics
of'a TA-catalysed reaction could be changed by employing an
amino donor such as 1-phenyethylamine (1-PEA) in excess
(Busto et al. 2014; Tufvesson et al. 2011). The optimal
donor:acceptor ratio seems to be dependent on the transami-
nase and substrates used. Recently identified transaminases
named pQR118 and pQR1114 showed the best conversion
yield at 1-PEA:cyclohexanecarboxaldehyde 5:1 ratio, while
pQR1113 showed the same conversion yield at 2:1, 3:1 and
5:1 ratios (Baud et al. 2017). The best conversion of the ac-
ceptor into 2-AOA employing CV_TA was obtained with a 1-
PEA:2-OOA ratio of 4:1 (Table 3). However, to reduce the
amount of unused donor, we have tested the effect of decreas-
ing 1-PEA:2-OOA ratio. The highest production of 2-AOA
with 46% conversion of the donor into acetophenone and 68%
efficiency in conversion of 2-OOA to 2-AOA was observed
with 1-PEA:2-O0A 1.7:1 ratio (Table 3, entry 2). Increasing
the concentration of both donor and acceptor while maintain-
ing the 1.7:1 ratio however resulted in decreased conversion
yield for both 1-PEA and 2-OOA to 42 and 62%, respectively

Table 3 The effect of the ratio of

the amino donor (1-PEA) to the Starting concentration

After 180 min of the reaction

amino acceptor (2-O0OA) in the

production of 2-AOA Ratio 1-PEA (mM) 2-0O0A (mM) Consumed Produced 2-AOA (mM) Conversion into
1-PEA (mM) 2-AOA (%)
4:1 10 2.5 2.3% 2.1 84
1.7:1 10 6 4.6 4.1 68
1.5:1 10 6.6 4.5 3.7 56
1.3:1 10 7.5 4.7 3.9 52
1.7:1 15 9 6.3 6.2 62

*All values are an average of three independent biological replicates with SD < 5%
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Table 4  Antimicrobial activity of core nonameric region of LFcin B and its derivatives against different bacteria

AMP MIC* (png/ml)

E. coli P, aeruginosa B. subtilis S. typhimirium S. aureus
LFcin B (4-12) RRWQWRMKK 400 > 400 > 400 > 400 > 400
C-terminal modification RRWQWRMKK-(2-AOA) 25 200 50 100 400
N-terminal modification(2-AOA)-RRWQWRMKK 100 > 400 400 200 > 400

*MIC: Minimal inhibitory concentration was defined as the lowest concentration that inhibits the growth of microorganisms after 18 h of incubation with

a peptide

(Table 3, entry 5). It has been reported that high concentration
of substrates and products could inhibit the TA activity (Malik
et al. 2012; Shin and Kim 2002). To avoid the potential

a E.coli b
2.5 4
2.0 -

g 15 ; g
o o
O 10 ©

0.5 - I
0.0 A . v y . ; Y
12.5 25 50 100 200 400
Peptide concentration (ug/ml)
C B. subtilus d
2.5
2.0

g 15 g
o o
O 19 o

0.5

0.0 . . . . ii-l . L

125 25 50 100 200 400
Peptide concentration (ug/ml)
e S. aureus
2.5 -
2.0
E3

15
£
O 1.0

0.5
0.0 4 . . . . .
125 25 50 100 200 400

Peptide concentration (ug/ml)

Fig. 4 The inhibitory effect of different concentrations of LFcin B
(RRWQWRMKK), C-terminally modified LFcin B (RRWQWRMKK-
2-AOA) and N-terminally modified LFicin B (2-AOA-RRWQWRMKK)
on growth of Escherichia coli (a), Salmonella typhimirium (b), Bacillus

@ Springer

inhibition of CV_TA by high starting concentrations of 1-
PEA and 2-O0OA, we have tested the sequential addition of
the substrates. However, this strategy still resulted in the

S. typhimurium

2.5

2.0

1.5

1.0

0.5 1

0.0 A : . : : . \
12.5 25 50 100 200 400

Peptide concentration (ug/ml)

25. P. aeruginosa

2.0 4

1.5

1.0

0.0 4 . : . . . ,
12.5 25 50 100 200 400

Peptide concentration (pug/ml)

B RRWQWRMKK (unmodified)
O 2-AOA-RRWQWRMEKK (N-terminal modification)
O RRWQWRMKK-2-AOA (C-terminal modification)

subtilis (¢), Pseudomonas aeruginosa (d) and Staphylococcus aureus (e).
The controls (LB with 4% DMSO) reached ODgq of 1.7 for E. coli, 1.9
for S. typhimirium, 1.9 for B. subtilis, 2.1 for P. aeruginosa, and 2.1 for
S. aureus
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inhibition of CV_TA activity by substrates/products
(Supplemental information, Fig. S2).

Derivatisation of amino compounds present in the reaction
mixture with Fmoc-Cl allowed separation and purification of
Fmoc-2-AOA, which could subsequently be used for peptide
synthesis (O’Connor et al. 2013). The incorporation of unnat-
ural amino acids in the sequence of an antimicrobial peptides
(AMP) can alter the physicochemical properties of the pep-
tide, increasing its activity, metabolic stability and selectivity
(Bhonsle et al. 2013). AMPs are attractive as they offer a
viable alternative to antibiotics due to their broad spectrum
antimicrobial activity and the mechanism of action which re-
duces the possibility of acquired resistance (Aoki and Ueda
2013; Chen et al. 2014). The net positive charge and
amphipathicity of AMPs are the most important characteris-
tics determining the nature of AMP—bacterial cell interaction
(Bhonsle et al. 2013). The molecular interactions between
AMP and the cell are important for binding selectivity and
the outcome of an antibacterial treatment (Ciumac et al.
2017). Cationic AMPs are positively charged peptides which
show specific folding with the positively charged residues
grouped on one side of the molecule and hydrophobic resi-
dues on the opposite side (Oren and Shai 1998).

N-terminal lipidation of peptides has been usually
employed to modify the activity and selectivity of the peptide
(Chu-Kung et al. 2010; Krishnakumari and Nagaraj 2015;
Wakabayashi et al. 1999). Lipidation of a C-terminus however
is rarely reported. C-terminal lipidation requires a linker, such
as lysine (Albada et al. 2012), which has to be additionally
modified. Our biocatalytic platform for the production of ami-
no fatty acids offers the possibility to directly introduce a lipid
tail at the C-terminus without the need for a linker, using
standard techniques of peptide synthesis. Hydrophobicity is
viewed as a highly desirable feature of AMPs, as it improves
the interaction with bacterial membranes (Albada et al. 2012;
Findlay et al. 2010; Wenzel et al. 2016).

Lactoferricin B (LFcin B) is a 25-mer formed by pepsin
digestion of bovine lactoferrin and it has demonstrated anti-
microbial activity against a range of bacteria (Bellamy et al.
1992; Gifford et al. 2005; Wakabayashi et al. 1999). The cat-
ionic region of LFcin B corresponding to residues R4-K12 is
part of an o-helix (Hwang et al. 1998) and was modified with
2-AOA. This core nonamer of LFcin B is particularly inter-
esting as it shows good anti-bacterial activity and low
haemolytic activity (Liu et al. 2011). In the current study, C-
terminal modification of the cationic region of LFcin B
inhibited growth of all tested bacterial strains, showing the
highest activity towards E. coli (MIC 25 pg/ml; Table 4). C-
terminal modification of LFcin B has not been reported pre-
viously. Interestingly, N-terminally modified peptide exhibit-
ed lower activity compared with the C-terminally modified
peptide but the N-terminal modification was not inhibitory
as the latter exhibited better activity than the unmodified

peptide (Table 4). For example, N-terminally modified peptide
inhibited growth of E. coli at fourfold lower concentration
compared with the unmodified peptide, and it also inhibited
growth of S. fyphimirium and B. subtilis at 200 and 400 pg/ml,
respectively. S. aureus was the most resistant strain among
tested bacteria, with only C-terminally modified peptide
completely inhibiting its growth at 400 pg/ml (Table 4). The
hydrophobic interactions between the peptides modified with
2-AOA and bacterial membranes were the likely reason for
their increased antimicrobial activity (Dathe and Wieprecht
1999; Dathe et al. 1997; Wieprecht et al. 1997). Albada and
co-workers reported that no significant difference in antimi-
crobial activity was observed when a short peptide was mod-
ified on either C- or N-terminus via acylated lysine residue
(Albada et al. 2012). Our results demonstrate that C-terminal
modification has a more profound effect on the antimicrobial
activity but the reasons for this are not known. Increasing the
hydrophobicity at C- rather than N-terminus has been reported
to improve peptide and peptidomimetic selectivity (Dorner
and Lienkamp 2013; Kragol et al. 2002).

In conclusion, CV_TA can be employed as a biocatalyst for
the synthesis of an unnatural amino acid, 2-aminooctanoic
acid. Both C- and N-terminal modifications of a cationic re-
gion of a known antimicrobial peptide lactoferricin B signifi-
cantly improved the activity against Gram-positive and Gram-
negative strains tested in this study, with C-terminal modifi-
cation having a greater positive impact on antibacterial activ-
ity of the peptide. This study demonstrates the potential of the
product of a transaminase catalysed reaction to be directly
used for lipidation of C- and N-termini for the improvement
of the activity of antimicrobial peptides.
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