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Abstract Culture-independent methods have granted the
possibility to study microbial diversity in great detail, but
technical issues pose a threat to the accuracy of new findings.
Biases introduced during DNA extraction can result in erro-
neous representations of the microbial community, particular-
ly in samples with low microbial biomass. We evaluated the
DNA extraction method, initial sample biomass, and reagent
contamination on the assessment of the human gut microbiota.
Fecal samples of 200 mg were subjected to 1:10 serial dilu-
tions; total DNAwas obtained using two commercial kits and
the microbiota assessed by 16S ribosomal RNA (rRNA) gene
sequencing. In addition, we sequenced multiple technical con-
trols. The two kits were efficient in extracting DNA from
samples with as low as 2 mg of feces. However, in instances
of lower biomass, only one kit performed well. The number of
reads from negative controls was negligible. Both DNA ex-
traction kits allowed inferring microbial consortia with similar
membership but different abundances. Furthermore, we found
differences in the taxonomic profile of the microbial commu-
nity. Unexpectedly, the effect of sample dilution was moderate
and did not introduce severe bias into the microbial inference.
Indeed, the microbiota inferred from fecal samples was distin-
guishable from that of negative controls. In most cases, sam-
ples as low as 2 mg did not result in a dissimilar representation

of the microbial community compared with the undiluted
sample. Our results indicate that the gut microbiota inference
is not much affected by contamination with laboratory re-
agents but largely impacted by the protocol to extract DNA.
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Introduction

Advancements in culture-independent methods have granted
the possibility to studymicrobial diversity with unprecedented
detail, revolutionizing our understanding of life on Earth
(Brazelton et al. 2010) and transforming the comprehension
we have of our own relation with the microbial world (The
Human Microbiome Project Consortium 2012). The most
thoroughly studied human-associated microbial community,
the gut microbiome, has been shown to be critical for human
health (de Vos and De Vos 2012; Pflughoeft and Versalovic
2012), and the number of studies looking into the association
between the gut microbiome and a myriad of factors has great-
ly increased in recent years. However scrutinized, several
technical issues remain underexplored in the processing of
gut samples and pose a serious threat to the accuracy of the
new findings (de la Cuesta-Zuluaga and Escobar 2016).
Among them, the acquisition of genetic material has been
shown to be a critical step, on which multiple biases can be
introduced and that can result in an erroneous representation
of the microbial community under scrutiny.

Differences in DNA extraction protocols are known to affect
the studied microbial community, causing the overrepresenta-
tion or underrepresentation of given microbial groups
(Ariefdjohan et al. 2010; Guo and Zhang 2013; Smith et al.
2011). For instance, some DNA extraction protocols require a
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bead-beating step that contributes to the disruption of the cell
wall, whereas others rely on chemical lysis for this procedure
(Ariefdjohan et al. 2010). The mechanical disruption of micro-
bial cells has been shown to yield higher amounts of DNA of
better quality (Feinstein et al. 2009; Smith et al. 2011;
Wesolowska-Andersen et al. 2014) and was the preferred meth-
od of benchmark collaborative projects, such as MetaHIT and
the human microbiome project (HMP) (Wesolowska-Andersen
et al. 2014). However, performance differs between mechanical
disruption-based protocols (Ariefdjohan et al. 2010; Feinstein
et al. 2009; Guo and Zhang 2013; Smith et al. 2011;
Wesolowska-Andersen et al. 2014) and even among lots of
the same DNA extraction kit (Salter et al. 2014), making data
comparison among studies a heartache challenge.

An additional issue that has been highly publicized but less
explored in the analysis of fecal samples is the effect of reagent
contamination and sample biomass. Both 16S ribosomal RNA
(rRNA) gene and metagenomic analyses are non-specific and
sensitive to contamination with foreignmicrobial DNA (Tanner
et al. 1998). Sources of contamination include laboratory envi-
ronment (Salter et al. 2014), DNA extraction reagents (Corless
et al. 2000; Tanner et al. 1998), PCR reagents (Rand and Houck
1990; Shen et al. 2006), and even ultrapure water (Kulakov
et al. 2002; Mcalister et al. 2002). Foreign DNA contamination
has been downplayed when dealing with feces compared with
other biological samples (e.g., blood, lung, meconium) because
of their high microbial biomass. Samples with low biomass are
more prone to being affected by contaminant genetic material,
as they provide little template DNA to compete with that
contained in laboratory reagents (Grahn et al. 2003; Salter
et al. 2014). Furthermore, there is a critical point in which
sample biomass becomes so low that the contaminating DNA
dominates sequence libraries (Salter et al. 2014).

Despite the importance recognized to the DNA extraction
step, the impact of reagent contamination and sample biomass
remains largely unaddressed in microbial ecology; to the best
of our knowledge, no study has explored this on the inference
of the human gut microbiota. Here, we assess the sequencing
yield, composition, and diversity of the gut microbiota studied
from human fecal samples, which were serially diluted and
processed using two commercially available DNA extraction
kits to determine the impact of DNA extraction, initial sample
biomass, and reagent contamination on the evaluation of this
microbial community using the 16S rRNA gene as marker.

Materials and methods

DNA extraction, serial dilutions, and 16S rRNA gene
sequencing

Microbial DNA was obtained from fecal samples from five
human donors (Online Resource 1). Samples were kept at

− 80 °C since collection until DNA extraction. We assessed
two commonly used commercial kits for fecal DNA extrac-
tion: PowerSoil DNA Isolation Kit (MoBio, Carlsbad, CA)
and QIAamp DNA Stool Mini Kit (Qiagen, Hilden,
Germany). We mostly followed the manufacturers’ instruc-
tions but introduced changes to improve DNAyield with me-
chanical lysis. For the MoBio kit, the bead-beating step (step
5) was reduced from 10 to 5min (with 10-s rest intervals every
minute) at 71 Hz using the original beads contained in the kit;
for the Qiagen kit, a bead-beating step at 41 Hz for 8 s was
introduced between steps 4 and 5 of the Isolation of DNA
from Stool for Pathogen Detection protocol, using 1-mm ster-
ile zirconium beads. In both cases, bead beating was per-
formed in a Bead Blaster 24 (Benchmark Scientific, NJ). In
both protocols, we started with 200 mg of homogenized feces
(no dilution; D0). Then, we performed five 1:10 serial dilu-
tions with autoclaved PBS, resulting in an initial biomass of
20mg (dilution D1), 2 mg (dilution D2), 0.2 mg (dilution D3),
0.02 mg (dilution D4), and 0.002 mg (dilution D5). In all
cases, DNA extraction was performed from a final volume
of 200 μl, and DNA concentrations were obtained with a
Synergy HT Microplate Reader (Bio-Tek Instruments,
Winooski, VT).

Additionally, we obtained DNA sequences from nine neg-
ative controls to track potential sources of contamination.
BBlank^ DNA extractions were obtained with the two kits
using autoclaved PBS as starting material (no feces)—
blMBPBS and blQIAPBS; in the case of MoBio, it was possible
to make an additional blank extraction from the solution orig-
inally contained in the PowerSoil Bead Tubes, adding no PBS
(blMB). Blank extractions were expected to gather all sources
of contamination introduced during DNA extraction proto-
cols. We additionally obtained sequences from the MoBio
C6 (buffC6) and Qiagen AE (buffAE) elution buffers, and
autoclaved PBS (PBS). Sequences from buffC6 and buffAE
served to distinguish the contamination introduced by these
specific reagents from that introduced at other points during
DNA extraction; since PBS was used to homogenize and di-
lute samples, as well as starting material in blMBPBS and
blQIAPBS, we considered important to determine its microbial
signature to identify instances of contamination by this re-
agent. We also obtained sequences from three additional neg-
ative controls (ultrapure water—H2O, and two Bempty^
wells—empA1 and empB1—with no sample but following
the same sequencing treatment as samples); H2O informed
about contamination introduced during PCR, library genera-
tion, and indexing, whereas empA1 and empB1 corresponded
to pure sequencing noise. Finally, sequences from one positive
control (mock community HM-782D, BEI Resources,
Manassas, VA) served to get an estimate of the sequencing
error rates.

All samples and controls were sent to the University of
Michigan Medical School Host Microbiome Initiative (Ann
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Arbor, MI) for PCR amplification and sequencing of the
16S rRNA gene on the MiSeq platform. Several steps were
followed in preparing samples for sequencing on this plat-
form. Broadly, these included library generation and
indexing, quality control, normalization and pooling, quan-
tification, and sequencing. Specifically, the V4 hypervari-
able region of the 16S rRNA gene was amplified using the
F515 (5′-CACGGTCGKCGGCGCCATT-3′) and R806 (5′-
GGACTACHVGGGTWTCTAAT-3′) primers. We pre-
ferred to sequence this region (~ 250 bp) because its length
allowed for fully overlapping forward and reverse reads,
diminishing sequencing error rates. Multiplex PCR was
performed with dual indices (Kozich et al. 2013) using
17 μl of Accuprime™ Pfx SuperMix (Thermo Fisher
Scientific, Carlsbad, CA), 1 or 5 μl of template DNA (see
Online Resource 2), and 2 μl of each paired set of index
primers. PCR cycling condition consisted of an initial de-
naturation of 2 min at 95 °C; 30 cycles of 20 s at 95 °C, 15 s
at 55 °C, and 5 min at 72 °C; and a final step at 72 °C for
10 min. All samples underwent electrophoresis on 96-well
SYBR Safe E-gels (Invitrogen, Carlsbad, CA) to ensure
amplification proceeded normally. Post-PCR products were
quantified using the KAPA qPCR Library Quantification
Kit (Kapa Biosystems, Wilmington, MA), cleaned up, and
normalized with the SequalPrep Normalization Plate Kit
(Invitrogen, Carlsbad, CA). Amplicons were finally pooled
(5 μl per sample; average working concentration = 7.2 nM,
range = 7.04–7.45 nM) into single wells. To assess the
quality of the library, an Agilent Bioanalyzer Trace was
performed. Finally, the pooled library was sequenced using
the I l l umina MiSeq sequenc ing p l a t f o rm wi th
V2 chemistry. Detailed laboratory protocols are available
at https://github.com/SchlossLab/MiSeq_WetLab_SOP/
blob/master/MiSeq_WetLab_SOP_v4.md.

Bioinformatic processing of sequences

Raw 16S rRNA gene sequences were processed using
Mothur v.1.38 (Schloss et al. 2009) following its Illumina
MiSeq standard operating procedure (Kozich et al. 2013).
Briefly, we first extracted sequences and quality scores
from the paired fastq files and assembled the reads to form
contigs. We eliminated reads containing bases with a qual-
ity score below 20, ambiguous bases, or shorter than 275 bp
long. Next, we aligned the reads using the Silva reference
alignment v.123 (Quast et al. 2013) and removed reads with
a homopolymer run > 8 nucleotides and reads that did not
overlap the region of the alignment spanning the V4 region.
Then, we carried a preclustering step in which reads with an
identity ≥ 99% (i.e., sequences differing in two nucleotides
or less) were merged. Chimeric sequences were detected
and discarded by UCHIME (Edgar et al. 2011). After that,
we assigned the taxonomic classification to reads using the

Greengenes 13_8_99 (DeSantis et al. 2006) and removed
reads classified as mitochondria, eukaryota, or unknown.
Next, we calculated the sequencing error rates using reads
from the mock community (average error rate = 0.0083).
Using the average neighbor algorithm, we generated oper-
ational taxonomic units (OTUs) at 97% sequence identity
which were then taxonomically classified by consensus
using Greengenes 13_8_99. A relaxed neighbor -joining
tree with one representative sequence per OTU was finally
obtained with Clearcut (Evans et al. 2006) after calculating
uncorrected pairwise distances between aligned reads.

Statistical analyses

To quantify the overall impact of the origin of sample
(donor), DNA extraction kit and dilution on the inferred
gut microbiota diversity, membership (presence/absence),
and abundance, we performed permutational multivariate
analysis of variance (PERMANOVA) using the adonis
function (analysis of variance using distance matrices)
implemented in the Vegan package of R (Oksanen et al.
2015). PERMANOVAs were performed on three β-
diversity distances—weighted and unweighted UniFrac
obtained with the GUniFrac package of R (Chen et al.
2012) and Bray-Curtis with Vegan (Oksanen et al.
2015)—and three alpha-diversity metrics obtained with
Mothur—number of observed OTUs, Shannon diversity
index, and the inverse Simpson index. UniFrac analyses
were performed on unrarefied read counts. Rarefication is
a necessary step in ecological analyses to control for sam-
pling unevenness; however, rarefication was undesirable
in this case because negative controls and some highly
diluted samples had too few 16S rRNA gene reads
(< 100 reads/sample). Rarefying at very low depths made
results extremely inconsistent. Alternatively, we per-
formed Bray-Curtis analyses on relative abundances to
partially control for unevenness in read counts. In addi-
tion, we performed analyses on samples with > 10,000
reads/sample to test the sensitivity of PERMANOVA to
sampling unevenness. Principal correspondence analysis
(PCoA) and taxonomic plots were obtained. Alpha-
diversity analyses were performed on the subset of undi-
luted samples (D0) after rarefying the dataset to 13,000
reads/sample.

Availability of data and material

Raw 16S rRNA gene sequences were deposited at the
NCBI’s Short Read Archive (SRA) under BioProject
PRJNA385915. The Mothur logfile and R code built to
obtain the results reported here are available in https://
github.com/jsescobar/kitome.
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Results

16S rRNA gene reads

We first examined the number of 16S rRNA gene reads across
DNA extraction kits and dilutions (Fig. 1, Online Resource 2).
Note that the number of reads is not expected to be propor-
tional to the initial sample biomass because libraries were
normalized before sequencing. Instead, a high number of
reads indicates that samples progressed appropriately in the
laboratory workflow (DNA extraction, indexing, PCR, purifi-
cation, normalization, and sequencing). In our experiments,
the number of reads is of importance since it informs about
the ability of each kit to extract sufficient microbial DNA in
instances of high and low initial sample biomass.

As shown in Fig. 1a, the number of reads was high
(> 10,000 reads/sample) in most samples extracted with
MoBio and even in instances of high dilution, although this
might depend upon the considered sample. In contrast, the
Qiagen kit failed treating samples with very low biomass but
was as efficient as the MoBio kit with samples with as low as
2 mg of human feces (Fig. 1b). This indicates that fecal mi-
crobial inference is jeopardized when using a starting biomass
< 2 mg. Still, DNA from samples with as low as 2 mg of
human feces (D2) was enough to get a high number of reads
independent of the DNA extraction kit (mean ± SD:

MoBio = 34,885 ± 12,201; Qiagen = 39,433 ± 20,393). All
negative controls resulted in a very low number of reads in-
dependent of the DNA extraction kit (range 25–42 reads/sam-
ple) (Online Resource 2). This number is several orders of
magnitude lower than the number of reads obtained in most
samples, regardless of dilution. Any signal that may be intro-
duced by laboratory reagents would be drowned by the sam-
ple’s microbial signal and is, thus, negligible.

DNA extraction affects the gut microbiota

As said above, the number of reads only informs about the
ability of the kits to extract DNA in sufficient quantity and
quality for the PCR and sequencing reactions to appropriately
perform. Hence, it is not a good predictor of the precision of
the microbial community inference. To appropriately evaluate
the impact of the tested parameters on the gut microbiota
membership and abundance, we performed PERMANOVA
with β-diversity measures, either dependent or independent
of the reconstruction of phylogenetic trees—UniFrac and
Bray-Curtis, respectively. These analyses showed a pervasive
and significant effect of the origin of the sample (i.e., donor) in
the inferred microbiota; this factor explained the largest por-
tion of the total variance in β-diversity (Table 1). Noteworthy,
analyses were not affected by unevenness in the number of
reads among samples, as separate PERMANOVA on a
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bFig. 1 Total number of 16S
rRNA gene reads for samples
from five individuals obtained
with MoBio (a) or Qiagen (b)
DNA extraction kits at different
1:10 dilutions. Undiluted samples
(200 mg of starting feces) (D0),
20 mg (D1), 2 mg (D2), 200 μg
(D3), 20 μg (D4), and 2 μg (D5)

Table 1 PERMANOVA on
β-diversity measures Unweighted UniFrac Weighted UniFrac Bray-Curtis

Effect R2 p value R2 p value R2 p value

Donor 0.29 0.001 0.42 0.001 0.44 0.001

Kita 0.04 0.001 0.18 0.001 0.16 0.001

Dilution 0.14 0.001 0.07 0.001 0.06 0.002

Kita × donor 0.04 0.28 0.07 0.001 0.08 0.001

Dilution × donor 0.23 0.23 0.12 0.17 0.12 0.28

a Kit refers to DNA extraction kit
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restricted dataset considering only samples with > 10,000
reads/sample output similar results (Online Resource 3).
Differences in sex or BMI among donors might be at the
origin of variation in the gut microbiota in these datasets
(Online Resource 1). Large inter-subject variation is a com-
mon observation in studies of the human gut microbiota
(Costello et al. 2009; The Human Microbiome Project
Consortium 2012).

The two DNA extraction kits allowed inferring microbial
consortia with similar membership but different abundances.
This is illustrated by the smaller unweighted UniFrac dis-
tances observed between pairs of undiluted samples (D0)
treated with either kit (Fig. 2a) but the larger distances ob-
served with weighted UniFrac (Fig. 2b) or Bray-Curtis (Fig.
2c). A comparison of the taxonomic assignments of OTUs
among undiluted samples (D0) showed that, at the phylum
level, there were more OTUs from Firmicutes and
Actinobacteria and less from Bacteroidetes with MoBio than
Qiagen (Fig. 3a–b; Online Resource 4). At the class level,
there were more OTUs classified as Clostridia (Firmicutes),
Coriobacteriia (Actinobacteria), and class Actinobacteria
(phylum Actinobacteria) with MoBio than Qiagen which, in
turn, resulted in an increased number of OTUs belonging to
Bacteroidia (Bacteroidetes), unclassified Firmicutes
(Firmicutes), and Mollicutes (Tenericutes) (Fig. 3c, d; Online
Resource 4). At the genus level, the pattern was variable among
samples; among the most abundant genera, more reads from
Blautia, Coprococcus, unclassified Lachnospiraceae, and
Collinsella were obtained with MoBio, whereas Oscillospira
and unclassified Ruminococcaceae were overrepresented with
Qiagen (Online Resource 4).

In terms of alpha-diversity, the analysis of the subset of
undiluted samples (D0) indicated that most of the microbes
of these samples were captured in our sequencing (Online
Resource 5). In addition, the two DNA extraction kits allowed
inferring communities with similar diversity, suggesting that
their coverage of the gut microbiota was similar (number of
observed OTUs: MoBio = 243, Qiagen = 285, p = 0.10;
Shannon diversity index: MoBio = 3.52, Qiagen = 3.70,
p = 0.10; inverse Simpson index: MoBio = 19.05,
Qiagen = 19.70, p = 0.69).

Dilution of human feces has a moderate impact on the gut
microbiota inference

The composition of the microbial community inferred from
fecal samples, independently of dilution, was significantly
different to that of negative controls, with the exception of
dilution D5 treated with Qiagen (Online Resource 6).
Regarding fecal samples only, dilution, in general, had a
statistically significant effect on microbial inference,
explaining 6–14% of the observed variance, depending on
the β-diversity measure evaluated (Table 1; Online

Resource 3). Unexpectedly, however, this effect was mod-
erate and did not introduce severe bias into the microbial
inference. The effect was minor in terms of presence/
absence of OTUs, as demonstrated by the unweighted
UniFrac analysis, especially in samples treated with MoBio
(Fig. 2a). Analyses that take OTU abundance into account
(weighted UniFrac and Bray-Curtis) confirmed that fecal sam-
ples treated with MoBio had more similar composition than
samples treated with Qiagen, especially in instances of high
dilution (Fig. 2b, c). In most cases, samples with as low as
2 mg (D2) or 0.2 mg (D3) of feces resulted in a reduced
introduction of bias into the representation of the gut micro-
biota. Taxonomic analyses confirmed these results, indicating
overrepresentation of Firmicutes (Clostridia class) and under-
representation of Actinobacteria (Coriobacteriia class) with
dilution in MoBio and a more irregular pattern in Qiagen
(Fig. 3). At the genus level, distortion of the community was
idiosyncratic of each sample (Online Resource 7).

Discussion

Previous studies have explored the impact of DNA extraction
on the inferred microbial communities (Ariefdjohan et al.
2010; Guo and Zhang 2013; Smith et al. 2011). However,
the impacts of reagent contamination and sample biomass
have been poorly addressed; yet, it has been demonstrated that
when microbial biomass is low, the signal coming from sam-
ples is overwhelmed by the signal emerging from laboratory
reagents (note that reagents are not DNA-free, and autoclave
does not make DNA disappear). The extent of this contami-
nation can be very large; the contaminating species are char-
acteristic to each laboratory, reagent, and reagent’s lot (Salter
et al. 2014), reason why it is highly recommended to include
several negative controls in experiments. In the case of human
feces serving to infer processes occurring in the gut
microbiome, there are no reports determining the threshold
at which biomass is so low that the inferred microbial com-
munity may be artifactual. Low fecal biomass might be a
considerable issue in forensics, when dealing with ancient
specimens or in some animal models. In this report, we dem-
onstrate that contamination introduced by laboratory reagents
is probably limited within the wide range of tested biomasses
and that the variance introduced by the protocol employed to
extract DNA is a bigger source of bias in human gut
microbiome studies.

We show that the two tested kits were efficient in extracting
DNA from samples with 100 times lower biomass than sug-
gested by the manufacturers’ protocols. However, the gut mi-
crobiota inferred with the two kits was different, especially
when considering the abundance of microbial groups. In gen-
eral, the dissimilar nature of the two DNA extraction protocols
could explain the differences in microbial community profiles
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(Guo and Zhang 2013). It has been repeatedly reported that
protocols incorporating bead-containing lysing matrix and
vigorous shaking extract larger amounts of DNA and produce
a more comprehensive microbial profile than protocols based

on chemical lysis alone (Ariefdjohan et al. 2010; Guo and
Zhang 2013; Smith et al. 2011). In our experiments, the pro-
tocols for DNA extraction incorporated both chemical and
mechanical cell lysis, although each followed specific
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procedures and used proprietary reagents. Pointing out
exactly which procedures/components of the kits might
be responsible of the differences we found seems too
speculative without specific tests. Furthermore, the fact
that differences have even been shown to exist among
kit lots of the same brand (Salter et al. 2014) suggests
that sources of variance are not easy to control for and
raise the question whether data from different studies
should be compared at all (Schloss 2008; Wesolowska-
Andersen et al. 2014). The fundamental puzzle with kit
and lot effects is that, in real samples, there is no means to
know the actual microbial community composition, so
that there is no way to evaluate the kit/lot accuracy. To
be conservative, in a given study, total microbial DNA
should be extracted with the same kit, ideally the same
kit lot, and caution must be taken when comparing data
from different studies.

Importantly, we demonstrate that highly diluted samples
exhibit a microbial community profile distinguishable, in
most cases, from that of laboratory reagents. Highly dilut-
ed samples in our study had as few as 20 μg (D4) or 2 μg
(D5) of feces. Although samples with such low biomass
are unsuitable for robust microbial inference, and unrealis-
tic in most study designs, their microbial signature is still
distinguishable from that of laboratory reagents, especially
looking at the presence/absence of data. This limited effect
of dilution in the inferred gut microbial community is

unexpected since previous reports demonstrated that sam-
ples with low microbial biomass basically amplify contam-
inating DNA (Salter et al. 2014). In our case, samples with
as low as 2 mg of feces allowed obtaining both high num-
bers of 16S rRNA gene reads and a representation of the
gut microbiota similar to that obtained with samples with
100 times more biomass.

Our results are particularly relevant now that multiple
calls for the standardization of procedures have been made
in the microbial ecology community (Alivisatos et al.
2015; Blaser et al. 2016), as they provide insights on the
steps researchers must focus on when dealing with DNA
extraction from fecal samples. As general recommenda-
tions, in both 16S rRNA gene and metagenomic experi-
ments, the inclusion of as many technical controls as pos-
sible is highly encouraged to control for potential sources
of noise in the final dataset; this includes laboratory and
reagent contaminants and sequencing errors. Furthermore,
researchers should avoid mixing different DNA extraction
kits within a study and must include the kit’s lot as an
additional metadatum for each sample. The question of
how to address comparisons between studies and meta-
analyses remains open; however, the fact that measure-
ments between samples extracted with different kits can
be statistically significant strengthens the idea that compar-
isons between studies that employed different extraction
methods should be discouraged (Henderson et al. 2013).
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negative controls. a, c MoBio. b, d Qiagen
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