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Abstract Functional genomics of filamentous fungi has grad-
ually uncovered gene information for constructing ‘cell facto-
ries’ and controlling pathogens. Available gene manipulation
methods of filamentous fungi include random integration
methods, gene targeting technology, gene editing with artifi-
cial nucleases and RNA technology. This review describes
random gene integration constructed by restriction enzyme-
mediated integration (REMI); Agrobacterium-mediated trans-
formation (AMT); transposon-arrayed gene knockout
(TAGKO); gene targeting technology, mainly about homolo-
gous recombination; and modern gene editing strategies con-
taining transcription activator-like effector nucleases
(TALENs) and a clustered regularly interspaced short palin-
dromic repeat/associated protein system (CRISPR/Cas) devel-
oped in filamentous fungi and RNA technology including
RNA interference (RNAi) and ribozymes. This review de-
scribes historical and modern gene manipulation methods in
filamentous fungi and presents the molecular tools available to
researchers investigating filamentous fungi. The biggest

difference of this review from the previous ones is the addition
of successful application and details of the promising gene
editing tool CRISPR/Cas9 system in filamentous fungi.
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Introduction

Filamentous fungi are of special interest to researchers be-
cause of their great capacity to produce diverse valuable me-
tabolites, including antibiotics (Meyer et al. 2011), enzymes
(Hoffmeister and Keller 2007), acids (Magnuson and Lasure
2004) and lipids (Tang et al. 2016) (Chen et al. 2015), in
addition to detrimental toxins such as aflatoxins (Sørensen
et al. 2008) and sterigmatocystins (Keller and Hohn 1997).
Molecular tools are needed to manipulate them, such as
strengthening biosynthetic pathway to construct microbiolog-
ical cell factories and disrupting pathogenic genes to control
the harmful filamentous fungi. Besides, genome se-
quences of hundreds of filamentous fungi have been
established (http://www.genomesonline.org/; http://
genome.jgi.doe.gov/), and effective gene manipulation
techniques, especially multiple-gene and target-specific
methods, are needed for exploration of genetic informa-
tion to promote its application in the pharmaceutical
field, agricultural field and food industry.

Various transformation methods of filamentous fungi, in-
cluding protoplast transformation (Case et al. 1979, Turgeon
et al. 2010), particle bombardment (Bhairi and Staples 1992),
electroporation (Richey et al. 1989) and Agrobacterium -me-
diated transformationmethods (de Groot et al. 1998a) present-
ed in Table 1 (Meyer 2008), have been established. And mul-
tiple selection markers summarised in Table 2, (referring to
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(Fincham 1989)), such as hygromycin B drug resistance
(Kück et al. 1989; Punt and van den Hondel 1992) and uracil
auxotrophic mutants (Ando et al. 2009; Hao et al. 2014) are
available. Those all facilitate the progress of the genome ma-
nipulation method in filamentous fungi with addition of the
development of corresponding screening systems.

The random integration method is applied for high-
throughput mutagenesis in a strain of interest, but its process
is tedious. Gene targeting technology based on the homolo-
gous recombination method can help us manipulate particular
genes but this method is not efficient in filamentous fungi.
Gene editing technology appears after the genome sequencing
can be used for efficiently uncovering gene function, and one
of the most promising tools—CRISPR systems—was suc-
cessfully used in filamentous fungi. The RNA technology
can disturb gene expression in the translational level, but is
not applicable in some filamentous fungi. Those molecular
tools in filamentous fungi allow researchers to choose proper

methods for uncovering gene function and manipulating dif-
ferent genes efficiently.

This review provides an insight into the gene manipulation
methods applied in functional genomics in filamentous fungi
and details up-to-date gene editing strategies, with a focus on
the CRISPR/Cas9 system.

Random integration methods

Gene functions have traditionally been tested with random
gene mutation methods using physical mutagens, including
ionising radiation, ultraviolet light or radioactive chemicals
and chemical mutagens such as alkaloids and benzene
(Casselton and Zolan 2002) to determine whether any pheno-
typic change had occurred. However, the process of isolation
and recovery of the mutated gene is tedious. The detection of

Table 1 Four common strategies for transformation of filamentous fungi

Methods Principles Advantages Disadvantages

PMT Use cell wall-degrading enzymes to prepare protoplasts Spores, germlings and hyphal tissue
can be used

Transformation rate depends on the
particular batch of lytic enzyme

Uptake the DNA by the addition of PEG and CaCl2 Requires regeneration procedure

High copy number of inserted DNA

AMT A. tumefaciens carries two vectors (the binary vector
with the DNA of interest between the left and right
border repeats and the T-vector containing the
virulence region important for DNA transfer)

Spores, germlings and hyphal tissue
can be used

Various parameters during co-cultivation
affect transformation rate

DNA transfer is achieved during co-cultivation of
A. tumefaciens with the fungus

Low copy number of inserted DNA More time-consuming
Improves targeted integration

EP Uptake DNA is mediated by reversible membrane
permeabilisation induced with local application
of electric pulses

Spores and germlings can be used Protoplast formation is often needed
Simple and cheap

BT DNA are coated with tungsten or gold and accelerated
into cells at high velocity

Does not require pre-treatment of
recipient cells

Requires special equipment

Adapted from Genetic engineering of filamentous fungi-Progress, obstacles and future trends. Doi: https://doi.org/10.1016/j.biotechadv.2007.12.001

PMT protoplast-mediated transformation, AMTAgrobacterium-mediated transformation, EP electroporation, BT biolistic transformation

Table 2 Common selection
markers used for transformation
of filamentous fungi

Marker Phenotype Case reported Disadvantages

Drug resistance Hygromycin B
resistance

Cephalosporium Selection difficulties existed due to
weak dominance resistance over
wild-type alleleFulvia

Benomyl resistance Neurospora crassa

Oligomycin resistance Aspergillus niger

Auxotrophic
markers

Acetamide utilisation Aspergillus nidulans Difficult to achieve in species without
proper gene genetic systemsPyrimidine synthesis Neurospora crassa

Arginine synthesis Aspergillus nidulans

Visible markers β-galactosidase Aspergillus Specific chemicals or instruments
are needed
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genetic mutations with molecular tools saves the laborious
work involved in mutation isolation and gene identification.

Random gene disruptions can be created through transfor-
mation methods (foreign DNA insertion) or by the movement
of mobile genetic elements. Other related gene manipulation
methods used in filamentous fungi are restriction enzyme-
mediated integration (REMI) and transposon-arrayed gene
knockout (TAGKO) (Jiang et al. 2013).

Restriction enzyme-mediated integration

REMI was first established in 1991 in Saccharomyces
cerevisiae (Schiestl and Petes 1991). The basic process
of REMI transformation and recovery of mutated genes
is demonstrated in Fig. 1 (Kahmann and Basse 1999).
After the enzyme-digested DNA fragment and the enzyme
are transformed into the protoplast, the plasmid can be
integrated into the genome of the host based on the same
sticky ends. The mutated genes can be isolated with their
corresponding primers after plasmid excision and ligation
after transformation in Escherichia coli. REMI has been
successfully used in filamentous fungi, mainly for the
identification of pathogenicity genes. One example is the
filamentous ascomycete Magnaporthe grisea. Shi et al.
screened 10 mutants for sporulation, pathogenicity and
auxotrophy among 800 transformants with the REMI
method (Shi and Leung 1995). Sweigard et al. also used
this method to achieve 27 stable pathogenic mutants
among 5538 transformants in M. grisea (Sweigard et al.
1998). Researchers have also found that the use of en-
zymes in the REMI method improves transformation effi-
ciency (Shi et al. 1995). In addition, this method has already
been used in the filamentous fungi Monacrosporium
sphaeroides (Xu et al. 2005), Fusarium oxysporum (Imazaki
et al. 2007) and Pleurotus eryngii (Noh et al. 2010); ap-
proximately 5000 transformants and 2929 transformants
were achieved for the first two species, respectively, and
10 to 40 transformants per 106 protoplasts were achieved
for the third.

Several disadvantages hold back the development of this
method. It was initially dependent on protoplasts for the up-
take of plasmid DNA and enzymes. The proper choices and
concentrations of enzymes must be determined before the
transformation. Researchers also found that different restric-
tion enzymes vary significantly in their ability to integrate
fragments into the host genome (Manivasakam and Schiestl
1998). If plasmid rescue is needed, essential enzymatic sites
must be known.

Agrobacterium-mediated transformation

The Agrobacterium-mediated transformation (AMT) method
was traditionally used in plants (Valvekens et al. 1988; Tingay

et al. 1997; Komari et al. 1996) and was later applied to yeast
(Piers et al. 1996), filamentous fungi (de Groot et al. 1998b)
and mammal cells (Kunik et al. 2001). A. tumefacians is a
gram-negative plant pathogen that can transfer its T-DNA ran-
domly into genome of the recipient at a random site
(Hooykaas and Beijersbergen 1994) upon induction via
chemicals, usually acetosyringone. Acetosyringone was used
as induction through activating VirA and VirG proteins on the
surface of Agrobacterium tumefaciens to send signals. T-DNA
is bordered by 25 base pair repeats on each end. And the
transfer is initiated at the right border and terminated at the
left border in presence of the Vir proteins. The specific AMT
process (Michielse et al. 2005) is illustrated in Fig. 2.

A

B

D

C

Fig. 1 REMI transformation and plasmid rescue. Adapted from REMI
(Restriction Enzyme Mediated Integration) and its Impact on the
Isolation of Pathogenicity Genes in Fungi Attacking Plants. Doi:https://
doi.org/10.1023/A:1008757414036. a A REMI plasmid (RP) often
contains a fungal transformation marker for gene transcription and a
bacterial transformation marker for plasmid rescue. b The circular or
linearised REMI plasmid is transformed into fungal cells together with
a restriction enzyme (e.g. BamHI), resulting in two cleavage sites at the
transforming plasmid and chromosomal. c Free ends of the two cleaved
sites are joined together. d Plasmid rescue can be achieved via plasmid
excising from genome in presence of flanking sequences (e.g. by using
MluI) and circularising with DNA ligase before transformation in E. coli
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Combier et al. transformed the mycelium of Hebeloma
cylindrosporum with this method; Southern blot analysis
of 83 randomly selected transformants showed a unique
plasmid insert pattern, and 60% was composed of single-
transferred DNA copies. The left and right borders can
achieve 85 and 15% of transformants, respectively, via
the thermal asymmetrical interlaced polymerase chain re-
action (TAIL-PCR) (Combier et al. 2003). TAIL-PCR was
used for recovering unknown (mutated) gene adjacent to
known sequences, such as the inserted T-DNA and trans-
poson, through utilising nested known-specific primers
with a high melting temperature (Tm > 65 °C) in consec-
utive reactions together with a short (15–16 nucleotides)
arbitrary degenerate (AD) primer with a low Tm (about
45 °C) and 64–256-folds of degeneracy (Liu and Chen
2007). The relative amplification efficiencies of target
and nontarget products can be thermally controlled; thus,
the mutated gene can be amplified. Gento et al. also used
the ATMT method in Colletotrichum lagenarium and ob-
tained 150 to 300 transformants per 106 conidia, and
highly efficient gene recovery was achieved via the ther-
mal asymmetrical interlaced polymerase chain reaction
(Tsuji et al. 2003).

When the technique is used in filamentous fungi, host
cells can include protoplasts (Liu et al. 2015), spores (Hao
et al. 2014; Wang and Li 2008), hyphae and sporocarps.
This alleviates the need for protoplast isolation as required

by REMI. Rogers et al. adopted both REMI and ATMT to
identify pathogenic mutants for Coniothyrium minitans
and found that 32 transformants (μg DNA−1) were
achieved with REMI while 37.8 transformants (5 × 105

germlings−1) were achieved with ATMT. And single-copy
DNA integrations occurred in 8% of REMI and 40% of
ATMT transformants (Rogers et al. 2004). Although
ATMT surpasses REMI in some aspects, it also has some
clear disadvantages. ATMT is time consuming, and many
of the parameters involved, such as the ratio of host cells to
Agrobacterium, the co-cultivation temperature and the co-
cultivation time, must be optimised to achieve a high fre-
quency of transformation.

Transposon-arrayed gene knockout

Transposable elements are diverse and ubiquitous inmajor groups
of filamentous fungi, including Ascomycetes, Zygomycetes and
Basidiomycetes. They are used for gene mutation due to their
ability to transfer among the host cells (Daboussi 1997).

The transposable-arrayed gene knockout technique was
first used for high-throughput mutagenesis in M. grisea. The
process is illustrated in Fig. 3 (Hamer et al. 2001). The
transposon-mediated mutagenesis method has also been
established in some other filamentous fungi. Aspergillus niger
was found to harbour a non-autonomous transposon named
Vader, for which an excision frequency of 1 in 2.2 × 105 was

Fig. 2 Schematic overview of the Agrobacterium tumefaciens T-DNA
transfer system. Adapted from Agrobacterium-mediated transformation
as a tool for functional genomics in fungi. Doi:https://doi.org/10.1007/
s00294-005-0578-0. When acetosyringone or sugars exists, the vir genes
encoding the T-DNA transfer machinery of A. tumefaciens are induced.
Virulence proteins VirA and VirG are activated first in the presence of
acetosyringone, while chromosomally encoded protein, ChvE, interacts
with the VirA protein upon recognition of monosaccharides. The VirG
protein is activated through accepting the phosphoryl group from the
activated VirA proteins. The activated VirG proteins have DNA-binding
properties, and acts as a transcriptional activator of itself and other

virulence genes located in the virulence region. The VirD2 protein,
assisted by VirD1, nick precisely in the bottom strand of both border
repeats, leading to T-DNA release. VirC1 can bind the ‘overdrive’ of T-
DNA and help T-strand production. After the T-DNA is released, the T-
DNA strand will transfer through the bacterial membrane and fungal cell
wall via a type IV secretion mechanism. The VirB protein forms a
transport pore. The inner membrane VirD assists in the transferring
process. The virulence proteins VirF, VirE1/E2 are also exported via the
pore. The transferred T-DNA is targeted to the nucleus and randomly
integrated into the genome. The precisemechanism of T-DNA integration
is not known
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found (Hihlal et al. 2011). A similar method was used in
Penicillium griseoroseum to achieve a transformation fre-
quency based on a heterologous transposon, Impala, from
F. oxysporum (de Queiroz and Daboussi 2003), and similar
methods were established in other filamentous fungi, includ-
ing Mycosphaerella graminicola (Adachi et al. 2002) and
Aspergillus fumigatus (Firon et al. 2003). Although this meth-
od can be used interchangeably and requires a high-efficiency
transformation approach (Jiang et al. 2013), target manipula-
tion cannot be achieved.

Gene targeting technology

The functions of specific genes can be verified by gene over-
expression and downregulation methods through homologous
recombination.

Homologous recombination

The homologous recombination (HR) method was conven-
tionally used for target integration for gene knock-in and gene
mutation, but it was not as effective in filamentous fungi as in
yeast. In S. cerevisiae, 50 bp was sufficient for foreign DNA
integration (Hua et al. 1997). In filamentous fungi, larger frag-
ments longer than 1000 bp may not achieve high transforma-
tion efficiencies (Kupfer et al. 1997). Although the frequency
of homologous recombination of filamentous fungi can be
improved by mutating the genes involved in the non-
homologous end-joining process, usually ku70 and ku80, the
technique still depends upon protoplasts and a proper plasmid
with a proper selection marker. Digestion of cell wall of fila-
mentous fungi is usually difficult.

Gene editing technology

BCre/Loxp^ and BFLP/FRT^ system

Before appearance of the concept of gene editing, there exists a
selection marker recycle method called the BCre/Loxp^ system,
allowing multiple genes manipulation in filamentous fungi. The
BCre/Loxp^ system was adapted from P1 bacteriophage and was
composed with a recombinase named Cre and two correspond-
ing consequent Loxp sites. And the Cre can digest at the two
consequent Loxp sites, resulting in a gene, usually a selection
marker, within the two consequent Loxp sites being deleted.
The Cre/Loxp system was applied in Aspergillus (Krappmann
S et al. 2005, Forment et al. 2006, Mizutani et al. 2012, Huang et
al. 2016), Trichoderma (Steiger et al. 2011),Neurospora (Honda
and Selker 2009), Neotyphodium (Florea et al. 2009) and so on
(Zhang et al. 2013, Aguiar et al. 2014) (summarised in Table 3).

Similarly, a BFLP/FRT^ system, composed of FLP
recombinasewith correspondingFRTsites, is also used formark-
er recycling in filamentous fungi, but is derived from the yeast
S. cerevisiae. Kopke et al. firstly demonstrated successful appli-
cation of the BFLP/FRT^ system in Penicillium chrysogenum
and Sordaria macrospora in 2010 (Kopke et al. 2010). Later,
this method was used in Ustilago maydis (Khrunyk et al. 2013)
and Acremonium chrysogenum (Bloemendal et al. 2014).

The above two methods offer possibilities for multigene
manipulation but need two steps to achieve gene recycle.
Take the BCre/Loxp^ system for example, the Loxp sites as well
as a marker gene need to be integrated into the host genome
first, then the Cre needs expression to finish the gene deletion
process. Thus, a precise selection process of the second step is
necessary for successful application of the two methods.

Zinc-finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs) and clustered regulatory
interspaced short palindromic repeat/associated systems
(CRISPR/Cas) are gene manipulation systems that use

Fig. 3 Transposon-arrayed gene knockout. Adapted from Gene
discovery and gene function assignment in filamentous fungi.
Doi:https://doi.org/10.1073/pnas.091094198. An IVT reaction needs
transposons, corresponding transposase and recipient DNA, usually a
cosmid vector. Then, transform the IVT products into E. coli. Positive
transposon insertion sites can be determined by sequencing. Then, the
proper cosmids are digestedwith the homing endonuclease to release full-
length inserts for transformation. Ectopic and TI events are distinguished
by PCR analysis, and mutants are subjected to phenotype analysis. IVT
in vitro transposition, WT wild type, EI ectopic integration, TI targeted
integration
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nucleases. CRISPR/Cas9 is the most widely used. Although
the ZFN method was established earlier than TALENs and
CRISPR/Cas9 and has been applied to gene editing in plants
and animals, we were unable to find any examples of its use in
filamentous fungi. Therefore, we focus on TALENs and
CRISPR/Cas9.

Transcription activator-like effector nucleases

Transcription activator-like effectors were first found in 2009
in the plant pathogen Xanthomonas and contain a central re-
gion of tandem direct repeats with 34 amino acids (Boch et al.
2009). Figure 4 is a simple illustration of the transcription
activator-like effector nuclease (TALEN)method. Two specif-
ic amino acids, often the 12th and 13th and known as repeat-
variable di-residues, are two hypervariable amino acids that
determine the single nucleotide in the target DNA sequence
(Christian et al. 2010). The artificial TALENs are fused with a
DNA catalytic part FokI to produce a specific double-strand
break. Compared with the three bases recognised by one ZFN

monomer, one TALEN monomer recognises one base and
therefore offers a larger, more flexible target range (Sun and
Zhao 2013).

This technology was first used in filamentous fungi in the
rice blast fungus Pyricularia oryzae in 2015 (Arazoe et al.
2015), and the established platinum-fungal TALEN system
raised the targeted gene replacement efficiency through ho-
mologous recombination by as much as 100%. This technique
has not yet been reported in any other genus of filamentous
fungi.

The technical challenge for this technology is cloning ex-
tensive identical repeat sequences (Gaj et al. 2013). Several
methods have been explored to overcome this problem, such
as the ‘Golden Gate’ assembly method (Cermak et al. 2011),
high-throughput solid-phase assembly (Briggs et al. 2012) and
ligation-independent cloning techniques (Schmid-Burgk et al.
2013).

Clustered regularly interspaced palindromic
repeat/associated systems

The best-known gene editing method in the field of artificial
nuclease-based gene manipulation is CRISPR/Cas9.

Mechanism of CRISPR/Cas systems

CRISPR/Cas systems in bacteria and archaebacteria play a
biological role in adaptive immunity systems against foreign
DNA (Ran et al. 2013a; Doudna and Charpentier 2014). After
a virus or phage injects DNA into the bacterium, parts of its
DNA can be integrated into the CRISPR array in the genome
(Wang et al. 2014). When the foreign DNA invades the

Table 3 Filamentous fungi with
Cre/Loxp and FLP/FRT systems
established

Recombinase Filamentous fungi Reference

Cre/Loxp from P1 bacteriophage Aspergillus fumigatus (Krappmann S et al. 2005)

Aspergillus nidulans (Forment et al. 2006)

Neotyphodium coenophialum (Florea et al. 2009)
Neotyphodium uncinatum

Epichloë festucae

Neurospora Crassa (Honda and Selker 2009)

Trichoderma reesei (Steiger et al. 2011)

Aspergillus oryzea (Mizutani et al. 2012)

Cryphonectria parasitica (Zhang et al. 2013)
Metarhizium robertsii

Ashbya gossypii (Aguiar et al. 2014)

Aspergillus terrus (Huang et al. 2016)

FLP/FRT from Saccharomyces cerevisiae Penicillium chrysogenum (Kopke et al. 2010)
Sordaria macrospora

Ustilago maydis (Khrunyk et al. 2013)

Acremonium chrysogenum (Bloemendal et al. 2014)

TTTT

G

AATGGCACTGCTGA Fok I

Fok ITTACCGTGACGACT
GCTAGCTAGCTAAC

CGATCGATCGATTG
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A T
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HD HKor N K

N

Fig. 4 Transcription activator-like effector nuclease (TALEN) in
complex with target DNA. TALEN target sites contain two TALE binding
sites with a spacer sequence separation of varying lengths (12–20 bp).
Each TALE repeats recognise the specific base pair through two
hypervariable residues and then linked FokI cleavage at target site. RVD
repeat-variable di-residue
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bacterium again, the mature CRISPR RNA (crRNA) com-
bined with a trans-activating RAN (tracrRNA) can combine
and lead the Cas9 protein to degrade the DNA based on com-
plementary sequencing (Ran et al. 2013b; Hsu et al. 2014).
The process is summarised in Fig. 5.

Of the three CRISPR/Cas systems, type II CRISPR/Cas has
been extensively explored for its simple mono-protein com-
position (Bassett et al. 2013; Friedland et al. 2013; Gratz et al.
2013). After a linker loop is added between the crRNA and
tracrRNA, more convenient single-strand RNA is generated
for gene editing in various cells and organisms (Bassett et al.
2013; Jinek et al. 2012). The first specific 20-nucleotide at the
5′ end of the gRNA corresponding to the tracrRNA decides
the target position, and the remaining sequence at the 3′ end
forms a stem-loop structure that is necessary for the activity of
Cas9 protein. Due to the low content of sgRNA, a plasmid can
be designed that will encode multiple sgRNAs. Multigene
manipulation can thus be easily achieved, which makes un-
necessary the complex procedure used in the above two nu-
cleases guided by proteins (Shalem et al. 2014).

The commonly used CRISPR/Cas9 systems have two char-
acteristics: they are protospacer adjacent motif (PAM) depen-
dent and act up to six base pairs off-target. Themechanism can
be understood in terms of its biological role in defending
against foreign DNA. Kleinstiver et al. modified PAM sites
in human cells and broadened the targeting range of

Staphylococcus aureus Cas9, although off-target effect re-
mains the same (Kleinstiver et al. 2015).

Many studies have been performed to improve Cas9 spec-
ificity and reduce off-target effects, including reducing the
active Cas9 amount (Davis et al. 2015; Hsu et al. 2013), using
inactivated Cas9 such as Cas9 nickase combined with FokI
nuclease domain (Guilinger et al. 2014; Tsai et al. 2014) and
using a truncated guide sequence (Kleinstiver et al. 2015),
among others (Slaymaker et al. 2016).

Application of CRISPR/Cas systems

Many biotechnological companies, such as Addgene, offer an
online service for PAM sequence searching and sgRNA con-
struction and provide synthesised products. Researchers have
already constructed specific plasmids used to establish the
CRISPR/Cas9 system in filamentous fungi. The four plasmids
AFUM_pyrG, AN_argB, bleR and hygR each carry a com-
mon selection marker to allow convenient operation in differ-
ent filamentous fungi (Nødvig et al. 2015).

CRISPR/Cas9 systems have been established in several
filamentous fungi since 2015, and the list continues to grow.
The first was Trichoderma reesei. A controllable and condi-
tional CRISPR/Cas9 system was established and used to dis-
rupt the ura5 gene, and a 200-bp homologous length can
induce site-specific mutations with 93% recombination

A BFig. 5 Schematic overview of a
CRISPR/Cas system. a
Acquisition of the type II
CRISPR/Cas system. The
invaded DNA is processed as new
spacer into the CRISPR array
after the first attack. When the
same DNA starts a second attack,
the spacer expresses into the
crRNA-tracr RNA complex and
leads the Cas9 protein to the
invading DNA and cleavage on
the corresponding sequence. b
Mechanisms of the type II
CRISPR/Cas system. There is
only Cas9 in a type II CRISPR/
Cas system. Cas9 has two
function domains: HNH, cleaving
the responding sequence attached
with sgRNA, and RuvC, cleaving
the remaining complementary
sequence. The PAM sites are
usually upstream of the cleavage
sites
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frequency with the help of the CRISPR/Cas9 system (Liu
et al. 2015). This system has been established in
Trichoderma, Aspergillus, Penicillium and the model organ-
ism Neurospora crassa (Table 4).

Other applications of the CRISPR/Cas9 systems used in
bacteria, such as CRISPR interference (Cleto et al. 2016; Qi
et al. 2013) and activation (Cheng et al. 2013), may also be
used for filamentous fungi because the inactive form of Cas9
nucleases also exhibits versatile abilities. With inactivation of
either of the functional parts of the HNH and RuvC domain,
the Cas9 nucleases become nickases that induce single-strand
breaks. With both inactive domains, Cas9 nucleases become
repressor-like proteins that can block the transcription prog-
ress, which is called CRISPR interference (CRISPRi) (Larson
et al. 2013). If a regulatory part, a repressor or an enhancer, is
combined with a Cas9 protein with DNA targeting ability, a
single gene or a series of genes can be regulated. Researchers
have compared the effect of CRISPRi and shRNA in the iden-
tification of essential genes in RT-112 cells and found that a
CRISPR-based screening method performed the best (Evers
et al. 2016).

Integration of Cas9 protein and sgRNA

The key challenge to the establishment of this system in fila-
mentous fungi is the method of integrating the Cas9 protein
and sgRNA into the host. Methods include DNA and mRNA
techniques. Both components can be co-transformed by one
plasmid or solo transformed by being transformed twice. In

most filamentous fungi, the Cas9 DNA is integrated into the
host’s genome, and some filamentous fungi such as Ustilago
maydis use an auto-replicating plasmid with Cas9 DNA in the
cytoplasm. The auto-replicating plasmid allows transient ex-
pression of Cas9 to avoid the disadvantage of permanent Cas9
(Schuster et al. 2016), which was found to aggravate the off-
target effect.

In addition, a RNA-guided endonuclease technique using a
preassembled duplex combined with purified Cas9 proteins
has been successfully used in the filamentous fungus
P. chrysogenum (Pohl et al. 2016) and in human cells,
zebrafish embryos, bacteria (Kim et al. 2014) and plants
(Woo et al. 2015). This preassembled ribonucleoproteins
method is able to improve on-target efficiency and reduce
off-target inefficiency compared with the traditional plasmid
transformation method, with which it is difficult to success-
fully integrate the Cas9 protein into the genome and in which
continuous expression of the Cas9 protein can aggravate the
off-target effects.

SgRNA

RNA polymerase III promoters, such as U6 and T7 promoters,
drive the expression of sgRNA. The endogenous RNA poly-
merase III promoter may not exist in filamentous fungi, so a
heterogenous RNA polymerase III promoter, usually U6, is
often used. Alternative methods, such as using sgRNA de-
rived from the RNA polymerase II promoter, and RNA

Table 4 Filamentous fungi with
CRISPR/cas9 systems established Species Year Gene editing description Reference

Trichoderma

T. reesei 2015 Gene disruption and gene
overexpression

(Liu et al. 2015)

Aspergillus

A. aculeatus 2015 Gene mutation (Nødvig et al. 2015)

A. brasiliensis 2015 Gene mutation (Nødvig et al. 2015)

A. carbonarius 2015 Gene mutation (Nødvig et al. 2015)

A. luchuensis 2015 Gene mutation (Nødvig et al. 2015)

A. niger 2015 Gene mutation (Nødvig et al. 2015)

A. nidulans 2015 Gene mutation (Nødvig et al. 2015)

A. tubingensis 2015 Gene mutation (Nødvig et al. 2015)

A. oryzae 2015 Gene mutation (Katayama et al. 2016)

Penicillium

P. chrysogenum 2016 Gene replacement and
gene knock-in

(Pohl et al. 2016)

Neurospora N. crassa 2015 Gene replacement (Matsu-ura et al. 2015)

Phytophthora P. sojae 2016 Gene disruption and
gene replacement

(Fang and Tyler 2016)

Pyricularia P. oryzae 2015 Gene replacement (Arazoe et al. 2015)

Ustilago U. maydis 2016 Gene disruption (Schuster et al. 2016)
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processing strategies have also shown the capability of
sgRNA synthesis.

The sgRNA derived from the RNA polymerase II promoter
in P. oryzae has the ability to guide the Cas9 protein but shows
less activity than sgRNA derived from the RNA polymerase
III promoter (Arazoe et al. 2015). Researchers have also used
ribozymes to design the artificial gene RGR (ribozyme-RNA-
ribozyme), whose transcripts can undergo self-catalysed
cleavage and release the designed gRNA using the RNA po-
lymerase II promoter in vitro and in yeast. The results showed
efficient Cas9-mediated target DNA cleavage (Gao and Zhao
2014). Other integrated RNAmethods, including RNA-triple-
helix structures, introns and microRNAs, have also been
attempted in human cells (Nissim et al. 2014), and those
methods may also be capable of operating well in filamentous
fungi.

RNA technology

Besides the molecular tools used for DNA manipulation,
some RNA technology which can verify gene function
through disturbing mRNA translation was also applied in fil-
amentous fungi. Those technologies include RNA interfer-
ence and ribozymes.

RNA interference

RNA interference (RNAi) is an available method for the
verification of gene function when the necessary gene
knock methods are lacking. In filamentous fungi, RNA
quelling was first discovered in N. crassa; six pathways
produced various small RNAs (Li et al. 2010). The mech-
anisms of two RNAi-related phenomena including
quelling and meiotic silencing of N. crassa were demon-
strated by Romano et al. (Romano and Macino 1992). In
summary, the aberrant RNA can trigger cells to inactivate
the connate mRNA, thus quelling gene expression in the
cell.

The RNAi technology has been successfully used in more
than 30 species of filamentous fungi and fungus-like organ-
isms such as Mucor and Aspergillus. Kuck et al. gave the list
of filamentous fungi with successful application of the RANi
technology in 2010 (Kück and Hoff 2010). Some filamentous
fungi, such asMortierella alpina (Chen et al. 2015), are added
into the list in the following years.

The results of RNA interference cannot be predicted and
varies among experiments and laboratories. This method is
not applicable to some filamentous fungi, such as U. maydis,
because the necessary component in the RNAi silencing path-
way is absent (Jiang et al. 2013).

Ribozymes

Ribozymes are special RNAs capable of catalysing RNA.
Among the different kinds of natural ribozymes, hammerhead
ribozymes and hairpin ribozymes are extensively used due to
their small size and high cleavage activity. Up to now, only the
hammerhead ribozymes were successfully used in filamen-
tous fungi. The first reported case was in Aspergillus
giganteus with seven different hammerhead ribozymes de-
signed targeting the mRNA of the beta-glucuronidase tran-
script (uidA). (Mueller et al. 2006) The result showed that
the ribozymes could reduce uidA expression up to 100%.

Although various forms of products for small RNAs are
available, such as short-hairpin RNA (shRNA) (Hannon
2002), double-strand RNA transcribed in both directions un-
der dual promoters, antisense single-strand RNA (Hamilton
and Baulcombe 1999) and directly synthetic double-strand
RNA, different kinds of filamentous fungi have different
levels of ability to take up foreign RNAs, thus leading to
different silencing effects. Moreover, the heritability of this
molecular tool is not stable. Those disadvantages need to be
taken into consideration before choosing the right gene ma-
nipulation tools.

Summary and outlook

All gene manipulation systems require choices about DNA
vectors, transformation methods and gene editing strategies.
Gene manipulation plays a key role in this gene function ex-
ploration generation. The gene manipulation methods for pro-
karyotes have developed more quickly than those for filamen-
tous fungi. Because of the complexities of ploidy, propagation
and the mycelial structure of filamentous fungi, the search for
a versatile, effective and stable genetic tool for use in filamen-
tous fungi faces many challenges. The special composition of
fungal cell wall makes it difficult for recombinant DNA to
enter the host. These factors may account for the slow prog-
ress in the development of molecular genetic tools for use in
filamentous fungi. The further development of these molecu-
lar tools still faces these difficulties.

As for gene editing strategies, the commonly used homol-
ogous recombination method and RNA interference are main-
ly used to uncover the role of a single gene among multiple
pathway genes due to the technological barriers. With the
development of gene editing technologies, new tools such as
TALENs and the CRISPR/Cas system, which simplify the
gene manipulation process and improve gene targeting effi-
ciencies, have arisen to meet the needs of a new generation.
Gene manipulation with the CRISPR/Cas9 system in filamen-
tous fungi mainly involves gene mutation, but other types of
gene manipulation such as gene motivation and gene interfer-
ence are likely to be applied in the future. The RNA editing
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tool C2c2, which is already used in bacteria (Abudayyeh et al.
2016) and was derived from the CRISPR/Cas system, may
also be useful in filamentous fungi. The novel CRISPR/Cas
systems CRISPR/CasX and CRISPR/CasY (Burstein et al.
2016) offer new choices for the future, and gene editing tools
that use DNA-guided artificial nucleases (Qi et al. 2016) may
open up new techniques for the gene manipulation field.

Through these gene editing strategies, further eukaryotic
regulatory mechanisms of anabolism, catabolism, growth
and phenotype can be elucidated and many more filamentous
species may become available as ‘cell factories’ for use in the
medical, agricultural and food industries.
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