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Abstract Lignin is a biomass-derived aromatic polymer
that has been identified as a potential renewable source of
aromatic chemicals and other valuable compounds. The val-
orization of lignin, however, represents a great challenge
due to its high inherent functionalization, what compro-
mises the identification of chemical routes for its selective
depolymerization. In this work, an in vitro biocatalytic de-
polymerization process is presented, that was applied to
lignin samples obtained from beech wood through
OrganoCat pretreatment, resulting in a mixture of lignin-
derived aromatic monomers. The reported biocracking
route comprises first a laccase-mediator system to

specifically oxidize the Cα hydroxyl group in the β-O-4
structure of lignin. Subsequently, selective β-O-4 ether
cleavage of the oxidized β-O-4 linkages is achieved with
β-etherases and a glutathione lyase. The combined enzy-
matic approach yielded an oily fraction of low-molecular-
mass aromatic compounds, comprising coniferylaldehyde
and other guaiacyl and syringyl units, as well as some larger
(soluble) fractions. Upon further optimization, the reported
biocatalytic route may open a valuable approach for lignin
processing and valorization under mild reaction conditions.

Keywords Biomass conversion . Lignin . Ether bond
cleavage .β-etherase . Laccase-mediator system

Introduction

The valorization of lignin represents a great challenge due to
its complex chemical structure and heterogeneity (Rinaldi
et al. 2016; Hendriks and Zeeman 2009; Ragauskas et al.
2006). Importantly, delivering added value products out of
lignin would significantly enhance the economics of
lignocellulose-based biorefineries (Ragauskas et al. 2014;
Viell et al. 2013; Zakzeski et al. 2010). The β-O-4-ether link-
age is the most prevalent type of intermolecular bond in lignin,
typically accounting for 45–60% of the total linkages (Adler
1977), being an essential target for selective lignin depolymer-
ization processes. In that respect, the selective oxidation of the
β-O-4 structure combined with a subsequent treatment to
cleave the β-ether bond (C-O bond) has recently emerged as
a promising route to achieve a selective lignin depolymeriza-
tion. Relevant examples propose the catalytic oxidation of
lignin promoted by the 2,3-dichloro-5,6-dicyano-1,4-benzo-
quinone/tert-butyl nitrite/O2 (DDQ/tBuONO/O2) system
(Lancefield et al. 2015); the oxidation of lignin with 4-
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acetamido 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)
(5 mol%) in acidic media (Rahimi et al. 2013); or the formic
acid-mediated depolymerization of oxidized lignin (Rahimi
et al. 2014).

Apart from those successful chemical cases, also BWhite
Biotechnology^ holds potential for an efficient and selec-
tive lignin valorization (e.g., by applying processes at
milder conditions to valorize more thermo-labile fractions
of lignin). In nature, a β-aryl ether degradation pathway has
been elucidated in Sphingobium sp. SYK-6 (Masai et al.
1989, 1993a, 1999, 2007), comprising several enzymes:
(i) at least four different (NAD+)-dependent stereospecific
alcohol dehydrogenases (LigD, LigL, LigN, and LigO)
which catalyze the oxidation of the Cα alcohol to ketone
(Masai et al. 1993b; Sato et al. 2009); (ii) stereospecific β-
etherases LigE, LigF, and LigP to cleave either β(R)- or
β(S)-ether linked substrate enantiomers with glutathione
(GSH) consumption (Gall et al. 2014a; Masai et al. 2003;
Picart et al. 2014); and (iii) at least one glutathione lyase
(LigG) to further convert the formed glutathione adduct
(LigG is stereospecific for the GS-β(R)-enantiomer with
very low activity on the corresponding (S)-enantiomer)
(Picart et al. 2015a). In the latter case, the GS group attached
to the aromatic compound is eliminated, resulting in the
release of oxidized glutathione (GSSG) (Gall et al.
2014b). A similar pathway was also reported for a
Novosphingobium sp. strain MBES04 recently (Ohta et al.
2015). Following this biochemical pathway, Reiter et al.
(2013) evaluated the cleavage of β-aryl ether linkages in
organosolv- and Kraft-type lignins, reporting traces of
monomeric and dimeric aromatic units with these lignin
samples. When starting from milled wood lignin, Ohta
et al. (2016) achieved a higher proportion of monomeric
aromatic species (up to 6.6 wt%), which might be related
to the lower degree of polymerization found in milled wood
lignin (Crestini et al. 2011). Other enzymes that are applied
in nature to degrade lignin include different peroxidases
(lignin peroxidase, manganese peroxidase, versatile perox-
idase, and dye-decolorizing peroxidases) as well as laccases
(Bugg and Rahmanpour 2015; Chen et al. 2012; Pollegioni
et al. 2015). Due to their intrinsic radical-based mecha-
nisms, these enzymes catalyze a random lignin depolymer-
ization, and may also cause repolymerization of already
released monolignols (Martínez et al. 2005).

In the present work, a novel biocatalytic approach com-
bining a laccase-mediator system (LMS), two β-etherases,
and a glutathione lyase to depolymerize biomass-derived
lignin samples is presented. The proof of concept of this
biocatalytic approach is successfully demonstrated for the
cleavage of β-O-4 bonds of lignin samples obtained from
an OrganoCat biomass pretreatment (vom Stein et al.
2011), leading to promising yields of low-molecular-mass
aromatics.

Materials and methods

Materials

All commercially available compounds were purchased and
used as received, unless otherwise stated. The β-O-4 lignin
model compounds 1 and 2, as well as the degradation products
3 and 4, were synthesized according to our previously reported
procedures (Picart et al. 2014, 2015a). Guaiacol (>99% pure)
was purchased from Sigma-Aldrich, Taufkirchen, Germany.β-
Etherases LigE from Sphingobium sp. SYK-6 (GenBank:
WP_014075192) and LigF-NA from Novosphingobium
aromaticivorans (GenBank: WP_041551020), glutathione ly-
ase LigG-TD from Thiobacillus denitrificans (GenBank:
AAZ97003), and laccase lcc2 M3 from Trametes versicolor
(GenBank: CAA77015) were prepared as described previously
(Liu et al. 2013; Picart et al. 2014, 2015a).

Conversion of lignin model compound

Oxidation of β-O-4 lignin model compound 1 with the LMS

A 15 mL tube was loaded with the lignin model compound 1
(adlerol, 33.4 mg), laccase lcc2 M3 (1 U) and violuric acid
monohydrate (18 mg) in 3.15 mL sodium acetate buffer
(0.1 M, pH 5), and 0.35 mL of the ionic liquid 1-ethyl-3-
methylimidazolium ethylsulfate ([EMIM] [EtSO4]) (99%,
Iolitec, Heilbronn, Germany) were added. The reaction mix-
ture was incubated at room temperature with shaking
(250 rpm) for 5 days. The resulting precipitated white solid
(adlerone, 2) was washed with water and then used for enzy-
matic ether bond cleavage without any further purification.
Under these conditions, 92% conversion was achieved as con-
firmed by high-performance liquid chromatography (HPLC)
analysis.

β-Etherase cleavage and deglutathionylation of oxidized
β-O-4 lignin model compound 2

Enzymatic cleavage of the oxidized lignin model compound 2
was carried out in an Eppendorf tube containing 50 mM
glycine/NaOH buffer, pH 9.5, 0.5 mM 2 dissolved in
dimethylsulfoxide (DMSO; final concentration, 25 vol%),
1 mM GSH (reduced), and each 10 μg of purified β-
etherases LigE and LigF-NA. The reaction mixture was incu-
bated at 25 °C, and after 1-h incubation, the supernatant was
analyzed by HPLC to obtain full conversion of 2 into guaiacol
and the GSH-conjugated product 3.

Afterwards, water was added to the reaction mixture to
reach a final DMSO concentration of 10% (concentrations
higher than that drastically inhibited the activity of LigG-
TD), and 10 μg purified glutathione lyase LigG-TD were
added. The reaction mixture was incubated for 6 h at room
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temperature to achieve 88% conversion of the final product
VG, as determined by HPLC. As the enzyme LigG-TD ex-
hibits enantiopreference for one of the enantiomers, no full
conversion could be achievedwithin the applied reaction time.
The identity of 3 (GS-GVG) as well as 4 (VG) was confirmed
by HPLC when compared to the retention time of an authentic
standard.

Lignin fraction of OrganoCat

The OrganoCat process is a biphasic lignocellulose fraction-
ation based on the dilute acid approach, using biogenic oxalic
acid as catalyst (vom Stein et al. 2011). OrganoCat lignin was
extracted from beech wood as follows:

In a glass-made high pressure reactor (Ace pressure tube,
80 mL) 20 mL 2-methyl-tetrahydrofuran (2-MeTHF) and the
same volume of 0.1 M aqueous oxalic acid solution (referring
to the aqueous phase) were introduced. One hundred grams
per liter (referring to the aqueous phase) 10-mm beech wood
particles were added, and the reactor was closed tightly. The
mixture was magnetically stirred at room temperature for
20 min, before heating to 140 °C for 3 h. After reaching the
desired reaction time, the reactor was cooled down to room
temperature and opened. The resulting mixture was centri-
fuged at 4000 rpm for 5 min, and the organic phase containing
the lignin was separated by decantation. To obtain the lignin,
2-MeTHFwas removed under reduced pressure. The resulting
OrganoCat lignin was used in subsequent experiments with-
out further processing.

Conversion of OrganoCat lignin

Lignin oxidation by LMS

Two hundred milligrams of dry OrganoCat lignin, 40 mg of
violuric acid, and 2 U of laccase lcc2 M3 were added to a
mixture of 4 mL [EMIM] [EtSO4] and 36 mL sodium acetate
buffer (0.1 M, pH 5). The reaction mixture was incubated at
room temperature for 5 days to ensure complete oxidation of
benzylic α-hydroxy groups. Afterwards, the solid (oxidized
lignin) in the reaction mixture was collected by centrifugation
(16,100×g, 4 °C), washed twice with distilled water, and
dried.

The aqueous reaction mixture after lignin separation was
extracted three times with ethyl acetate, and the combined
organic extracts after solvent evaporation served as blank con-
trol in subsequent LC-MS measurements.

Lignin depolymerization

One hundred milligrams of oxidized lignin were dissolved in
pure DMSO (1 mL) and added to 3 mL glycine-NaOH buffer,
pH 9.5 (50 mM final concentration), containing reduced GSH

(final concentration 1 mM) and each 0.1 mg of β-etherases
LigE and LigF-NA. Thus, the final DMSO concentration was
set to 25 vol% as β-etherases are inhibited at higher DMSO
concentrations. The reaction mixture was incubated overnight
at 25 °C to enable the β-ether bond cleavage in the lignin
polymer. The reaction mixture was then added to 6 mL water
(10-mL total volume) to lower the DMSO concentration to
10% as glutathione lyase LigG-TD is inhibited at a higher
DMSO concentration. After addition of 0.1 mg LigG-TD,
the reaction mixture was incubated overnight at 20 °C to re-
move the glutathione group attached to the aromatic conju-
gates. The reaction mixture was then acidified to pH 1 by the
addition of 1 M hydrochloric acid (HCl), triggering the floc-
culation of polymeric lignin. This lignin residue was washed
with ethyl acetate, and the aqueous phase was also extracted
with ethyl acetate (3 × 6 mL). The organic soluble extracts and
washings were combined and concentrated under reduced
pressure to obtain a viscous yellowish oil. The organic insol-
uble material (residual lignin) was washed with water and
dried under reduced pressure. The mass of the resulting mate-
rial was 87.5 mg (corresponding to 87.5 wt% of the initial
lignin).

Analytical methods

General

2D HSQC NMR spectra were recorded on a Bruker
(Rheinstetten, Germany) AV 600 instrument. HPLC was per-
formed on a Prominence modular HPLC system (Shimadzu,
Duisburg, Germany) equipped with a Nucleosil 100-5 C18
column (4.6 × 150 mm; particle size 5 μm, Macherey-
Nagel, Düren, Germany) at 25 °C. A mixture of water
(49%), acetonitrile (50%), and phosphoric acid (1%) was used
as the mobile phase with a flow rate of 1.0 mL min−1. All
compounds were detected with a UV detector (SPD-M30A,
Shimadzu) at a wavelength of λ = 280 nm.

LC-MS identification of low-molecular-weight aromatics

The organic soluble material (yellowish oil) after lignin
biocracking and the organic soluble fraction extracted from
only oxidized lignin (blank control) were analyzed by LC-
MS. The depolymerization products were separated via liquid
chromatography on an 1260 Infinity HPLC system (Agilent,
Waldbronn, Germany) using a RP-8 LiChrospher column
(125 × 2 mm, 5 μm, CS-Chromatographie Service,
Langerwehe Germany) with the following conditions: injec-
tion volume 5 μL, column temperature 30 °C, an isocratic
elution with methanol (45 vol%), water (54.9 vol%) and
formic acid (0.1 vol%), flow rate of 0.5 mL min−1, and an
overall measurement time of 30 min. The HPLC system was
coupled both to UV detection (Agilent 1260 Infinity DAD,
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wavelength range 190–640 nm) and to electrospray
ionization-quadrupole time-of-flight mass spectrometry
(Agilent 6530 accurate mass Q-ToF LC/MS) for the identifi-
cation of depolymerized products. The LC-ESI-Q-ToF-MS
was also employed to separate and identify possible glutathi-
one adducts of lignin-derived compounds in the aqueous
DMSO fraction in addition to lignin-derived monomers in
the yellowish oil and in the organic soluble fraction extracted
from oxidized lignin. Thus, an ESI technique in the positive
ionization mode was used for the measurement. The ESI con-
ditions were set as follows: capillary voltage 3500 V, nozzle
voltage 1500V, gas temperature 300 °C, drying gas 8 Lmin−1,
sheath gas temperature 350 °C, sheath gas flow 11 L min−1,
fragmentor 100 V, and skimmer 30 V. The software
MassHunter was used for measurement and data calculation.
Identification of lignin-derived compounds was based on the
use of exact mass, relative retention time, and peak shape data
in the context of expected depolymerization products.

Results

Enzymatic depolymerization of lignin model compound 1

In the natural metabolic pathway for β-aryl ether bond cleav-
age involving bacterial β-etherases, the Cα hydroxy groups
are first oxidized by multiple stereoselective alcohol dehydro-
genases (ADHs), due to the fact that β-etherases are unable to
cleave the respective non-oxidized ether linkages (Picart et al.
2014). Recently, laccases have also been shown to catalyze
this oxidation reaction in lignin model compounds, avoiding
the use of expensive cofactors (Majumdar et al. 2014). Hence,

we hypothesized that a combination of laccase-mediator sys-
tem (LMS) and bacterial β-etherases should enable the effi-
cient depolymerization of lignin, while reducing the number
of required enzymes for lignin biocracking. To prove this hy-
pothesis, the biocracking route proposed in this work was first
evaluated (and validated) on lignin model compound 1
(Fig. 1). Thus, a laccase-mediator system, composed of
engineered laccase lcc2 M3 from T. versicolor and violuric
acid as a mediator (Liu et al. 2013), was applied to specifically
oxidize the Cα alcohol of 1 to the respective ketone. In a
subsequent step, the oxidized β-O-4 structure 2was subjected
to two sequential reactions catalyzed by stereospecific β-
etherases LigF-NA from N. aromaticivorans and LigE from
Sphingobium sp. SYK-6 (Picart et al. 2014), cleaving theβ-O-
4 ether bond, and by glutathione lyase LigG-TD from
T. denitrificans (Picart et al. 2015a), that cleaves the thioether
linkage in the formed GSH adduct 3 leading to the release of
β-deoxy-α-veratrylglycerone (VG, 4). In the first reaction
step, the LMS treatment resulted in the selective oxidation of
the benzylic alcohol of the model compound 1 (in the presence
of 0.5 eq violuric acid and 10 vol% [EMIM] [EtSO4] as
cosolvent). HPLC analysis (Fig. 2a, b) confirmed almost full
conversion of 1 to 2a and 2b with complete selectivity for
oxidation of the secondary benzylic alcohol over the primary
alcohol. Subsequently, selective β-O-4 ether bond cleavage of
2a and 2b by LigE and LigF-NA, respectively, proceededwith
complete conversion into GSH-conjugated intermediates 3a
and 3b as shown by HPLC analysis (Fig. 1, step II; Fig. 2c).
No cleavage products were observed when the non-oxidized
model compound 1 was directly subjected to the β-etherase
treatment. In the third reaction step (Fig. 1, step III; Fig. 2d),
LigG-TD efficiently released the glutathione (GS-) group

Fig. 1 Schematic representation of the oxidation and cleavage of lignin β-O-4 model compound 1 by the biocracking (LMS/etherase/glutathione lyase)
depolymerization system.
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attached to 3a and 3b to achieve high yields (88% conversion)
of the final product 4. As the latter enzyme still exhibits
stereopreference for the conversion of 3b, compound 3a was
likely not fully converted by LigG-TD within the 6-h reaction
time.

Enzymatic depolymerization of OrganoCat lignin

After successful cleavage of the β-O-4 model compound, the
enzymatic biocracking system was further tested on authentic
lignin polymer. To this end, lignin obtained from beech wood
pretreated with the OrganoCat pulping system (vom Stein
et al. 2011) was used. An exhaustive analytic characterization
of the OrganoCat lignin has been published elsewhere recent-
ly (including 2D-NMR, elemental analysis, FTIR, ESI-MS,
etc.) (Grande et al. 2015; Wiermans et al. 2015). A schematic
representation of our enzymatic depolymerization process for
real lignin is depicted in Fig. 3.

In the first step, OrganoCat lignin was successfully oxi-
dized by the LMS system as revealed by NMR analysis of
untreated and oxidized lignin samples (Fig. 4). In the presence
of DMSO-d6/pyridin-d5 (4:1, v/v), signals of Aα and Aβ

(Fig. 4, structure A) quantitatively disappeared and signal

Aγ shifted to Aγ’ (Fig. 4, structure A’) due to the oxidation.
Afterwards, insoluble oxidized lignin polymer was isolated
from the aqueous reaction mixture (containing 10% [EMIM]
[EtSO4]) by centrifugation. Sugars, or other low-molecular-
mass compounds that might have been present in the original
OrganoCat lignin (or were released during LMS treatment),
remained soluble at 10% [EMIM] [EtSO4], and therefore were
removed during lignin separation. The oxidized lignin poly-
mer was then subjected to depolymerization by the combined
use of β-etherases LigE and LigF-NA as well as the glutathi-
one lyase LigG-TD. After 16-h incubation at room tempera-
ture, the reaction mixture was acidified with 1 M HCl to pre-
cipitate the residual lignin polymer. That insoluble fraction
accounted for 87.5 wt% of the initially applied oxidized lig-
nin, indicating a weight reduction of 12.5 wt% due to enzy-
matic depolymerization. The soluble fraction was extracted
three times with ethyl acetate, and the combined organic ex-
tracts were concentrated under vacuum to obtain a viscous
yellowish oil (Fig. 5), corresponding to a low-molecular-
mass aromatics stream (Fig. 3).

Gel permeation chromatography (GPC) analysis of the lig-
nin after oxidation by LMS and after the complete biocracking
route (i.e., oxidation plus ether bond cleavage) revealed

Fig. 2 HPLC-UV chromatograms of conversions of substrate 1
catalyzed by the multi-enzymatic system studied in this work. a
Chromatogram of 1 without enzyme addition. b Oxidation of 1 with the
LMS composed of lcc2 M3 and violuric acid. c Conversion of 2 with β-

etherases LigE and LigF-NA. d Reaction of 3 with glutathione lyase
LigG-TD. All products were identified by comparing their retention times
with those of authentic standards
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significant differences among them, as well as when com-
pared to the untreated lignin, confirming that the lignin is
indeed modified upon the sequence of different enzymatic
treatments (supplementary Fig. S1). GPC analysis of oxidized
lignin further suggests significant repolymerization, which
was previously reported for laccase-treated lignin (Munk
et al. 2015).

Identification of hydrolysis products from OrganoCat
lignin

The obtained yellowish oil, containing the lignin-derived low-
molecular-mass compounds, was further analyzed by high-
resolution mass spectrometry coupled with liquid chromatog-
raphy (LC-ESI-Q-ToF-MS) to identify low-molecular-mass

Fig. 4 Partial 2D HSQC NMR spectra of OrganoCat lignin, untreated (a) and after enzymatic oxidation (b), in DMSO-d6/pyridin-d5 (4:1, v/v). The
structures A, A’, B, and C refer to signals highlighted in the 2D NMR spectra

Fig. 3 Strategy for the production of aromatic compounds derived from enzymatic depolymerization of lignin
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products of β-etherase- and glutathione lyase-catalyzed
OrganoCat lignin depolymerization (Table 1). The extracted
soluble fraction of OrganoCat lignin after oxidation by the
LMS served as a blank for LC-MS measurements. Thus, mo-
lar masses comparable to lignin-derived low-molecular-mass
products that were not present in the blank control were found
in the yellowish oil (Table 1, Fig. 6). The most abundant m/z
value is 179 corresponding to coniferylaldehyde (7), a known
degradation product of lignin (Eriksson et al. 1990).
Quantification by LC-MS using an authentic standard resulted
in about 1 mg of coniferylaldehyde, which corresponds to 8%
of the total oily fraction. Additionally, m/z values of 153, 169,
and 181 were detected and assigned to guaiacyl and syringyl
units derived from lignin as well as a coniferylaldehyde iso-
tope (Table 1) (Banoub and Delmas 2003; Morreel et al.
2010a, b; Saito et al. 2005). Besides these monomeric species,
also other, e.g., oligomeric, species might be present in the
oily fraction. Due to a lack of commercially available stan-
dards, a further clear allocation of these compounds remains
speculative. Furthermore, also residual glutathione adducts of
low-molecular-mass compounds, that were not converted by
LigG-TD within the given reaction time, still seemed to be
present in the aqueous DMSO fraction after extraction
(supplementary Table S1). Possible explanations for the

incomplete glutathione removal by LigG-TD could be the
enzyme’s stereoselectivity (as explained previously for the
conversion of model compound 3) as well as inhibition or
deactivation of the enzyme over time.

Discussion

In recent years, the valorization of lignocellulose has drawn
significant attention as renewable starting material for the pro-
vision of chemicals and biofuels (Amore et al. 2016; Isikgor
and Becer 2015). While the carbohydrate fractions have be-
come the main focus for decades, since a few years also lignin
valorization is attempted either using chemical or enzymatic
catalysts. Whereas numerous chemical approaches for lignin
depolymerization have been reported (Rinaldi et al. 2016;
Zakzeski et al. 2010), only few of them allow for a selective
lignin breakdown. On the other hand, microorganisms pro-
duce a range of enzymes to facilitate lignin degradation in
nature (de Gonzalo et al. 2016; Palazzolo and Kurina-Sanz
2016; Pollegioni et al. 2015). Of these enzymes, only β-
etherases enable a selective lignin depolymerization by cleav-
ing the β-O-4 aryl ether bonds exclusively (Picart et al.
2015b). Though bacterial β-etherases are likely intracellular
enzymes, due to the absence of respective secretion signal
sequences, they have been shown to act also on polymeric
substrates if carbonyl groups in the Cα position of β-O-4 aryl
ether linkages are present (Picart et al. 2014). In real lignin,
however, Cα hydroxyl groups are present instead, which need
to be oxidized first. In the natural ether bond cleavage path-
way, this oxidation is catalyzed by at least two stereoselective
alcohol dehydrogenases (Sato et al. 2009). Since these alcohol
dehydrogenases are cofactor (NAD+) dependent, its regener-
ation would be required for large-scale applications. Albeit
different valuable approaches for NAD+ regeneration have
been reported (Weckbecker et al. 2010), the use of cofactor-
independent enzymes for lignin oxidation, such as laccases,
constitutes an appealing alternative. Hence, we investigated
the combination of β-etherases and laccase-mediator system
for lignin conversion. To validate the hypothesis, we first ap-
plied the system to a model compound, which was success-
fully cleaved by the combination of enzymes. Results onmod-
el compounds, however, cannot be directly extrapolated to
lignin polymer, as repolymerization of lignin and other chem-
ical modifications may occur during lignocellulose pretreat-
ment (Tolbert et al. 2014). Thus, experiments with real lignin
are always needed to finally proof the strategy. Gratifyingly,
our results clearly show that etherase-catalyzed β-O-4 aryl
ether bond cleavage of polymeric lignin also works efficiently
after prior LMS-catalyzed lignin oxidation. Hence, the com-
bination of LMS with (R)- and (S)-selective β-etherases and
glutathione lyase constitutes a promising alternative to the
natural β-O-4 aryl ether bond cleavage pathway for

Fig. 5 Yellowish oil, containing low-molecular-mass aromatics, obtain-
ed after enzymatic depolymerization of OrganoCat lignin
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application in biocatalytic lignin depolymerization under mild
conditions.

The overall yield of low-molecular-weight aromatic com-
pounds from beech wood lignin after etherase and glutathione
lyase treatment, achieved under yet non-optimized conditions,
was about 12.5 wt%, suggesting already a significant break-
down of the β-O-4 linkages present in the lignin polymer. In
recent studies performed with aspen lignin, it was stated that
the release of a monomer requires 2 β-O-4 linkages to be
located next to each other, resulting in a probability to release
a monomer of 0.16 (estimating 40% of the β-O-4 linkages
present in aspen lignin), that is, releasable monomers would
reach a maximum of 16% (Lancefield et al. 2015). In this
respect, the overall yield of low-molecular-mass aromatics
obtained in this work using OrganoCat lignin seems to be
actually significant. For a reliable yield discussion, however,
further characterization of OrganoCat lignin regarding its ac-
tual content of β-O-4 linkages would be necessary. Of the

12.5 wt% oily fraction of low-molecular-weight aromatics,
1 wt% (8% of the oily fraction) could be assigned to the
formation of coniferylaldehyde, a known degradation product
of lignin (Jones et al. 2010). This 1 wt% corresponds to 6% of
the maximum obtainable yield of monomeric species if a 40%
content of β-O-4 linkages present in OrganoCat lignin is as-
sumed. Though further guaiacyl and syringyl units could be
identified by LC–ESI-Q-ToF-MS, their actual yield could not
be quantified. Additionally, other mono- and oligomeric spe-
cies present in the oil could not be assigned due to the lack of
commercial standards. Ohta et al. (2016) reported the forma-
tion of guaiacyl- and syringylhydroxypropanone as main
products after depolymerization of milled wood lignins from
Japanese cedar and Eucalyptus globulus wood using a com-
bination of alcohol dehydrogenases,β-etherases, and glutathi-
one lyase. Their yields of phenylpropanone monomers ranged
from 2.4 to 4.7 wt% depending on the source of milled wood
lignin. Likewise, Bouxin et al. (2015) highlighted the

Table 1 LC-ESI-Q-ToF-MS measurements of low-molecular-mass compounds derived from depolymerized OrganoCat lignin
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influence of the lignin source as well as the process of lignin
preparation on the maximal obtainable yield of aromatic
monomers in lignin depolymerization processes.

In future work, optimization of the multi-enzymatic pro-
cess—with regard to the applied mediator, the use of
cosolvents, and reaction conditions as well as by engineering
of the employed enzymes—will be required to improve the

depolymerization efficiency and to further increase the yield
of low-molecular-weight aromatics. In this first proof of con-
cept, lignin oxidation and depolymerization were performed
as two separate steps due to non-matching pH and solvent
requirements of the employed biocatalysts. Moreover, the ap-
plied mediator violuric acid was found to inhibit β-etherase
activity. A careful fine-tuning of reaction conditions as well as

Fig. 6 Individual time profiles of the most abundant lignin
depolymerization products. a Results obtained after enzymatic lignin
biocracking (LMS + β-etherase + glutathione lyase). b Results obtained
after lignin oxidation by LMS only. The first row corresponds to the total

ion chromatogram, whereas the successive rows show the spectra of the
major molecular ion peaks identified by LC-ESI-Q-ToF-MSwith theirm/
z value
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engineering of the biocatalysts to meet process demands will
thus enable the setup of one-pot reactions in the future.

Another aspect to be tackled for β-etherases is the en-
zymes’ dependence on glutathione as cofactor. Overall, two
molecules of reduced glutathione (GSH) are required for the
reductive cleavage of one β-O-4 aryl ether bond resulting in
the formation of oxidized glutathione dimer (GSSG). The in-
corporation of a glutathione reductase for GSSG reduction
during lignin depolymerization would allow GSH recycling
and, hence, the use of only catalytic amounts of this cofactor
(Reiter et al. 2013).

In a nutshell, the synergistic combination of three different
enzyme activities (laccase + mediator/etherase/glutathione ly-
ase)—catalyzing alcohol oxidation and subsequent ether bond
cleavage—enables the selective depolymerization of
OrganoCat lignin. A stream of low-molecular-mass lignins
is generated under rather mild reaction conditions, leading to
the isolation of an oily lignin derivative. Further optimization
of the process could enable the production of an array of
compounds from lignin, giving strong support to the setup
of integrated biorefineries in which lignin can efficiently be
valorized.
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