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Abstract The design, development, and biomedical applica-
tions of phytochemical-based green synthesis of biocompati-
ble colloidal gold nanoparticles (AuNPs) are becoming an
emerging field due to several advantages (safer, eco-friendly,
simple, fast, energy efficient, low-cost, and less toxic) over
conventional chemical synthetic procedures. Biosynthesized
colloidal gold nanoparticles are remarkably attractive in sev-
eral biomedical applications including cancer theranostics due
to small size, unusual physico-chemical properties, facile sur-
face modification, high biocompatibility, and numerous other
advantages. Of late, several researchers have investigated the
biosynthesis and prospective applications (diagnostics, imag-
ing, drug delivery, and cancer therapeutics) of AuNPs in
health care and medicine. However, not a single review article
is available in the literature that demonstrates the anti-cancer
potential of biosynthesized colloidal AuNPs with detailed
mechanistic study. In the present review article, we for the first
time discuss the biointerface of colloidal AuNPs, plants, and
cancer mainly (i) comprehensive mechanistic aspects of

phytochemical-based synthesis of AuNPs; (ii) proposed anti-
cancer mechanisms along with biomedical applications in di-
agnostics, imaging, and drug delivery; and (iii) key challenges
for biogenic AuNPs as future cancer nanomedicine.
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Introduction

Although tremendous progress has been made in the develop-
ment of novel drugs and treatment strategies for cancer, it
remains as the second principal cause of deaths in the world.
The annual incidence rate of cancer is around 2.6 million
cases/year (May 2014; Siegel et al. 2015). As indicated in
the recent report by American Cancer Society (ACS), global
burden of cancer will rise to 21.7 million new cases by 2030
(Society 2015). Nearly half of the cancer diagnosed people in
the previous 5 years are from the developed regions (Bray
et al. 2013). The incidence rate of cancer in the underdevel-
oped regions is expected to rise exponentially in the coming
years and the reason being either non-availability of the treat-
ment or non-affordability of the expensive cancer therapies
(Bray et al. 2012; Farmer et al. 2010). Most recent report
published on June 2016 by iMShealth Institute for
Healthcare Informatics reports the growth of global cancer
treatment market up to a record level of $107 billion in
2015, which is anticipated to reach $150 billion by 2020
(InformaticsIIfH 2016). Consequentially, there is an urgent
need of global actions to complement the benefits of new
treatments in developed regions and take measures to make
the existing cancer treatments accessible in the developing and
underdeveloped regions (Alwan 2010). Recent research has
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made significant progress in underlining the mechanisms
and specific risk factors of different types of cancer.
Chemotherapy, radiation therapy, immunotherapy, photody-
namic therapy, stem cell transplantation andvaccinations, and
combinationof these are themajor cancer treatment strategies.
Unfortunately,most of the conventional therapies not only are
expensive but also bear severe side effects (Lim et al. 2011;
Patra et al. 2008). Scientific reports validate that the use of
market available chemotherapeutics results in various types
of toxicities (Benkovicova et al. 2013; Cancer.net 2017; Deb
et al. 2011; Papasani et al. 2012). Therefore, research on de-
velopment of economically acceptable and effective treat-
ment options that could target specific cancers without caus-
ing damage to the healthy tissues is of paramount importance.
In the present context, nanobiotechnology can play a vital role
in creating brighter horizons for cancer treatment and
diagnosis.

Foreseeing the deficiency of a systematic review on the use
of biogenic gold nanoparticles as potential cancer (i) therapeu-
tic, (ii) diagnostic, (iii) imaging, and (iv) drug delivery agents,
we designed this comprehensive review article. In the present
article, we for the first time extensively elaborated the pro-
posed anti-cancer mechanism of biogenic gold nanoparticles
with a futuristic discussion on key advances and milestones
achieved in taking biogenic gold nanoparticles to clinical
phase for cancer theranostics.

Bridging nanotechnology, plants and cancer:
a biointerface

Nanotechnology is the manipulation, control, and utilization
of matter at the nanometer scale that includes atoms, mole-
cules, and supramolecular structures. Biological cells possess
built-in nanoscale functional components such as DNA that
approximately possesses width of 2.5 nm and proteins that
are about 1–20 nm; therefore, it was inevitable to apply nano-
technology to biology. As a result, the relatively new field of
nanobiotechnology has emerged in life sciences (Jain 2008).
Nanobiotechnology is already having an impact on the
healthcare and pharmaceutical industries because of its wide
range applications for drug discovery. The surge for
nanobiopharmaceuticals has now been vigorously pursued.
Nanobiotechnology has now been applied to effectively treat
human cancers. Recently, metal nanoparticles (NPs) especial-
ly silver nanoparticles (AgNPs) and gold nanoparticles
(AuNPs) were extensively used as a diagnostic and treatment
option for cancer. Metal NPs are of considerable interest in
the present era because of their attractive features at nanoscale
that is attributed to its very high aspect ratio (Thakkar et al.
2010). Due to their size, shape, and unique thermal and opti-
cal features which are different than their macro-scaled coun-
terparts, they are ideal for theranostic applications. NPs can

be used to deliver the anti-cancer drugs to the specific site of
tumor where they send out signals after the destruction of
tumor cells (Jain 2008). Foreseeing the safety of NPs, many
scientists have reported the use of naturally present materials
fo r NPs syn thes i s . There fo re , the te rm Bgreen
nanotechnology^ was tossed under the umbrella of green
chemistry. Paul Anastas and John Warner of Environmental
Protection Agency (EPA) USA established the 12 principles
of green chemistry. With the purpose of reducing human
health and environmental concerns, these principles are ap-
plied in design plus synthesis and use of NPs (Anastas and
Warner 1998). With the increase in awareness among scien-
tists and drawbacks of organic synthesis, a shift has been seen
in the previous decade towards green synthesis. Among green
synthesis methods, NP synthesis via plants is becoming in-
creasingly popular (Ovais et al. 2016). Medicinal plants not
only are the source of important biologically active chemical
entities that can be used as anti-cancer drugs but also provide
exciting strategies of treatment through eco-friendly synthesis
of metal NPs. Plant-based production systems have smaller
incubation time and therefore can easily be scaled up for
commercial applications.

Significance and history of medicinal use of AuNPs

By nature, Au is a noble element, i.e., highly unreactive. It can
retain its shape and shine for thousands of years as it is resis-
tant to deterioration and tarnishing through chemical oxida-
tion. Moreover, AuNPs have enormous biomedical applica-
tions due to their distinctive physico-chemical features (Bhat
et al. 2013; Chen et al. 2013; Daniel and Astruc 2004; Dhas
et al. 2014; Dykman and Khlebtsov 2011; El-Sayed et al.
2005; Giljohann et al. 2010; Karuppaiya et al. 2013; Mata
et al. 2016; Mukherjee et al. 2015; Nath and Banerjee 2013;
Patra et al. 2008). Specifically, their shapes like nanorods,
nanostars, nanocages, and nanoshells exhibit localized surface
plasmon resonant features that potentially make their applica-
bility in oncology (Hirsch et al. 2003; Loo et al. 2004; O’Neal
et al. 2004). AuNPs can rapidly accumulate at the tumor sites
and can enter the cells faster than other small molecules.
Recent research has indicated the effectiveness of gold NPs
for the easy detection of malignant cells because of their
bioconjugation property (Dreaden et al. 2011; Mukherjee
et al. 2016; Mukherjee et al. 2012). AuNPs are now used as
photothermal agent for cancerous cell detection and their ther-
mal destruction (Ahmad et al. 2003; El-Sayed et al. 2006).
The transport of the anti-cancer drugs can be significantly
enhanced via the endocytosis of AuNP conjugate. Because
of their flexibility, AuNPs can be fabricated and functional-
ized to have simultaneous diagnostic and therapeutic applica-
tions (Dreaden et al. 2011).
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Synthesis platforms for AuNPs

There are various methods (chemical, physical, and biologi-
cal) following bottom–up and top–down approaches for the
synthesis of AuNPs (Fig. 1). The first scientific report indicat-
ing the synthesis of colloidal AuNPswas published in 1857 by
Michael Faraday. He found the nanoscale gold by the aqueous
reduction of gold chloride with phosphorus and later stabi-
lized by carbon disulfide. Today, the chemical synthesis of
AuNPs follows a similar pattern involving the reduction of
Au-salts with the addition of ligands that are used for capping
and hence aggregation is prevented (Arvizo et al. 2010;
Faraday 1857; Noruzi 2015). However, the chemical means
of synthesis of NPs are accompanied by certain disadvantages
such as use of highly toxic chemicals during synthesis and
generation of dangerous by-products (Kannan et al. 2006;
Patra and Baek 2015). Similarly, physical means of synthesis
require huge energy inputs and are highly expensive. On the
contrary to chemical and physical means of synthesis of NPs,
biological method provides an eco-friendly, non-toxic, eco-
nomical, low input-high yield, and single-step option for the
synthesis.

Biosynthesis of AuNPs via plant extracts: a novel
approach

Biogenic AuNPs possess a definite advantage over the chem-
ically synthesized NPs as they are less toxic and more bio-
compatible (Bhau et al. 2015). Various biological resources
such as plants, fungi, bacteria, and algae are already used to
effectively synthesize metal NPs (Islam et al. 2015b; Kitching

et al. 2015; Singh et al. 2016; Thakkar et al. 2010). Systematic
review of literature indicates that among green synthesis
methods, plants have been used comprehensively for formu-
lation of gold nanoparticles. Literature for 2000–2016 was
thoroughly reviewed from various data bases like Google
Scholar, ISI web of knowledge, and PubMed. The results, as
summarized in Fig. 2, b, clearly indicates that phytosynthesis
is the method of choice for scientists. Microorganisms need
relatively lengthier incubation times for reduction of metal
ions while phytochemicals can reduce metal ions quickly.
Unlike microorganism-based synthesis, plant does not require
any expensive downstream processing procedures. Using bac-
teria and fungi for synthesis of metal, NPs can raise some
biosafety concerns; however, it is not the case with plants
(Ahmad et al. 2003; Rath et al. 2014; Shankar et al. 2004).

Green synthesis of metallic NPs exploiting plants, includ-
ing its optimization and applications, is introduced as latest
filed known as Bphytonanotechnology^ (Singh et al. 2016).
For plant-mediated green synthesis of AuNPs, extracts of the
plant material (flower, fruit, leaves, roots, stem, etc.) are ob-
tained that possess the necessary phytochemicals (alkaloids,
terpenoids, phenols, and flavonoids).When the plant extract is
dissolved in the aqueous solution of tetrachloroauric acid
(HAuCl4), a proposed two-step chemical reaction kick starts
as graphically illustrated in Fig. 3. In step one, the phytochem-
icals reduce Au+3 into Au° while in the second step, agglom-
eration and stabilization result in the formation of colloidal
AuNPs (Huang et al. 2007; Sheny et al. 2011). Although it
is well established that the formation and stabilization of me-
tallic NPs is due to the presence of phytochemicals in plant
extract, the proper mechanism is still unclear and is highly
dependent on the phytochemistry of plant extract (Iravani

Fig. 1 Top–down and bottom–up
approaches exploiting different
physical, chemical, and biological
methods for the synthesis of
AuNPs
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2011; Lee et al. 2011; Shukla et al. 2008). Literature published
on plant-mediated green synthesis proposes that aldehydes/
ketones, polyphenolic/alcoholic compounds, and proteins
might be the responsible candidates for Au+3 reduction and
stabilization to AuNPs. Moreover, the conversion of metallic
ions into NPs facilitated by low (12–22 kDa) and high molec-
ular weight proteins (~150 kDa) present in plant extract is well
established. It is very important to note here that the nature of
plant has a central role in the mechanism followed for AuNPs
formation. For example, in Eclipta alba leaf extract, both the
low (~15 kDa) and high molecular (~150 kDa) weight pro-
teins were responsible for AuNPs formation and stabilization
(Mukherjee et al. 2012). While in case of Olax scandens leaf
extract low molecular weight proteins (~12–15 kDa) and var-
ious phenolic compounds were responsible for synthesis and
stabilization of AuNPs as demonstrated in Fig. 4 (Mukherjee
et al. 2013). AuNP formation from HAuCl4 is a case of redox

reactions which involves electron transfer. Furthermore, the
reduction of HAuCl4 into AuNPs is also demonstrated by
Newman et al. (HAuCl4 + 3NR3 → Au° + 3NR3

+ + H+ +
4Cl−) through free radical reactions (Newman and Blanchard
2006). The standardized reduction potential value of
Au3+/Au° (E° Au

3
+/Au°) is 1.50 V, while that of Ag+/Ag° (E°

Ag
+
/Ag°) is 0.80 V. The standardized reduction potential for

acid/aldehyde, aldehyde/alcohol, quinone/phenol, and pro-
teins are below 0.80 V, which clearly demonstrates the potent
reduction potential of these phytochemicals (Bhaumik et al.
2015; Korchev et al. 2005).

Factors affecting biological synthesis of AuNPs

Factors which mostly affect sizes and shapes of NPs are sub-
strate concentration, metal ion concentration, reaction time,
temperature, reaction medium (acidic/neutral/basic),
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aFig. 2 a Literature published
during 2000–2016 on green
synthesis of AuNPs from various
natural sources. Asterisk indicates
vitamin C, chitosan, glycerol,
starch, Ca-alginate, honey,
sponge, diatoms, etc. b Search
results of different keywords used
for phytosynthesis of AuNPs
(2000–2016)
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isotonicity, and rarely on solvent or radiations. Concentration
of substrate plays an important role for determining not only the

optimized conditions but also the shapes and sizes of NPs.
Lower concentrations of extract produced larger percentage

Fig. 4 The plausible mechanism for the formation and stabilization of AuNPs using Olax scandens and Eclipta alba leaf extract

Fig. 3 General mechanism of
plant extract-mediated synthesis
and stabilization of AuNPs
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of triangular and prismed masses as compare to hexagonal and
spherical AuNPs (Chandran et al. 2006). Like extract concen-
tration, metal ion concentration also has a vital role in sizes,
shapes, morphology, and exploration of optimum conditions,
but less attention and work have been directed to this aspect
while generating biosynthetic AuNPs. Reaction time is also
one of the major factors for the synthesis of AuNPs. Good
reducing agents require shorter reaction times while poor re-
ducing agents require longer reaction times. Studies have
shown that with short reaction time, there is a tendency to get
more monodispersed and spherical gold nanoparticles, while
with high reaction time, the tendency is to obtain large triangu-
lar and hexagonal morophologies. (Kumar et al. 2012). Like
other factors, temperature also plays an important role in the
synthesis of AuNPs. Lower temperature is desired for fast re-
action while for slow reactions; temperature is to be raised even
up to 100 °C which is a boiling point of reaction medium
(mostly water). pH also plays a vital role in the formation of
stable nanoparticles and stabilization of redispersed nanoparti-
cles (Das et al. 2015). Once the pH for the formation and
stabilization is known, it is easy to use these AuNPs in different
dosage forms. In case of solvents, normally water is used as the
greener solvent for the synthesis of biogenic AuNPs but some-
times, when scientists are unable to synthesize these in water,
then other solvents are used. In phytosynthesis of AuNPs,
many scientists also have shown interest in the fraction of plant
extract having high medicinal value (Mukherjee et al. 2013;
Patra et al. 2015; Sadeghi et al. 2015).

Characterization of biogenic AuNPs

For proper characterization of phytosynthesized AuNPs the
following techniques are exploited: ultraviolet–visible (UV–
Vis) spectroscopy; transmission and scanning electronmicros-
copies (SEM, TEM); X-ray diffraction (XRD); inductively
coupled plasma atomic emission spectroscopy (ICP/AES);
X-ray photoelectron spectroscopy (XPS); Fourier transform
infrared (FTIR) spectroscopy; dynamic light scattering
(DLS); and atomic-force microscopy (AFM).

The change in color of tetrachloroauric acid and plant ex-
tract solution to red or violet indicates the initial formation of
colloidal AuNPs, which is further confirmed by the appear-
ance of absorption band in the specific range by UV–Vis.
AuNPs have absorption maximum in the range of 500–
600 nm due to SPR phenomena. With the help of DLS tech-
nique, hydrodynamic average size of AuNPs along with their
distribution pattern is determined (Brar and Verma 2011).
TEM and SEM are major techniques exploited to measure
the shape and size of synthesized biogenic AuNPs
(AbdelHamid et al. 2013; Islam et al. 2015a). The functional
groups attached to the surface of biogenic NPs responsible for
its reduction and stabilization are identified by FTIR (Islam
et al. 2016; Mukherjee et al. 2016). The conformation of zero-

valent crystalline AuNPs formation and elucidation of its
structural information is done by XRD technique. Moreover,
it is important to note that XPS is especially useful for the
identification of amorphous metallic NPs, as they cannot be
characterized via XRD (Abdel-Raouf et al. 2013; Elia et al.
2014).

Biogenic AuNPs as cancer theranostics agents

Nanobiotechnology has huge impacts in the development of
therapeutics, diagnostics, and drug delivery systems for vari-
ous diseases (Parveen et al. 2012; Rizzo et al. 2013). Many
researchers have recently demonstrated that the growth of
cancer cells has been potentially reduced in a time and dose
dependent manner after the treatment of plant-mediated green
synthesized AuNPs. Full scheme of biogenic AuNP synthesis,
optimization, characterization, and potential application as a
cancer therapeutic and diagnostic agent is shown in Fig. 5.
Studies have also shown the use of these biogenic AuNPs as
photothermal agents for cancer therapy. Foreseeing the in vivo
biocompatibility of AuNPs, Fazal and coworkers synthesized
anisotropic biogenic AuNPs form cocoa seeds as potential
photothermal agents for cancer therapy (Fazal et al. 2014).
These AuNPs exhibit near infrared (NIR) absorbance in wave-
length ranging from 800 to 1000 nm. Moreover, the nanopar-
ticles were found to be biocompatible when tested on normal
human cell lines. Various cancerous cell lines have been
screened for phytosynthesized AuNPs and its nanoconjugates
cytotoxic activity (Bhat et al. 2013; Chuang et al. 2013; Dhas
et al. 2014; El-Sayed et al. 2005; Karuppaiya et al. 2013;
Kuppusamy et al. 2016; Mukherjee et al. 2015; Mukherjee
et al. 2012; Mukherjee et al. 2013; Nethi et al. 2014; Patra
et al. 2015; Ramalingam et al. 2016; Rao et al. 2016). In
Table 1, anti-cancer results along with optimized conditions
for phytosynthesis of AuNPs are enlisted extensively from
studies conducted in the previous decade.

Phytosynthesized AuNPs and cancer therapy:
a mechanistic approach

The proposed mechanism for anti-cancer activity of biogenic
AuNPs is associated with generation of reactive oxygen species
(ROS) and oxidative stress, which induce the upregulation of
caspase-3 and oxidation of glutathione (GSH) to glutathione di-
sulfide (GSSG). Moreover, G2/M or sub-G1 cell cycle arrest has
been proposed to induce apoptosis upon treatment with biogenic
AuNPs, which may further help in elucidation of anti-cancer
mechanism in depth. Key advances in proposed mechanisms
for anti-cancer activity of biogenic AuNPs are graphically illus-
trated in Fig. 6 (Bell et al. 2013; Kajani et al. 2016; Kuppusamy
et al. 2016; Ramalingam et al. 2016; Rao et al. 2016).
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Generation of ROS and GSH oxidation

ROS generation has been associated with anti-cancer activity
of many market available cancer drugs (Velayutham et al.
2005). In case of biogenic AuNPs, very few studies have
validated the production of ROS upon treatment with cancer
cells and proposed it to be one of the mechanisms for its anti-
cancer activity. In one of the studies published by Mukherjee
and coworkers, Lantana montevidensis leaf extract-mediated
green synthesized AuNPs were demonstrated to produce ROS
upon treatment with A549 cells (Mukherjee et al. 2015).
Furthermore, the group has also validated that the uptake of
biogenic AuNPs was less in A549 cells as compared to chem-
ically synthesized AuNPs; hence, the generation of ROS may
be due to the anti-cancer phytochemicals coating biogenic
AuNPs and is not related to the uptake of AuNPs by cancerous
cells. GSH is an anti-oxidant (non-enzymatic) which is

responsible for the prevention of cell form ROS-mediated
damage (Liu et al. 2011). Studies report that generation of
ROS converts GSH to GSSG via oxidation process, which is
regarded as one of the proposed mechanisms for anti-cancer
activity of biogenic AuNPs (Mukherjee et al. 2014; Liu et al.
2011). Published literature overall proposes that generation of
ROS and oxidation of GSHmay be a proposedmechanism for
anti-cancer activity of phytosynthesized AuNPs.

Sub-G1 and G0/G1 arrest and anti-cancer activity

Recently, researchers have demonstrated that cancerous cells
treated with phytosynthesized AuNPs or its drug delivery sys-
tem (DDS) undergo accumulation in sub-G1 phase or G0/G1
phase of cell cycle as compared to other phases (Beach et al.
2011; Chang et al. 2011; Mukherjee et al. 2016; Patra et al.
2015). Recent studies on A549 cells treated with doxorubicin

Fig. 5 Detailed scheme of
AuNPs synthesis, optimization,
characterization, and prospective
use as cancer theranostics agent.
In step 1, extract of wet/dry plant
material is obtained via standard
protocol. Steps 2 and 3 deal with
the optimization of AuNPs syn-
thesis by varying different reac-
tion parameters. In step 4, AuNPs
are obtained in the form of pellet
by centrifugation of reaction
mixture. Steps 5 and 6 deal with
proper characterizations and elu-
cidation of AuNP morphology,
size, shape, functional groups at-
tached, etc. In step 7, properly
characterized and highly stable
AuNPs are exploited for cancer
theranostics
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(DOX)-coated phytosynthesized AuNPs from Peltophorum
pterocarpum were found to be accumulated in G0/G1 phase
as compared to cells treated with free DOX (Mukherjee et al.
2016). Furthermore, B16F10 cells treated with DOX-coated
phytosynthesized AuNPs were found to be in high proportion
in early sub-G1 phase, in comparison to cells treated only with
free DOX. The same early sub-G1 phase arrest in B16F10
cells was demonstrated by phytosynthesized AuNPs from
B. monosperma leaf extract (Patra et al. 2015). Overall, these
studies validate that cell cycle regulation may have a vital role
in induction of apoptosis plus rapid uptake and enhanced cy-
totoxicity of DOX coated phytosynthesized AuNPs as com-
pared to free DOX. On the biases of these scientific reports,
we propose that accumulation of cancerous cells in sub-G1 or
G0/G1 phase upon treatment with biogenic AuNPs or its
nanoconjugates may be responsible for its anti-cancer activity.

Apoptosis, upregulation of p53 protein and caspase 3 and 9
expression

Induction of apoptosis is highly correlated with anti-cancer
activity of nanoparticles (Alabsi et al. 2012). Gold nanoparti-
cles have induced apoptotic cell death in many cell lines in-
cluding AGS cells, HeLa cells, MCF-7 cells, etc. (Chuang
et al. 2013; Dhas et al. 2014; Selim and Hendi 2012).
Mechanistic studies found that the action of gold nanoparticles
is associated by apoptosis induction, which depends on cell
type and cellular context (Chuang et al. 2013). In an experi-
mental study, the toxic effects of biogenic AuNPs were exam-
ined by analyzing the inner structure of cells (nuclear damage)
using DAPI staining. In this, the fluorescence part of control
cells showed no damage in nuclei whereas cancer cells (HeLa

cells) showed condensed and fragmented chromatin upon
treatment of AuNPs (Dhas et al. 2014). Interestingly, nuclear
fragmentation in cells after treatment of AuNPs was also ob-
served (Kang et al. 2010). Overall, scientific studies validate
that the induction of apoptosis via caspase 3 and 9 activation
and downregulation of P53 protein may be a proposed mech-
anism for the anti-cancer activity of biogenic AuNPs.

Synthesizing biogenic AuNPs: a diagnostic approach
in cancer

Fluorescent materials play an important role in many applied
fields such as mineralogy, gemology, chemical sensors, fluo-
rescent labeling, dyes, biosensors, and generally fluorescent
lamps (Basabe-Desmonts et al. 2007; Gao et al. 2004; Matz
et al. 1999). Very recently, Mukherjee and coworkers for the
first time demonstrated the use of phytosynthesized AuNPs as
diagnostic and therapeutic agents (two-in-one system)
(Mukherjee et al. 2013). In their study on synthesis of
AuNPs from leaf extract ofO. scandens, they have found that
not only the NPs were synthesized and stabilized by phyto-
chemicals but also self-fluorescence ability was attained due
to coating of fluorescence phytochemicals present in the leaf
extract. Furthermore, the group confirmed that the red fluores-
cence shown by AuNPs was due to the phytochemicals of
O. scandens and that fluorescence is also maintained after
treatment with A549 and MCF-7 cells. Furthermore, Fazal
and coworkers also have biosynthesized gold nanoparticles,
which when tested by computed tomography (CT) proved to
exhibit X-ray contrast (Fazal et al. 2014). A study by Chanda
and coworkers also have reported the utilization of green syn-
thesized cinnamon-coated gold nanoparticles as potential CT/

Fig. 6 Key recent advances in
proposed mechanism for anti-
cancer activity of biogenic
AuNPs
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optical contrast-augmentation agents for cancer cells detection
(Chanda et al. 2011). In future, biosynthesized AuNPs due to
its self-fluorescence ability can be exploited as promising
agents for diagnosis of cancer.

In-vivo drug delivery potential of biogenic AuNPs

As the phenomenon of multidrug resistance is increasing con-
stantly and is becoming a limiting factor for the cancer treat-
ment, the conjugation of drugs with gold nanoparticle-based
drug delivery is being used to overcome this drug resistance
(Zeng et al. 2014). Although chemically synthesized AuNPs
have been exploited, to the best of our knowledge, only one
study published by Mukherjee and coworkers has reported the
in vivo biodistribution, toxicity, and drug delivery potential of
phytosynthesized synthesized AuNPs and much is yet to be
explored. Previously, this group has pioneered in the develop-
ment of in vitro DDS from Butea monosperma leaf extract
synthesized AuNPs for DOX (Patra et al. 2015). While in their
latest study, for the first time, they have demonstrated the de-
velopment of in vitro and in vivo DDS from P. pterocarpum-
mediated green-synthesized AuNPs for DOX; the detailed
scheme of the study is shown in Fig. 7. Furthermore, they have
reported in vitro and in vivo anti-cancer activities of DOX-

loaded DDS on A549 and B16F10 cancer cells and melanoma
tumormousemodels, respectively. The results indicated that the
uptake and release of free DOX were slow as compared to its
nanoconjugated form while biosynthesized AuNP-PP-DOX
conjugates showed better tumor regression ability compared
to free DOX. Overall, the results of this novel in vivo study
have set a roadmap for potential use of phytosynthesized
AuNP-biased DDS as a cost-effective and alternate approach
for cancer treatment in the near future.

Hurdles for biogenic AuNPs as future cancer
nanomedicine

Due to outstanding physico-chemical properties of
nanomaterials, they have many versatile applications like in
targeted drug delivery, optical bioimaging, biosensors, cancer
cells photothermolysis, immunoassays, etc. Though, the toxic
nature of these NPs in various body parts should not be ig-
nored. Proper screening of these nanomaterials for biosafety,
long-standing toxicity, potential efficacy, interaction with im-
mune system, and detailed in vivo pharmacokinetics study is
very vital before moving to clinical trials. Key challenges
faced by researchers for entrance of phytosynthesized

Fig. 7 Drug delivery system formulation using biogenic AuNPs synthesized via Peltophorum pterocarpum leaf extract and its in vitro and in vivo anti-
cancer activities
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AuNPs into clinical phase are (i) biodegradability and bio-
compatibility; (ii) dosage and route of admiration; (iii) uptake,
retention, and clearance; and (iv) combinatorial approach with
FDA-approved anti-cancer drugs (Arvizo et al. 2010; Bao
et al. 2014; Wason and Zhao 2013). It is of paramount impor-
tance that the strategies acquired at lab-scale for the produc-
tion of AuNPs should be feasible for industrial or large-scale
production. Moreover, the conditions on which these
nanoparticles/nanoconjugates are synthesized determine its
effectiveness as potential nanomedicine, especially the ratio
of plant extract and HAuCl4, reaction time, pH, concentration
of drugs, pressure, type of cross linker, etc. Recently, scientists
have developed several drug delivery systems by exploiting
different moieties to minimize accumulation of biogenic
AuNPs in healthy body tissues ultimately resulting in tumor
specific uptake (Mukherjee et al. 2016; Mukherjee et al. 2013;
Patra et al. 2015). For effective uptake of nanomedicine, prop-
er diffusion and penetration through the cell and tissue barriers
are critical. Vital issues which are associated with intravascu-
lar delivery of NPs include (i) immune rejection, (ii) intestinal
tissue penetration, (iii) release of drug via diffusing into cyto-
plasm, (iv) crossing endothelium to reach targeted sites, (v)
possible entrance into nucleus, (vi) clearance in the liver and
spleen, and (vii) receptor-mediated entry into cells (Barua and
Mitragotri 2014). Beside their diverse applications, AuNPs
are also associated with different types of toxicities to human
health, which poses a serious challenge for their clinical
implications. Many reports scientifically validate the acute
or chronic in vivo toxicity of various metallic nanomaterials
like copper, zinc, silver, platinum, and cerium (Aalapati et al.
2014; Triboulet et al. 2015). Although, Mukherjee and co-
workers demonstrated biogenic AuNPs to be biocompatible
and non-toxic in in vitro and in vivo experiments (Mukherjee
and Patra 2016; Mukherjee et al. 2016; Mukherjee et al. 2013;
Patra et al. 2009; Rengan et al. 2015). Once injected inside
body, these NPs encounter body fluids and tissues ultimately
form a corona around them due to active biomolecules. This
protein corona and NPs complex should be studied in more
detail as it is responsible for the ultimate variation of biolog-
ical activities of these NPs in vivo (Corbo et al. 2016).

Authors concluding remarks and future prospects

The increase in the incidence of cancer and significant high
market value, various limitations in the conventional therapy,
high cost, and high toxicity of present nanomedicine has
thrown a severe challenge to all the researchers to design
and develop an alternative, biocompatible, eco-friendly, and
cost-effective nanomedicine in a greener way. In this scenario,
biosynthesizedmultifunctional gold nanoparticles are likely to
revolutionize the face of nanomedicine in the next decade
towards cancer theranostics. High biocompatibility and

biodegradability have increased the utility of biosynthesized
gold nanoparticles in cancer therapy. Low cost of green syn-
thesized AuNPs has decreased the overall production cost in
the large industrial scale. Utilization of plant-based bioactive
molecules (capping, anti-cancer, fluorescence) has ended the
requirement of external drugs or fluorescent labeling agents.
All the results taken together, this comprehensive review arti-
cle highlights the various cancer theranostics applications and
detailed mechanisms of biosynthesized AuNPs. Finally, vari-
ous factors including potential long-term toxicity study, bio-
safety, metabolic fate, immunogenicity, and pharmacokinetics
and pharmacodynamics studies should be systematically ex-
amined in animal model before using these robust green gold
nanoparticles in clinical trials.
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