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Abstract Avian influenza virus (AIV) is spreading world-
wide and is a serious threat to the health of poultry and
humans. In many countries, low pathogenic AIVs, such as
H9N2, have become an enormous economic burden on
the commercial poultry industry because they cause mild
respiratory disease and decrease egg production. A recom-
binant Lactobacillus plantarum NC8 strain expressing
NP-M1-DCpep from H9N2 AIV has been studied in a
mouse model. However, it remains unknown whether this
L. plantarum strain can induce an immune response and
provide protection against H9N2 AIV in chickens. In this
study, chickens that were orally vaccinated with NC8-
pSIP409-NP-M1-DCpep exhibited significantly increased
T cell-mediated immune responses and mucosal sIgA and
IgG levels, which provided protection against H9N2 AIV
challenge. More importantly, compared with oral admin-
istration of NC8-pSIP409-NP-M1-DCpep, intranasal ad-
ministration induced stronger immune responses and pro-
vided effective protection against challenge with the
H9N2 virus by reducing body weight loss, lung virus
titers, and throat pathology. Taken together, these findings
suggest that L. plantarum expressing NP-M1-DCpep has
potential as a vaccine to combat H9N2 AIV infection.
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Introduction

Avian influenza, an important infectious disease caused
by the avian influenza virus (AIV) (Chu et al. 2016;
Wang et al. 2016), not only can cause serious economic
losses to the poultry industry (Liu et al. 2015) but is also a
threat to human health (Zhang et al. 2016). Based on
differences in surface glycoproteins (hemagglutinin (HA)
and neuraminidase (NA)), AIVs can be divided into 18
HA and 11 NA subtypes (Tong et al. 2013). First found in
the USA in 1966, the AIV H9N2 subtype has since spread
worldwide. Several recent studies report the generation of
zoonotic influenza viruses, such as the highly pathogenic
H7N9 and H10N8 viruses, from H9N2 AIV internal seg-
ments (Chen et al. 2014; Gao et al. 2013). Thus far, vac-
cines are the most effective means of controlling the
spread of AIVs. However, given the genetic variation of
these viruses, a vaccine based on AIV surface proteins
can provide only limited protection (Pu et al. 2015).
Nonetheless, inactivated vaccines that induce antibodies
may be implemented to control AIV infection.

The nucleoprotein (NP) and matrix proteins (M1) of
AIV are the most typical internal conserved proteins and
the most promising targets for vaccine development.
Berthoud et al. showed that Modified Vaccinia Ankara
(MVA) expressing influenza virus conserved internal an-
tigens (NP and M1) can produce T cell responses that
cross-protect against heterologous influenza infections
(Berthoud et al. 2011). In addition, clinical studies have
demonstrated that the use of adenovirus vector expressing
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influenza virus NP can induce an NP-specific T cell im-
mune response and can provide resistance against heter-
ologous influenza virus infections (Antrobus et al. 2012;
Powell et al. 2013). However, few oral vaccines based on
the NP and M1 proteins have been reported.

Lactic acid bacteria (LAB) are a class of bacteria that
can ferment carbohydrates to generate large amounts of
lactic acid (Taniguchi et al. 2004). LAB are regarded as
safe food-grade microorganisms by the international com-
munity, can survive for a long time in the body, and exert
probiotic effects (Garcia-Crespo et al. 2013; Ou et al.
2016). For example, a previous study showed that
oral plant Lactobacillus can protect mice against fatal in-
fluenza virus infection (Kikuchi et al. 2014), and more
recent research shows that sublingual vaccination with
Lactobacillus can also produce this antiviral effect in mice
(Lee et al. 2013). Furthermore, several studies have
shown that LAB are an important tool due to their ability
to deliver heterologous proteins (which is useful for ge-
netic engineering) (Lei et al. 2015a; Steidler et al. 2000;
Steidler et al. 2003) as well as other advantages, such as
ease of cultivation, safety, and lack of toxicity (Nguyen
et al. 2011). Importantly, L. plantarum has recently been
employed to deliver antigens from pathogens to immunize
against infection with those pathogens (Grangette et al.
2001; Liu et al. 2016; Shi et al. 2016; Yang et al.
2016a). Although several investigations have suggested
that oral vaccines may be effective, not all attempts have
been successful.

Dendritic cells (DCs) have a critical role in priming
adaptive immune responses (Mohamadzadeh et al. 2005).
One investigation reported that DCs in the lamina propria
are able to extend dendrites through the basement mem-
brane and between epithelial cells into the gut lumen of the
host (Niess et al. 2005). Depending on the microbial stim-
ulus, DCs can promote the development of unprimed, na-
ive, T cells toward a Th1, Th2, Th17, and/or Treg response
or an unpolarized T cell response (Mohamadzadeh et al.
2005). We previously generated L. plantarum expressing
NP-M1-DCpep and found that it induced DC activation
(specifically T and B cell immune responses in vaccinated
mice) and provided protection against challenges with var-
ious influenza virus subtypes. Importantly, in an adoptive
transfer study, we confirmed that this protection in NC8-
pSIP409-NP-M1-DCpep-primed mice was provided only
by CD8+ T cells and not by CD4+ T cells (Yang et al.
2016b). In the current study, we tested the level of specific
sIgA and lymphocyte proliferation in chickens after oral
vaccination with NC8-pSIP409-NP-M1-DCpep. In addi-
tion, the protective role of the recombinant L. plantarum
against H9N2 AIV infection was evaluated in terms of
weight loss, pathological damage, and virus load in chal-
lenged chickens.

Materials and methods

Reagents and strains

The A/duck/Xuzhou/07/2003(H9N2) virus was stored in our
laboratory. L. plantarum strain NC8 (CCUG 61730) has been
deposited in the culture collection (University of Göteborg,
Sweden). The NC8-pSIP409, NC8-pSIP409-NP-M1-Ctrlpep
,and NC8-pSIP409-NP-M1-DCpep were constructed as pub-
lished article (Yang et al. 2016b). Recombinant NP and M1
proteins were purified by Yuying Liu. The monoclonal anti-
chicken CD3 (clone CT3), anti-chicken CD4 (clone CT4), and
anti-chicken CD8 (clone CT8) antibodies were obtained from
Southern Biotech (SBA) (San Diego, CA, USA).

Animals and ethics statement

Specific pathogen-free (SPF) white leghorn layer chickens
were purchased from Beijing Merial Vital Laboratory
Animal Technology Co., Ltd., China. The birds were housed
in the SPFAnimal Center at Jilin Agricultural University. The
protocol for the animal studies was approved by the Animal
Care and Ethics Committees of Jilin Agriculture University.

Flow cytometry

Flow cytometry was carried out according to a previously
published protocol (Shi et al. 2016). Monoclonal anti-
chicken CD3 (clone CT3), anti-chicken CD4 (clone CT4),
and anti-chicken CD8 (clone CT8) antibodies were used for
staining. Standard flow cytometry detection was performed
using a BD LSRFortessa™, and the data were analyzed using
FlowJo 7.6.2 software.

T cell stimulatory index

Chicken lymphocyte proliferation in response to rNP and rM1
proteins was assessed as previously described (Shi et al.
2016). Two weeks after the final vaccination, splenic lympho-
cytes were obtained from all groups of chickens to detect the
proliferative response of lymphocytes. The lymphocytes were
then plated in 96-well plates at 200 μl per well containing
2 × 105 cells and co-cultured at 37 °C for 68 h in the presence
or absence of recombinant NP and M1 proteins at 5 μg/ml
final concentration. Four hours before detection, 20 μl of
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium) (MTS) was added to the
plates, and the cells were incubated at 37 °C for 4 h. The
samples were then assessed using a Standard Enzyme reader
at 570 nm. The proliferative capacity of chicken lymphocytes
was described as the stimulatory index (SI = cpm of stimulat-
ed samples/cpm of control samples).
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Measurement of antigen-specific antibodies (IgA and IgG)

Bronchoalveolar lavage fluids (BALF) and sera from chicken
were collected 2 weeks after the booster vaccination. IgA and
IgG specific for NP and M1 BALF or serum were detected by
ELISA, as described previously (Haan et al. 2001). In brief,
purified NP and M1 antigens at 5 μg/ml were incubated on
96-well plates at 4 °C for 12 h. Serially diluted samples were
added for 2 h at room temperature and then incubated with
biotin (Biot)-conjugated mouse anti-chicken IgA or IgG at
room temperature for 1 h (Southern Biotech). The plates were
incubated with horseradish peroxidase (HRP)-conjugated
streptavidin at room temperature for 30 min (Southern
Biotech). End-point titers were determined as the highest di-
lution generating an absorbance two times higher than the
background for BALF samples and three times higher than
the background for serum samples.

Animal immunizations and challenge

Twenty-day-old chickens were randomly divided into
seven groups of 15 chickens each, as follows: PBS-
non-challenge group, PBS-challenge group, NC8-
pSIP409 group, NC8-pSIP409-NP-M1-Ctrlpep group, in-
tranasal NC8-pSIP409-NP-M1-DCpep group, oral NC8-
pSIP409-NP-M1-DCpep group, and AIV-inactivated
vaccine group. The chickens were vaccinated with re-
combinant L. plantarum by gavage, and an H9N2-
inactivated vaccine (Weike Biotechnology) was injected
at 100 μl/chicken as the positive control. Each group of
experimental animals was administered 200 μl PBS only
or 200 μl PBS containing 109 colony-forming units
(CFU) of recombinant L. plantarum at 1, 2, and 3 days.
The chickens received a booster vaccination at 14, 15,
and 16 days after the initial dosing. Two weeks after the
final vaccination, chickens from all groups were anesthe-
tized via intramuscular injection of xylazine (1 mg/kg) and
ketamine (20 mg/kg) and inoculated intranasally (i.n.) with
106.5 EID50 of virus-allantoic fluid (contained A/duck/

Xuzhou/07/2003) in a 0.1 ml volume. All chickens (n = 8)
were observed daily for 10 days for body weight changes and
signs of disease. The lungs (n = 4) from infected chickens
were removed on day 5 for virus titration in SPF-
embryonated chicken eggs.

Histopathological detections

Five days after viral challenge, the throat and lungs from AIV-
infected chickens were isolated and fixed with 4% paraformal-
dehyde for examining pathological changes. The samples
were then embedded in paraffin, sectioned, and stained with
hematoxylin and eosin (H&E). The samples were scored by
blinded pathologists (three independent readers). In brief, al-
veolitis and peribronchiolar inflammation were blind scored
on a scale of 0, 1, 2, 3, 4, or 5 corresponding to none, very
mild, mild, moderate, marked, or severe inflammation, respec-
tively (Yang et al. 2016b).

Statistical analysis

All data in this study are presented as geometric mean titers,
with the mean being derived from at least three independent
experiments. Significance was assessed using unpaired two-
tailed t tests and one-way analysis of variance (ANOVA;
Tukey’s multiple comparison test).

Results

Effects of recombinant L. plantarum on specific T cell
responses

NC8-pSIP409-NP-M1-DCpep was constructed as previously
described; AIVantigens were synthesized and confirmed pre-
viously (Yang et al. 2016b). To investigate whether NC8-
pSIP409-NP-M1-DCpep can trigger a T cell response,
chickens were vaccinated with recombinant L. plantarum
via various routes (Fig. 1b). Two weeks after booster

Fig. 1 The immunization scheme for chickens. Chickens were grouped
as described in the BMaterials and methods^ section and orally or nasally
vaccinated with a priming immunization on days 1, 2, and 3 and with a
booster immunization on days 14, 15, and 16. Samples from the trachea

and serum were obtained on day 30 after the first priming immunization,
and all chickens were challenged with AIV (106.0 EID50) on day 14 after
booster immunization. Five days after the challenge experiments, samples
from the lungs were obtained to evaluate the pathology and virus titer
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vaccination, splenocytes were isolated, and T cells were de-
tected by flow cytometry (Fig. 2a). In the oral administration
groups, the results showed a higher frequency of CD3+CD4+

and CD3+CD8+ T cells in the spleens of chickens vaccinated
with NC8-pSIP409-NP-M1-DCpep than in the control groups
(Fig. 2b, c). In addition, the chickens that were vaccinated
with the inactivated H9N2 vaccine had a higher frequency
of CD3+CD4+ T cells, as opposed to CD3+CD8+ T cells, than
the other groups (Fig. 2b, c). Interestingly, a significantly
higher frequency of CD3+CD8+ T cells was observed in the
intranasally vaccinated NC8-pSIP409-NP-M1-DCpep
chickens than in the orally vaccinated group (Fig. 2c).

To further determine whether NC8-pSIP409-NP-M1-
DCpep can induce specific T cell responses, antigen-specific
T lymphocyte responses in chickens were detected 2 weeks
after oral vaccination. The results showed a notably higher T
cell proliferative response in chickens orally vaccinated with
NC8-pSIP409-NP-M1-DCpep than in chickens orally vacci-
nated with NC8-pSIP409-NP-M1-Ctrlpep (Fig. 3). In addi-
tion, we also found that intranasal vaccination with NC8-
pSIP409-NP-M1-DCpep induced a stronger T cell

proliferative response than did oral vaccination (Fig. 3).
These results demonstrate that oral or intranasal immunization
with recombinant L. plantarum can elicit specific T cell-
mediated immune responses.

Effects of recombinant L. plantarum on specific sIgA
antibody

Three-week-old chickens were vaccinated by oral or intra-
nasal administration of recombinant L. plantarum. To ex-
plore whether NC8-pSIP409-NP-M1-DCpep can elicit an
antigen-specific mucosal immune response, specific sIgA
in BALF from vaccinated chickens was assessed by ELISA
at 2 weeks after the final immunization. The data indicated
a higher sIgA titer in chickens that had been orally vacci-
nated with NC8-pSIP409-NP-M1-DCpep and inactivated
H9N2 vaccine than in other groups using the same immu-
nization route (Fig. 4). However, a higher titer of specific
IgA in BALF was induced by intranasal immunization with
NC8-pSIP409-NP-M1-DCpep than by oral immunization.
These results suggest that a stronger mucosal immune
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Fig. 2 Recombinant L. plantarum elicited T cell responses in the spleen
of vaccinated chickens. a Gating strategy for CD3+CD4+ or CD3+CD8+

T cells. The frequencies of CD3+CD4+ T cell subsets (b) and CD3+CD8+

T cell subsets (c) in the spleens of vaccinated chickens were analyzed by
flow cytometry. The immunization approaches are displayed at the top.

Data are presented as the means ± S.E.M of triplicate tests (n = 3 chickens
in each group), and the statistical significance of differences between
groups was assessed by one-way ANOVA (#P < 0.05, *P < 0.05,
**P < 0.01, and ***P < 0.001)
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response occurred when the chickens were intranasally im-
munized with NC8-pSIP409-NP-M1-DCpep.

Effects of recombinant L. plantarum on specific IgG
antibody

We used indirect ELISA to detect antigen-specific IgG in
serum at 2 weeks after the final vaccination. The results
showed that NC8-pSIP409-NP-M1-DCpep significantly
enhanced the antigen-specific serum IgG titer compared
with the NC8-pSIP409 group and NC8-pSIP409-NP-M1-
Ctrlpep group, but there were no significant differences
between the intranasal NC8-pSIP409-NP-M1-DCpep
group and the inactivated H9N2 vaccine group (or the
oral NC8-pSIP409-NP-M1-DCpep group) (Fig. 5). In ad-
dition, a significantly higher antigen-specific serum IgG
titer was found in the NC8-pSIP409-NP-M1-Ctrlpep
group compared to the NC8-pSIP409 or PBS group
(Fig. 5).

Evaluation of recombinant L. plantarum-induced
protection

Chickens were vaccinated with recombinant L. plantarum
in accordance with the prime-boost procedure (Fig. 1b).
To evaluate whether NC8-pSIP409-NP-M1-DCpep pro-
vided protective immunity against the H9N2 subtype of
AIV, the chickens were infected with 105 EID50 A/duck/
Xuzhou/07/2003 (H9N2) 2 weeks after the final vaccina-
tion. Our results indicated body weight increases slowly
in the inactivated H9N2 vaccine group after infection with
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Fig. 3 Antigen-specific lymphocyte response following vaccination in
chickens. Splenocytes from the chickens in all groups were isolated
2 weeks after last booster vaccination and co-cultured with 5 μg/ml of
purified NP and M1 antigens for 72 h. The immunization approaches are
displayed at the top. Data are expressed as the means ± S.E.M of triplicate
tests (n = 3 chickens in each group), and the statistical significance of
differences between groups was assessed by one-way ANOVA
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Fig. 5 NP-M1-specific IgG titers in the serum after immunization.
Serum from chickens in all groups was obtained 2 weeks after the
booster vaccination, and specific IgG titers were detected using purified
NP and M1 antigens. Data are shown as the means ± S.E.M of triplicate
tests (n = 3∼5 chickens in each group), and the statistical significance of
differences between groups was assessed by one-way ANOVA
(*P < 0.05 and ***P < 0.001)
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AIV (Fig. 6a). However, chickens that had been vaccinat-
ed orally with NC8-pSIP409-NP-M1-DCpep lost signifi-
cantly less weight than those vaccinated with NC8-
pSIP409-NP-M1-Ctrlpep, NC8-pSIP409, or PBS, as mea-
sured on days 5 and 6 after challenge with H9N2 AIV
(Fig. 6b). As expected, chickens vaccinated intranasally
with NC8-pSIP409-NP-M1-DCpep lost less weight than
orally vaccinated chickens, as measured on day 6 after
challenge (Fig. 6b).

In addition, the virus titer in the lungs of vaccinated
chickens was also measured on day 5 after challenge with
H9N2 AIV, and chickens that had been vaccinated orally with
NC8-pSIP409-NP-M1-DCpep had lower virus titers than
those vaccinated with NC8-pSIP409-NP-M1-Ctrlpep, NC8-
pSIP409, or PBS (Fig. 6c). We also found that chickens vac-
cinated intranasally with NC8-pSIP409-NP-M1-DCpep
showed a much lower virus titer in the lungs after AIV chal-
lenge than the oral NC8-pSIP409-NP-M1-DCpep group
(Fig. 6c). These data suggested that L. plantarum expressing
NP-M1-DCpep can provide protection against H9N2 AIV
infection.

Protection against tissue pathology in chickens vaccinated
with recombinant L. plantarum

Two weeks after the final vaccination, the chickens were chal-
lenged with AIV, and the lungs and throat tissue were isolated
at 5 days after challenge to examine the pathology. As shown
in Fig. 7, the lungs from the NC8-pSIP409 and PBS groups
displayed the following: terminal bronchioles with epithelial
shedding, increased mucus, blood, lymphatic cells, and blood
vessels; hyperemia; and obvious lymphocyte infiltration
around blood vessels. The lungs of chickens orally vaccinated
with NC8-pSIP409-NP-M1-Ctrlpep exhibited terminal bron-
chiolar epithelial shedding, and although the typical phenom-
enon of lymphocytic infiltration was not present, blood vessel
gap shed clearly widened (Fig. 7a, b). In contrast, the lungs of
chickens vaccinated with the inactivated H9N2 vaccine and
the oral and intranasal NC8-pSIP409-NP-M1-DCpep groups
did not show obvious inflammatory cell infiltration or other
visible pathological damage (Fig. 7a, b).

To determine whether recombinant L. plantarum can re-
duce the observed throat pathology, all groups were
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Fig. 6 Vaccination of chickens with recombinant NC8-pSIP409-NP-
M1-DCpep provided protection against AIV infection (106.0 EID50). a,
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challengedwith AIVat 2 weeks after the final vaccination, and
throats were isolated 5 days later. The data showed mucosal
bleeding and epithelial necrosis in the PBS and NC8-pSIP409
groups (Fig. 8). Interestingly, the throats fromAIV-challenged
chickens that had been vaccinated orally with NC8-pSIP409-
NP-M1-DCpep exhibited minimal damage, in contrast to
those of the NC8-pSIP409-NP-M1-Ctrlpep group (Fig. 8a,
b). In addition, we also found less inflammation in the intra-
nasal NC8-pSIP409-NP-M1-DCpep group compared to the
oral NC8-pSIP409-NP-M1-DCpep group (Fig. 8a, b).

Discussion

The main purpose of this study was to build on a previous
study that evaluated the function of immunization with recom-
binant L. plantarum expressing NP-M1-DCpep, the results of
which suggested that recombinant L. plantarum expressing
NP-M1-DCpep can induce specific T cell immune responses
and confer cross-protection against different subtypes of in-
fluenza virus in mice (Yang et al. 2016b). Several reports by
Lei et al. indicated that chickens immunized with recombinant
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Lactococcus lactis have improved mucosal IgA responses and
cellular immune responses as well as neutralizing antibody
responses; in fact, these responses resulted in complete pro-
tection against H5N1 AIV infection (Lei et al. 2015b; Lei et al.
2015c). Our data in the present study showed that oral or
intranasal vaccination of chickens with recombinant
L. plantarum expressing NP-M1-DCpep also enhanced mu-
cosal IgA responses and cellular immune responses and pro-
vided a protective immune response against AIV challenge.

Although existing vaccines based on AIV surface antigens
induce antibodies against AIV challenge, previous investiga-
tions by our laboratory and others show that specific T cell
immune responses are also induced in most patients and ani-
mals immunized with these vaccines, helping to provide pro-
tective immunity against pathogen infection (Berthoud et al.
2011; Yang et al. 2016b). Another study reported that mice
vaccinated with purified M1 antigen and chitosan had strong
cellular immune responses and were protected against
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infection with various subtypes of influenza virus (Sui et al.
2010). In addition, it has been reported that oral administration
of recombinant hemagglutinin-expressing Lactobacillus spp.
to mice enhances the antigen-specific splenic lymphocyte pro-
liferative reaction and IL-4 levels but not IFN-γ levels (Wang
et al. 2012). However, our data in this study found that
chickens vaccinated with NC8-pSIP409-NP-M1-DCpep had
a higher frequency of CD3+CD4+ and CD3+CD8+ T cells and
a higher T cell proliferative response than the control groups.
Hence, the conserved antigen from AIV can induce specific T
cell immune responses and provide cross-protection against
AIV infection (Yang et al. 2016b). Our next study will evalu-
ate whether recombinant L. plantarum expressing NP-M1-
DCpep can elicit protective immunity against challenge with
other subtypes of AIV, including H5N1 and H7N9.

AIV first infects the epithelial cells of the respiratory tract
of the host, resulting in serious pathological reactions in the
host during infection. The sIgA secreted at the mucosal site
can play an important role in clearing pathogens, such as AIV.
Several studies have found that animals developed a higher
level of sIgA after oral administration of Lactobacillus gasseri
SBT2055 or heat-killed Lactobacillus pentosus b240, provid-
ing efficient protection against influenza virus challenge,
though the exact mechanisms are not clear (Kiso et al. 2013;
Nakayama et al. 2014). In addition, our published data re-
vealed significant titers of specific sIgA developed in mice
after oral administration of recombinant L. plantarum express-
ing HA or NP-M1-DCpep (Shi et al. 2014; Yang et al. 2016b).
In the present study, our results showed that chickens vacci-
nated with recombinant L. plantarum expressing NP-M1-
DCpep had higher sIgA titers in BALF than the control
groups. These results suggested that specific sIgA elicited by
recombinant L. plantarum may play a major function in
inhibiting AIV replication, leading to reduced titers in the
lungs and pathological damage to the lungs and throat.

The route of immunization has a primary role in the induc-
tion of protective immune responses against challenge by
pathogenic microorganisms. Previous research has shown that
mice sublingually vaccinated with Lactobacillus can develop
effective protection from infection by influenza virus (Lee
et al. 2013). In addition, a recent study indicated that strong
mucosal and humoral immunity is induced in ferrets vaccinat-
ed intranasally with recombinant Lactococcus lactis and that
this immunity provided effective protection against H5N1
AIV infection (Lei et al. 2015a). In our study, strong immune
responses were elicited in intranasally immunized chickens,
and our results are in accordance with other studies suggesting
that intranasal administration confers better protection for
birds infected with AIV than does oral vaccination (Li et al.
2015). Hence, to reduce the required manpower and material
resources, intranasal immunization is very suitable for domes-
tic pets, whereas oral immunization is suitable for large-scale
poultry breeding.

There are different principles of vaccine design, and several
studies have reported that different types of vaccines or adju-
vants can trigger different immune responses. Inactivated vac-
cines induce a humoral immune response against pathogens,
whereas recombinant replication-deficient adenovirus or
MVA elicit a strong cellular immune response to provide ef-
ficient protection against an influenza virus challenge (Lambe
et al. 2013). In addition, virus-like particle (VLP)-based vac-
cines can induce robust cross-reactive CD8+ T cell responses,
which are advantageous against challenge with homologous
influenza viruses (Schotsaert et al. 2016). A previous study
showed that mRNA-based vaccines also triggered B and T
cell-dependent protective effects that target multiple antigens
to provide cross-protective immunity (Petsch et al. 2012).
Furthermore, oral recombinant L. plantarum has been shown
to enhance the expression of co-stimulatory molecules or the
secretion of several cytokines that regulate the function of
DCs (Christensen et al. 2002; Meijerink et al. 2010; Yang
et al. 2016b). Several investigations have found that oral vac-
cines can induce Tregs, which play important roles in regulat-
ing the pathological damage in the lungs of infected animals
due to excessive immune responses (Kathania et al. 2013; Lee
et al. 2013).

In conclusion, the present study showed that DCpep
targeting conserved influenza virus NP-M1 antigens and
expressed by L. plantarum provided protection against AIV
infection by increasing adaptive immune responses. Oral im-
munization resulted in notable increases in T cell responses
and specific IgG and sIgA secretion and protection against
viral challenge in vivo. In addition, these results suggested
that intranasal immunization with NC8-pSIP409-NP-M1-
DCpep results in a strong immune response in chickens, with
more effective protection against AIV infection than oral im-
munization. The approach of using a non-traditional vaccine is
a new strategy for the prevention and control of the spread of
AIV.
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