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Abstract Fungi constitute an invaluable natural resource for
scientific research, owing to their diversity; they offer a prom-
ising alternative for bioprospecting, thus contributing to bio-
technological advances. For a long time, extensive informa-
tion has been exploited and fungal products have been tested
as a source of natural compounds. In this context, enzyme
production remains a field of interest, since it offers an effi-
cient alternative to the hazardous processes of chemical trans-
formations. Owing to their vast biodiversity and peculiar bio-
chemical characteristics, two fungal categories, white-rot and
anaerobic Neocallimastigomycota, have gathered consider-
able attention for biotechnological applications. These fungi
are known for their ability to depolymerize complex molecu-
lar structures and are used in degradation of lignocellulosic
biomass, improvement of animal feed digestibility, biogas
and bioethanol production, and various other applications.
However, there are only limited reports that describe proteo-
lytic enzymes and esterases in these fungi and their synergistic
action with lignocellulolytic enzymes on degradation of com-
plex polymers. Thus, in this minireview, we focus on the im-
portance of these organisms in enzyme technology, their
bioprospecting, possibility of integration of their enzyme rep-
ertoire, and their prospects for future biotechnological
innovation.
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Introduction

Fungi have been a prominent resource in a biotechnological
study. Some of the characteristics of fungi, such as diversity,
cellular secretion, degradation of complex compounds, and
time- and cost-effective cultivation, make them an efficient
resource for enzyme technology (Silva et al. 2013; Silva
2017).

Fungi comprise a group of widely distributed organisms in
the biosphere. On the basis of their versatile lifestyles, fungi
can be classified as saprophytic, pathogenic, and symbiotic
with animal, plants, and algae (Mohanta and Bae 2015).
Fungi are ubiquitous on earth, owing to their vast ecological
diversity. They secrete a vast spectrum of enzymes, including
hydrolytic enzymes, such as peptidases, esterases, and glyco-
sidases (cellulases, amylases, xylanases, etc.), and oxidore-
ductases like laccases, manganese peroxidase, and lignin per-
oxidase, which are involved in the degradation of biopolymers
from plants and animals (Graminha et al. 2008; Copete et al.
2015). This ability of enzyme secretion leads to their extensive
use in industrial applications (El-Enshasy 2007).

The potential of two fungal groups—anaerobic and wood-
decay fungi—for enzyme production has been explored for
research and biotechnological development in the past few
years. These fungi are found in a variety of ecological niches,
which marks their ability for secretion of enzymes and depo-
lymerization of complex compounds, such as lignin, cellulose,
and proteins.

The phylum Neocallimastigomycota comprises unique ob-
ligate anaerobic fungi, which exist in a symbiotic relationship
with herbivores. Their cellular structure is marked by the
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absence of mitochondria. Instead, these fungi possess
hydrogenosomes, which are involved in the generation of cel-
lular energy under anaerobic conditions (Gruninger et al.
2014). Several studies have been carried out to investigate
their biological diversity and applications in biotechnology.

White-rot fungi are associated with wood-decay fungi and
have a notable ability to secrete enzymes to degradation of
complex chemical compounds like lignin and keratin. These
processes find applications in bioremediation of toxic prod-
ucts. They are known to secrete a number of oxidative and
hydrolytic enzymes and, thus, serve as a valuable tool for the
degradation of recalcitrant substrates.

Earlier studies have demonstrated the biotechnological ap-
plications of different species of white-rot and anaerobic fun-
gi, specifically focusing on the pretreatment for degradation of
lignocellulosic biomass (Gruninger et al. 2014; Dollhofer
et al. 2015; Rouches et al. 2016). Insufficient information,
however, is available in the literature regarding their biotech-
nological prospects, and secretion of proteolytic enzymes and
esterases for complementing the degradation of complex
compounds.

This gap in knowledge has been focused on in the present
review, to obtain a deeper insight into the importance of en-
zymes like peptidases, esterases, ligninases, and glycosidases
in biotechnology. Based on their peculiar biochemical charac-
teristics, the potential of white-rot and anaerobic
Neocallimastigomycota fungi for enzyme secretion as well
as their application prospects in enzymology and other indus-
trial applications will be discussed.

In this review, we discussed several aspects of these two
fungal groups, highlighting the biotechnological potential and
the challenge of cooperative action of enzymes from these
microorganisms.

Anaerobic fungi

Initially identified as protists, these organisms were character-
ized as obligate anaerobic fungi in the 1970s. Later, they were
grouped as an order within the phylum Chytridiomycota
(Griffith et al. 2010; Liggenstoffer et al. 2010). Although their
role is well established in lignocellulosic biomass degradation,
a little information is available about their contribution to en-
zyme technology. Recently, these have been classified under
the phylum Neocallimastigomycota, which constitutes the or-
derNeocallimastigales, familyNeocallimastigaceae, and con-
sists of eight genera of anaerobic fungi and symbionts in as-
sociation within the gut of herbivores. The genera within
Neocallimastigaceae include Neocallimastix, Piromyces,
Buwchfawromyces, Ontomyces, Orpinomyces, Anaeromyces,
Caecomyces, and Cyllamyces (Gruninger et al. 2014;
Dollhofer et al. 2015).

Inhabiting the gastrointestinal tract of mammalian and rep-
tilian herbivores, these anaerobic fungi are crucial for degra-
dation of plant tissues, based on their ability to secrete of a
range of cellulolytic enzymes (Gruninger et al. 2014; Samanta
et al. 2008; Saxena et al. 2010). The presence of anaerobic
fungi in termites has also been reported (Dollhofer et al.
2015). Plant polysaccharide degradation serves as the carbo-
hydrate source for cellular metabolism of host herbivores.

The degradation of plant biomass by extracellular enzymes
promotes the release of free oligo- and monosaccharides.
Energy requirement during cellular metabolism is fulfilled
by anaerobic fermentation of carbohydrates, including glu-
cose, cellobiose, fructose, maltose, sucrose, and xylose
(Nagpal et al. 2009; Dollhofer et al. 2015). The end products
of fermentative pathway include acetate, lactate, ethanol, for-
mate, succinate, CO2, and H2. These metabolites are useful in
the metabolism of host herbivores, and other bacteria and
archaea, inhabiting the gastrointestinal tract (Nagpal et al.
2009; Cheng et al. 2013; Gruninger et al. 2014).

Besides hydrogenosomes, these fungi possess rhizoids (fil-
amentous or bulbous) and spores, which are self-propelled by
means of flagella (zoospores) (Gruninger et al. 2014). Their
capacity for mycelial dispersion by growth of rhizoids is an
important parameter to improve the digestion of plant tissues
and to facilitate the access of bacteria to the fermentative sub-
strates (Dollhofer et al. 2015).

Extensive efforts have been put in to improve the handling,
growth, and storage of these organisms. Besides, genic ex-
pression systems, for heterologous expression of enzymes,
have also been explored (Gruninger et al. 2014).

Recently, the development of an international culture col-
lection for cryogenic storage of fungal cultures has been pro-
posed. It is believed that this repository would facilitate the
exchange of fungal strains between different researchers
worldwide (Dollhofer et al. 2015).

White-rot fungi

White-rot fungi, owing to their potential to produce
lignocellulolytic enzymes, are valuable resources in enzyme
technology. Several studies have revealed their role in the
promotion of extensive degradation of lignin, as compared
to other organisms. However, despite the mineralization of
lignin to CO2 and H2O, white-rot fungi are incapable for use
as a carbon and energy source. Instead, they obtain energy
from metabolism of cellulose (Arora and Sharma 2010).

The phyla Ascomycota and Basidiomycota include repre-
sentative species of wood-decaying fungi. Their characteristic
name is originally derived from their potential to decay wood
and causing rotted wood to appear white or yellow. Their
ability to oxidize the recalcitrant lignin substrates signifies
their importance in enzyme technology. Lignin degradation

3090 Appl Microbiol Biotechnol (2017) 101:3089–3101



by white-rot fungi is dependent on a ligninolytic complex,
comprising of manganese peroxidase, lignin peroxidase,
laccase, and enzymes involved in generation of hydrogen per-
oxide (i.e., glucose oxidase) (Deacon 2006).

Wood decay is caused by some fungal species, based on their
ability to degrade lignin. The species that hydrolyze lignin are
called as white rot, due to their ability to lighten the color of
rotted wood. Brown-rot fungi hydrolyze cellulose and hemicel-
luloses, but no lignin. Besides, some soft-rot fungi degrade lignin
in angiosperm wood. They have an affinity for higher moisture
and low lignin-containing biomass (Sánchez 2009).

Among the wood-decay fungi, white-rot fungi are the most
well-known organisms and have been constantly explored for
mycoremediation, due their capacity for degradation of com-
plex chemical compounds. Fungi including Phanerochaete
chrysosporium, Phanerochaete carnosa, Coriolus versicolor,
Trametes versicolor, Pleurotus ostreatus, Irpex lacteus,
Phlebiopsis gigantea, Ceriporiopsis subvermispora, and
Dichomitus squalens are some representative examples of
white-rot fungi, which have found applications in biotechno-
logical research (Dashtban et al. 2009; Vaithanomsat et al.
2010; Couturier et al. 2015; Montoya et al. 2015).

Additionally, with regard to the peculiar biochemical prop-
erties, wood-decay fungi have been investigated for peptidase
and esterase production. The hydrolysis of peptide and ester
bond in polymers, especially in plant material, constitutes a
valuable complement for wood decaying. The enzymatic ar-
senal and its cooperativity are crucial for the fungal growth
and prospection for industrial application, including improve-
ment of nutritional value in feed crop and biogas production,
among others.

Bioprospecting and biotechnological potential

The prospecting of white-rot and anaerobic fungi is briefly
discussed, highlighting the possibility of the integrated action
of their enzymatic repertoire. We have demonstrated the in-
volvement of peptidases and esterases in combination with
lignocellulolytic enzymes to degrade plant biomass. To our
knowledge, this is the first in-depth study on the biochemical
properties of peptidases and esterases secreted by these fungi
and their cooperative hydrolysis in combination with
lignocellulolytic enzymes.

Lignocellulolytic enzymes and industrial prospects

Lignocellulose is an important component of plant cell wall,
composed of cellulose, hemicellulose, and lignin. Although
this complex is recalcitrant, some organisms, from bacteria
to arthropods, have the potential to digest it (Scully et al.
2013; Wei et al. 2015).

Cellulose is a linear biopolymer consisting of glucose
monomers, linked by β-1,4-glycosidic bonds. Some chains
are stabilized by van der Waals forces, resulting in the forma-
tion of crystalline structures known as microfibrils.
Hemicelluloses are heterogeneous polymers consisting of xy-
lose, arabinose (pentoses), mannose, glucose, galactose (hex-
oses), and sugar acids. The composition of hemicelluloses
depends on the plant source (Dashtban et al. 2010). Lignin is
the only naturally synthesized biopolymer with an aromatic
backbone. It consists of three precursor aromatic alcohols,
including coniferyl, sinapyl, and p-coumaryl alcohols, which
form the guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H)
subunits of the lignin molecule, respectively. Upon conjuga-
tion, these chains make the structure highly recalcitrant to-
wards degradation and are efficient enough to protect the lig-
nocellulosic complex once linked to cellulose and hemicellu-
lose (Dashtban et al. 2010).

There has been an emerging interest in the use of
ligninolytic and cellulolytic enzymes in the biotechnology in-
dustry. Lignocellulolytic enzymes are required for a wide
spectrum of applications. In particular, the role of cellulases
has been established in the degradation of cellulose in fer-
mentable sugars and its conversion to lactic acid, butanol,
and ethanol as an alternative energy source to fossil fuels
(Montoya et al. 2015).

Ligninolytic enzymes can be used in a number of process-
es, such as improvement of access to cellulose and hemicel-
lulose in plant biomass, manufacturing of paper pulp
(biobleaching), improvement of nutritional value and feed di-
gestibility for ruminants, and waste effluent treatment, among
others (Arora and Sharma 2010).

Cellulose is completely hydrolyzed by the activity of
endoglucanases (EGs), cellobiohydrolases (CBHs), and β-
glucosidases (BGLs) (Cantarel et al. 2009). EGs catalyze
the hydrolysis of cellulose chains, releasing cellobiose or
bigger polymers. The pH and temperature for maximum
EG activity range between 4 and 6 and between 45 and
70 °C, respectively. There are, however, certain exceptions
to these conditions (Manavalan et al. 2015). CBHs are mo-
nomeric proteins, with molecular weights ranging from 36
to 75 kDa. CBHs catalyze the hydrolysis of cellulose to
generate cellobiose. Maximum CGH activity is obtained in
the pH range 4–5 at 37–60 °C (Momeni et al. 2013; Rytioja
et al. 2014; Manavalan et al. 2015). BGLs, in general, have
molecular weights ranging between 35 and 640 kDa and can
also exist in trimeric forms. They catalyze the hydrolysis of
cellobiose, releasing glucose monomers. The optimum pH
for BGL activity ranges between pH 3.5 and 5.5, and the
temperatures for maximum activity range from 45 to 75 °C
(Manavalan et al. 2015).

Enzymes acting in hemicellulose degradation consist of
xylan-degrading endoxylanases, alpha-glucuronidases, beta-
xylosidases, acetyl xylan esterases, ferulic acid esterases,
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and alpha-l-arabinofuranosidase, and glucomannan-degrading
beta-mannosidases and beta-mannanases (Van den Brink and
de Vries 2011).

A number of enzymes, including lignin peroxidase (LiP),
manganese peroxidase (MnP), and laccases, are involved in
complete decomposition of lignin. The white-rot fungi are
usually differentiated from other fungal classes by their ability
to efficiently degrade lignin.

LiPs are proteins havingmolecular weights between 30 and
50 kDa. The optimum pH and temperatures for maximum LiP
activity range between pH 2 and 5 and between 35 and 55 °C,
respectively. Iron ions (Fe3+) act as co-factors for the enzyme
and act by mediating the oxidation of veratryl alcohol using
H2O2, in the active site of LiPs (Manavalan et al. 2015).

MnPs are glycoproteins with molecular weights ranging
from 32 to 62.5 kDa and act at an optimum pH of 4–7 and
an optimum temperature from 40 to 60 °C. The mechanism of
action of MnP is similar to that of LiP, the only difference
being the presence of Mn2+ as the proton donor in MnP
(Manavalan et al. 2015; Kellner et al. 2014).

Laccases are oxidases with molecular weight between 38
and 383 kDa. This enzyme has a tricopper site and is able to
catalyze a ring cleavage of aromatic compounds. In general,
laccases are N-glycosylated and act in a wide variation of pH
and temperature conditions. The expression of laccases in
Trametes velutina was enhanced by the addition of Cu2+ and
Fe2+ ions as well as some aromatic compounds like tannic
acid, syringic acid, cinnamic acid, gallic acid, and guaiacol
(Yang et al. 2013).

The product ion of pept idases , es te rases , and
lignocellulolytic enzymes by white-rot and anaerobic fungi
is summarized in Table 1. The synergism of white-rot and
anaerobic fungi has a great potential in plant biomass degra-
dation and is an efficient alternative for enzyme technology.

White-rot and anaerobic fungi in lignocellulose
degradation

Both anaerobic and wood-decay fungi have an extensive abil-
ity to degrade plant tissue. Thus, they serve as promising can-
didates in investigation of secretion of cellulolytic and
ligninolytic enzymes, for obtaining renewable fuel, like
bioethanol from cellulose-containing biomass.

In anaerobic fungi, the ability to secrete cellulolytic en-
zymes has received extensive attention. It was identified that
some of these enzymes are acquired by fungi through hori-
zontal gene transfer from bacteria (Griffith et al. 2010). In
addition, these enzymes can either be found in a free state
within the fungal cell or as a part of cellulosomes, which is a
multi-enzyme complex associated with cell wall.

Several studies have revealed the presence of cellulolytic
enzymes in the genome of anaerobic fungi (Nicholson et al.

2005; Dollhofer et al. 2015). Transcriptome analysis of
Orpinomyces sp. strain C1A growing in the presence of lig-
nocellulosic biomass (alfalfa, energy cane, corn stover, and
sorghum) revealed the crucial role of cellulosome and free
glycoside hydrolases in degradation of plant biomass
(Couger et al. 2015).

However, the forage degradation by anaerobic fungi is
commonly limited, owing to the presence of recalcitrant lig-
nin. It is estimated that 40–60% of organic carbon remains
unused, owing to decreased accessibility of anaerobic fungi
to cellulose and hemicellulose embedded within lignin bio-
mass. Several pretreatment strategies, like mechanical, ther-
mal, oxidative, chemical, and ultrasonic technologies, to im-
prove the degradation of plant biomass are reported in the
literature (Graminha et al. 2008; Dollhofer et al. 2015).

An additional strategy for lignocellulose degradation is the
integration of hydrolytic and ligninolytic enzymes from
white-rot fungi. Therefore, the cumulative action of anaerobic
and wood-decay fungi results in higher potential for degrada-
tion of plant biomass (Arora and Sharma 2010; Gruninger
et al. 2014; Dollhofer et al. 2015).

Biofuel production research has recently focused on the
potential of white- and brown-rot fungal species to efficiently
perform the saccharification of alkaline-pretreated sugarcane
bagasse. The enzymes secreted by these fungi were proposed
to enhance the efficiency of production of bioethanol from
lignocellulosic substrates (Valadares et al. 2016).

Secretomic analysis of Schizophyllum commune revealed a
unique wood biodegradation system, with higher diversity of
carbohydrate-degrading enzymes, as compared to other white-
rot fungi P. chrysosporium, C. subvermispora, and
Gloeophyllum trabeum. The higher wood-decay activity was
contributed by the differential expression of hemicellulases,
pectinases, and accessory proteins involved in the generation
of hydroxyl radicals (Zhu et al. 2016).

Biogas production

Based on the information from a rumen environment, it has
been suggested that the biogas production under reactor con-
ditions is dependent on the microbial interactions and activi-
ties to degrade organic waste. The applications of white-rot
fungi are also investigated to enhance its ligninolytic activity
and production performance (Gruninger et al. 2014).

In rumen, unlike axenic cultures, the interactions between
symbiotic organisms, such as bacteria, archaea, and anaerobic
fungi, are fundamental to increase the cellulolytic and
xylanolytic activity and, ultimately, the biogas production.
The anaerobic digestion provides the basic substrate to
methanogens during biogas production. The metabolic prod-
ucts, especially acetate and formate, derived from anaerobic
fungi are the preferred by methanogens, which carry out
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interspecies hydrogen transfer via methanogenesis (Gruninger
et al. 2014; Dollhofer et al. 2015).

Marvin-Sikkema et al. (1990) reported an increase in the
cellulolytic activity of anaerobic fungi growing in association
with methanogens, which was marked by a 5–10% enhance-
ment in cellulose fermentation with several anaerobic fungi,
such as Piromonas communis P, Neocallimastix patriciarum
C, Sphaeromonas communis FG10, and Neocallimastix
frontalis RE1, and up to 15–25% with Neocallimastix sp.
strain L2. Other studies also co-related the stimulatory effect
of co-culture of anaerobic fungi and methanogens in methane
production by degradation of plant biomass (Jin et al. 2011;
Cheng et al. 2013).

Although the use of anaerobic fungi in biogas production
has been established, its exploitation at the industrial level has
not been achieved as yet, possibly due to concerns like de-
creased enzymatic activity and compromised fungal growth
(Dollhofer et al. 2015).

Kazda et al. (2014) reported about the importance of anaer-
obic fungi in biogas reactors. Molecular techniques by analyz-
ing internal transcribed spacer 1 (ITS1) sequences enabled to
detect anaerobic fungi in full-scale biogas plants and in labo-
ratory reactors. However, the compromised fungal growth has
been an obstacle for anaerobic cultivation and their visualiza-
tion in microscopic surveys. Further, the difficulty for main-
taining the culture flow contributes to the low level of enzyme
activity.

Inhabiting the gastrointestinal tract, anaerobic fungal pop-
ulations remain in equilibrium due to rumen conditions, such
as salivary and digesta flow, and the absorption of metabolites
across the rumen epitheliumwhich contributes to maintain the
rumen microbial ecosystem (Zhu et al. 1996). In the laborato-
ry, the major difficulty is to simulate these rumen conditions
(Zhu et al. 1996; Gruninger et al. 2014). Currently, investiga-
tions have focused on the fungal growth in closed batch cul-
tures in which the culture medium is composed of lower sub-
strate concentration than that found in the rumen.
Additionally, for maintaining the fungal population, a subcul-
ture into a fresh medium can be performed.

Additionally, to address these problems, extensive efforts
have been put in to improve the industrial application of these
fungi. Heterologous expression offers an alternative for appli-
cation of lignocellulolytic enzymes in reactors under ideal
reaction conditions (Gruninger et al. 2014).

There has been an emerging interest in the use of symbiotic
anaerobic fungi in biotechnological applications. To achieve
this, some reports have described the heterologous expression
of glycosidases, such as xylanases from Orpinomyces sp. (Li
et al. 2007; Madhavan et al. 2009) and N. frontalis (Tsai and
Huang 2008). Li et al. (1997) also exhibited the heterologous
expression of cellulase and xylanase from anaerobic fungus
Orpinomyces sp. strain PC-2 using Escherichia coli as an
expression system, encoding a polypeptide of 471 amino acids

for cellulase complementary DNA (cDNA) and a polypeptide
of 362 amino acids for xylanase cDNA. In this work,
Orpinomyces sp. strain grown on Avicel and the glycosidases
demonstrated an identity of 80 to 85% to the corresponding
enzymes from N. patriciarum.

The key role of fungi and methanogen symbionts in
biowaste treatment is demonstrated, for example, by the con-
version of organic waste to alternative fuel. Household and
industrial activities generate a large amount of organic resi-
dues annually. Anaerobic digestion of biowaste is an alterna-
tive to generation of methane, since it is a biogas sustainable
source in comparison to processes like incineration or landfill
(Kazda et al. 2014).

In this context, once again, the white-rot fungi show them
as valuable candidates for pretreatment of lignocellulosic bio-
mass, integrating lignocellulolytic enzymes, esterases, and
peptidases in cumulative action with strict anaerobic fungi.

Esterases and proteolytic enzymes

Different to the reported in other studies (Gruninger et al.
2014; Dollhofer et al. 2015; Rouches et al. 2016), in this
minireview, we highlight the biotechnological attention devot-
ed to esterases and peptidases secreted by anaerobic and
white-rot fungi and, in particular, to the enzymatic synergisms
with lignocellulolytic enzymes on degradation of forage
biomass.

In general, peptidases and esterases are involved in funda-
mental biological processes, including germination, sporula-
tion, and diet of fungi. Their physiological importance and the
alternative use in biotechnology fields reinforce the extensive
attention devoted to these hydrolytic enzymes (Lawrence
1967; Inácio et al. 2015).

Esterases are hydrolases capable to catalyze the cleavage
and formation of ester bonds, and peptidases are enzymes that
catalyze the cleavage of peptide bonds into proteins and pep-
tides. The specificity study in proteolytic enzymes is a crucial
parameter for a higher understanding of its catalytic prefer-
ence, in order to provide important information about the deg-
radation of protein substrate (Silva et al. 2014; Silva 2017).

Peptidases are important enzymes involved in the metabo-
lism of all organisms and are also significant in a number of
industrial processes. Currently, seven types of proteolytic en-
zymes are known, including aspartic, cysteine, serine, metallo,
glutamic, and threonine peptidases, and non-hydrolytic aspar-
agine peptide lyase (Rawlings et al. 2011; Silva 2017). Fungi
are known to secrete a range of proteolytic enzymes, which
find applications in a number of processes, such as cheese
manufacturing, peptide synthesis, animal waste treatment,
pharmaceutical, detergent, and food industries, as well as oth-
er aspects of basic research (Silva et al. 2013, 2014, 2016,
2017; Biaggio et al. 2016; Silva 2017).
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Fungi have been widely explored for peptidase production
(Silva 2017). Recent researches have evaluated the biochem-
ical properties and potential for application of fungal
peptidases. For example, Graminho et al. (2013) and Silva
et al. (2014) reported the secretion of non-specific serine pep-
tidases, by which they can be prospected for bioactive peptide
synthesis and detergent formulation.

On cheese production, peptidases are investigated to pro-
mote the cleavage of the peptide bond between phenylalanine
(Phe105) and methionine (Met106) on k-casein substrate (Silva
2017). The milk clotting is a crucial step for cheese
manufacturing. Silva et al. (2016) exhibited an aspartic pepti-
dase with potential to be an alternative enzyme inmilk clotting
during the preparation of cheese.

Ida et al. (2016) also documented the use of peptidases in
detergent formulation. In this study, the washing performance
in commercial detergent compatibility of two collagenolytic
serine peptidases was evaluated, by which a successful assay
for removing an egg protein stain was demonstrated.

In plant degradation, wood nitrogen is especially found in
proteins into cell wall, by which wood-decay fungi secrete
proteolytic enzymes in order to promote protein hydrolysis
and its use as a nitrogen source (Inácio et al. 2015). The nitro-
gen limitation is known to enhance the secretion of enzymes
by white-rot fungi (Dorado et al. 2001). Dass et al. (1995) and
Dorado et al. (2001) reported an increase on production of
peptidase and ligninolytic enzymes when subjected to nitro-
gen limitation.

Wood decay fungi, owing to their distinctive biochemical
properties, have been explored in detail for peptidase produc-
tion and regulation of activity of lignocellulolytic enzymes.
For instance, production of subtilisin-like peptidase from the
white-rot fungal strain P. ostreatus has been described
(Palmieri et al. 2001). The authors exhibited a monomeric
glycoprotein with a molecular mass estimated at 75 kDa.
They pointed out the importance of this enzyme on regulation
of the laccase activity.

Additionally, secretion of different subclasses of pepti-
dases, including aspartic, cysteine, metallo, and serine pepti-
dases, with varying molecular weights, and different pH and
temperature optima for enzymatic activities, has been reported
in many species of the genus Pleurotus (Inácio et al. 2015).
Recently, production of peptidases has also been reported
from Cerrena unicolor, Phlebia lindtneri, and Pycnoporus
sanguineus (Janusz et al. 2016).

Rahul et al. (2013) also described the production of two
alkaline peptidases from P. chrysosporium. In this screening,
the peptidases exhibited an optimum caseinolytic activity at
pH 7.5 and molecular mass estimated at 33 and 40 kDa.

Several investigations have revealed the effect of pepti-
dases on the regulation of lignocellulolytic activity (Silva
2017). A study performed in white-rot T. versicolor demon-
strated an improvement in laccase and peroxidase activities

after inhibition of peptidase activity by phenylmethylsulfonyl
fluoride (PMSF) (Staszczak et al. 2000). In this work, the
authors suggested an influence of peptidases on the degrada-
tion of ligninases.

Peptidases provide amino acids from protein diet in the
digestive tract of ruminants. Metallopeptidase from anaerobic
N. frontalis leads to protein breakdown in rumen. The symbi-
otic association of Neocallimastigomycota fungi within herbi-
vores has indicated the possibility of its use in animal diet
(Wallace 1996). Improvement of in vitro digestibility of feed
by mixing microflora in buffalo rumen was attained by the
proteolytic activity of Piromyces sp., Anaeromyces sp., and
Orpinomyces sp. (Paul et al. 2004).

White-rot and anaerobic fungi are known to produce an-
other class of valuable hydrolytic enzymes—the esterases—
which are involved in degradation of plant biomass. Studies
about esterase activity involved in hydrolysis of the ester bond
in plant tissue have been reported as an additional/cooperative
enzymatic action in order to complete degradation of forage
fiber. Some esterases, like acetyl xylan esterase, have been
characterized from anaerobic fungus Orpinomyces sp. strain
PC-2, which has a molecular mass of 34,845 Da and shows a
56% amino acid homology with the acetyl xylan esterase from
N. patriciarum (Blum et al. 1999). In the rumen of Hereford
bulls fed on an alfalfa-based diet, the presence of several gly-
cosidases, acetyl esterases, and peptidases, as an enzymatic
complex involved in feed degradation, has been reported
(Lee et al. 2002).

In biochemical evaluation, investigators detected the ester-
ase activity of two feruloyl esterases secreted by
Neocallimastix strain MC-2, by which they were purified
and partially characterized. The enzymes were classified as
ferulic acid esterase (FAE) I and FAE II and exhibited a mo-
lecular mass at 69 and 24 kDa, respectively (Borneman et al.
1992). Paul et al. (2004) also reported the production of ester-
ases from Piromyces sp., Anaeromyces sp., and Orpinomyces
sp. in a study demonstrating the effect of anaerobic fungi on
feed degradation. All these documented researches reported
that esterases are essential actors on cooperative hydrolysis of
ester bonds in complex crop fiber.

In white-rot fungus, MacDonald et al. (2011) related the
transcriptomic responses of P. carnosa in growth on conifer-
ous and deciduous wood, the transcript sequences encoded to
acetyl xylan esterase and glucuronoyl esterase.

In another study with P. carnosa, glucuronoyl esterase was
reported to be involved in wood degradation. This enzyme
mediated the hydrolysis of glucuronoxylan linked to lignin
via ester bonds (Gandla et al. 2015). The production of
glucuronoyl esterase is also reported in S. commune
(Spánikova and Biely 2006).

Peptidases and esterases have been implicated in feed pro-
cessing. The enzymatic repertoire of white-rot and anaerobic
fungi has shown a great potential for improvement of feed
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digestibility. The integration of esterases and proteolytic en-
zymes contributes to the degradation of poorly digested feed.
The role during degradation of plant materials is shown in
Table 2.

Enzyme cooperativity and improvement of feed
digestibility in ruminants

The increasing demand for meat consumption has generated
an intensive interest in the improvement of animal nutrition. In
such cases, anaerobic and white-rot fungi have been explored
as possible alternatives to enhance the digestibility of poorly
processed plant fibers during digestion in ruminants (Nagpal
et al. 2009).

The complex of hydrolytic enzymes secreted from anaero-
bic fungi is crucial to digestion of plant tissue in the gastroin-
testinal tract of ruminants. Apart from glycosidases, pepti-
dases and esterases are important for degradation of grasses.
Esterases hydrolyze the ester bonds between lignin and hemi-
cellulose to favor the access to cellulose and hemicellulose,
and peptidases catalyze the cleavage of peptide bonds in pro-
teins from plant material, providing organic nitrogen and fa-
cilitating the penetration of rhizoids of anaerobic fungi
(Nagpal et al. 2009; Silva 2017).

Akin et al. (1993) reported the use of P. chrysosporium to
improve the digestibility of grass cell walls and the biodegra-
dation by rumen microorganisms. In this report, the esterase
activity is noticed as a crucial tool for lignocellulosic biodeg-
radation. It has been proposed that the phenolic acid esterases
gave ruminal fungi an important advantage over ruminal
bacteria.

The extensive interest in anaerobic symbiotic fungi within
ruminants is potentially due to the possibility of its application
in feed supplementation, especially to improve the nutritional
content of cattle feed and to promote the animal growth
(Gruninger et al. 2014; Lee et al. 2000; Dey et al. 2004; Paul
et al. 2004).

It is estimated that the anaerobic fungi account for about 8–
12% of the microbial biomass in rumen. Symbiotic fungi in
ruminant can be used as probiotic additives, which serve as a
supplement to the animal, owing to their potential to improve
the microbial activity in the digestive tract and through pro-
motion of degradation of plant fiber (Nagpal et al. 2009).

Using the anaerobic fungus Piromyces sp. in addition to
mixed rumen buffalo microflora, Paul et al. (2004) reported
an improvement on in vitro feed digestibility of lignocellulos-
ic material (wheat straw and wheat bran, 80:20 w/w). The
experiments indicated a feed digestibility for about
43.64 ± 1.73% using the anaerobic fungus as a feed additive,
and a 35.37 ± 1.65% for the control group (without feed ad-
ditive). Additionally, for a period of 24 h of plant biomass
treatment, the fungal inoculum increased the production of

carboxymethyl cellulase, xylanase, acetyl esterase, and β-glu-
cosidase. The final conclusion of this study suggests the po-
tential to use Piromyces sp. as a feed additive for plant fiber
degradation.

In another study, anaerobic fungi were manipulated to im-
prove the utilization of poor-quality feed in sheep (Gordon
et al. 2001). The oral dosing with the anaerobic fungus
Piromyces sp. CS15 was effective in increasing feed intake
(straw-based diet), thus contributing to increase the live
weight by penned sheep.

An additional tool to improve the degradation of forage
material and nutrient value addition to animal diet is the pro-
duction of ligninolytic and proteolytic enzymes by white-rot
fungi. The use of these microorganisms can improve the nu-
tritional yield of plant biomass, for enhancement of the crop
fiber degradation and to facilitate the access to cellulose and
hemicellulose substrates by the activity of glycoside and pep-
tide hydrolases from anaerobic and wood-decay fungi.

Several studies have revealed an improvement in the di-
gestibility of plant residues in ruminants due to the activity
of white-rot fungi. An improvement in the nutritional value of
wheat straw, accompanied with an increase of protein content
was observed after treatment with Pleurotus sp. (Fazaeli et al.
2004). In another study, treatment with the fungus P. ostreatus
using corn straw as a substrate resulted in an increase in
crude protein and soluble carbohydrates after 15 days
(Ramirez-Bribiesca et al. 2010). Raghuwanshi et al. (2014)
also related the use of the fungusGanoderma spp. to improve
the nutritional content of wheat straw residue.

The combination of enzymatic complexes from these fungi
is complementarily functional with plant fibers and is in-
volved in reinforcement of the digestion of lignocellulosic
material and adding on to the nutritional value in cattle. The
enzyme cooperativity of peptidases, esterases, glycosidases,
and ligninases is crucial for plant fiber degradation and opti-
mum nutrient assimilation. The synergism of white-rot and
anaerobic fungi has a great potential in feed processing and
is an efficient alternative for livestock farming.

Future prospects

In the past few years, there has been an emerging interest in
white-rot and anaerobic fungi, particularly owing their pecu-
liar biochemical characteristics and ability to secrete enzymes
involved in the degradation of complex polymers. These fungi
are prominent candidates for applications involving genera-
tion of sustainable energy like bioethanol and biogas, and
improvement of feed digestibility. In the future, technological
advances are expected to improve their handling, storage, and
biodiversity prospecting, providing new information on the
development of new biotechnological products to contribute
to the scientific innovation and development.
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