MINI-REVIEW

Bacillus thuringiensis: a successful insecticide with new environmental features and tidings

Gholamreza Salehi Jouzani¹ · Elena Valijanian¹ · Reza Sharafi¹

Received: 6 November 2016 / Revised: 31 January 2017 / Accepted: 2 February 2017 / Published online: 24 February 2017 © Springer-Verlag Berlin Heidelberg 2017

Abstract Bacillus thuringiensis (Bt) is known as the most successful microbial insecticide against different orders of insect pests in agriculture and medicine. Moreover, Bt toxin genes also have been efficiently used to enhance resistance to insect pests in genetically modified crops. In light of the scientific advantages of new molecular biology technologies, recently, some other new potentials of Bt have been explored. These new environmental features include the toxicity against nematodes, mites, and ticks, antagonistic effects against plant and animal pathogenic bacteria and fungi, plant growth-promoting activities (PGPR), bioremediation of different heavy metals and other pollutants, biosynthesis of metal nanoparticles, production of polyhydroxyalkanoate biopolymer, and anticancer activities (due to parasporins). This review comprehensively describes recent advances in the Bt whole-genome studies, the last updated known Bt toxins and their functions, and application of cry genes in plant genetic engineering. Moreover, the review thoroughly describes the new features of Bt which make it a suitable cell factory that might be used for production of different novel valuable bioproducts.

Keywords Anticancer · Antagonistic effect · *Bacillus thuringiensis* · Bioacaricide · Bioremediation · Nanoparticle biosynthesis · Plant growth-promoting rhizobacteria (PGPR) · Whole genome

Gholamreza Salehi Jouzani gsalehi@abrii.ac.ir

Introduction

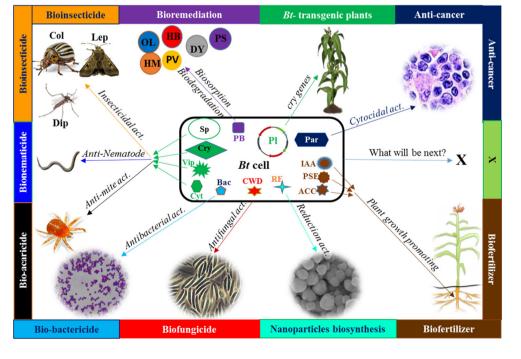
The use of environmental-friendly microbial insecticides as substitutes for harmful chemical pesticides is an alternative for mass control of destructive crop pests. The global market for biocontrol agents (macro and micro) is about 3.5 billion USD with 16% annual growth, which consists approximately 8% of the global pesticides trade (50 billion USD). The share of microbial insecticides is about 807 million USD (BCC Research Report 2015; Lacey et al. 2015; Velivelli et al. 2014).

Bacillus thuringiensis (Bt) is an aerobic, spore-forming, gram-positive, and entomopathogenic bacterium that produces parasporal crystal proteins or δ-endotoxins (Cry). These Cry proteins are toxic to a wide variety of insect pests, such as Lepidoptera, Coleoptera, and Diptera (Salehi Jouzani et al. 2008a,b). Bt has been considered as the most successful bioinsecticide during the last century. Currently, it consists of more than 98 (424 million USD) of formulated spravable bacterial pesticides (Lacey et al. 2015). The species Bt commonly consists of a large family of different subspecies which are categorized in different subspecies with different phylogenetic and serotyping features (such as Bt subsp. kurstaki, Bt subsp. aizawai, Bt subsp. tenebrionis, Bt subsp. Israelensis, etc.). In addition, each Bt subspecies consists of different strains and serotypes (Seifinejad et al. 2008). Bt is known as a fast-acting and hostspecific bioinsecticide, so its adverse effects on non-target organisms are very limited. Moreover, its production (upstream and downstream processes) and application (conventional spraying or genetically modified (GM) Bt crops) are easy and cheap (Jain et al. 2016; Lacey et al. 2015). Accordingly, Bt has been efficiently used as the source of cry genes in plant genetic engineering to make transgenic crops resistant to different pests (Melo et al. 2016; Salehi Jouzani et al. 2008c; Tohidfar and Salehi Jouzani 2008; Tohidfar et al. 2013; Jain et al. 2016) and also has potential to be used as a nematicide to control plant

¹ Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd., P.O. Box: 31535-1897, Karaj, Iran

pathogenic nematodes (Iatsenko et al. 2014a,b, Salehi Jouzani et al. 2008b). Moreover, recent studies have confirmed more new potentials of different *Bt* strains. These new features are including plant growth promoting (Armada et al. 2015a,b), bioremediation of heavy metals and other chemicals (Aceves-Diez et al. 2015; Dash et al. 2014; Melo et al. 2016), anticancer activities (Periyasamy et al. 2016), polymer production (Singh et al. 2013), and antagonistic effects against plant and animal pathogenic microorganisms (Gutiérrez-Chávez et al. 2016; Roy et al. 2013) (Fig. 1).

In spite of publication of some review papers focused on different aspects of Bt during the last years (e.g., De la Fuente-Salcido et al. 2013; Hu and Aroian 2012; Jisha et al. 2013; Melo et al. 2016), there is no comprehensive review presenting an integrated package of data on biotechnological applications (as insecticide and gene source for plant genetic engineering), insecticidal proteins, whole-genome structure, and also recent explored potential applications of Bt in the last 5 years. Accordingly, the objective of the present paper is to comprehensively review the recent advances in new features and potential applications of Bt strains.


Recent advances in the Bt genome studies

Various studies during the last century resulted in the detection and characterization of a dozen different genes encoding insecticidal bioactive substances in *Bt* strains isolated from different regions of the world. However, the conventional methods often fail to obtain a comprehensive understanding of those genes

Bt constitutes a large family of subspecies which recognized as entomopathogens and found in various habitats.

Bt insecticidal genes and their host specificity:

Fig. 1 Bt cell factory potentials. ACC ACC deaminase, Bac bacteriocin, CWD cell walldegrading enzymes, Col Coleoptera, Cry crystal proteins (δ-endotoxins), Cyt cytolytic proteins, Dip Diptera, DY dyes, HP herbicides, HM heavy metals, IAA indole-3-acetic acid, Lep Lepidoptera, OL oil (petroleum), Par parasporin, PB bioremediation involving proteins, Pl plasmid, PS pesticide, PSE phosphate solubilization enzymes, PV plastics, RE reducing enzymes, Sp spore, Vip vegetative insecticidal proteins

an update

and insecticidal active substances, as they are very diverse, and their encoded proteins have a relatively short half-life. Recent advances in the next-generation sequencing and new "omics" technologies, such as genomics, transcriptomics, proteomics, and transcriptomics, have enhanced deep insights into genome diversity among *Bacillus* species and also among different *Bt* subspecies and strains. *Bt* genome projects have been expected to increase and accelerate detection of novel pathogenic genes and related regulatory factors. Moreover, a combination of genomics, transcriptomics, proteomics, and metabolomics could be used to study *Bt* toxin proteins with different characteristics and activities (Dong et al. 2016).

Until now, whole and partial genome sequences of more than 60 *Bt* strains (about 30 complete sequences) have been submitted to the GeneBank. The full-length genome (including one to multiple plasmids) of the studied *Bt* strains spans from 5.3 to 6.87 Mb. The number of genes in the studied *Bt* strains varies from 5343 to 7227, and the number of plasmids ranges between 1 and 13. The guanine-cytosine content (GC) of the *Bt* genomes is between 31.4 and 35. 48% (Table 1). Accordingly, these reports confirm the vast genetic diversity among the studied strains, and therefore, by exploring new strains, novel toxin genes and proteins most probably will be detected.

Table 1 Features of	Features of Bt strain genomes (chromosome and plasmids)	chromosome and	d plasmi	ds)							
Bt subspecies/strain	Activity	Total genome length	No. of genes	Chromosome genome length (bps)	Chromosome GC (%)	No. of chromosomal genes	No. of plasmids	Plasmids size (×1000 bp)	No. of tRNAs and rRNAs	Accession number	Reference
Galleriae HD-29	Lep/Col	6,741,233	6904	5,701,188	34.9	5890	10	8423-426,282	115 and 42	CP010089-99	Zhu et al. (2015a)
HS18-1	Lep/Col	6,403,499	6126	5,292,526	35.43	5382	6	7386-509,170	106 and 42	CP012099-108	Li et al. (2015a)
Hailuosis YWC2-8	Dip/Lep active	6,227,942	6253	5,674,369	35.29	5692	9	8512-250,706	94 and 45	CP013055-61	Zhu et al. (2016)
Fitimus (CTC)	S-layer protein production	5,352,926	5565	5,327,397	35.4	5397	1	25,529	93 and 34	CP0130273-274	Dong et al. (2016)
HD521	Col and antifungal	6,190,688	6310	5,429,688	35.28	5538	9	7000–310,000	138 RNA	CP010106-112	Li et al. (2015b)
147	Dip/Lep	6,167,994	6457	5,337,997	34.90	5602	6	6759–357,957	138 RNA	LFXM00000000	Barbosa et al. (2015)
Tenebrionis-44A1	Col active (Crv8Ga)	6,179,896	6574	5,652,292	35.3	6337	9	4845–232,994	98 and 39	SRP041917	Gao et al. (2015)
Israelensis, HD-789	Encoding 7 Cry and 3 Cyt	6,334,630	6626	5,495,278	35.26	5697	6	6824–349,599	121 and 42	CP003763-69	Doggett et al. (2013)
Kurstaki, HD73	Lep	6,600,000	6169	5,646,799	31.4	5892	7	8000-77,000	104 and 36	CP004069-76	Liu et al. (2013)
Thuringiensis-IS5056 Lep	Lep	6,800,000	6755	5,491,935	35.4	5617	14	6880–328,151	85 and 39	CP004123-37	Murawska et al. (2013)
407 Cry	Lep	6,134,344	6635	5,500,501	35.4	5714	6	2062–501,911	138 and 42	CP003889-98	Sheppard et al. (2013)
Tolworthi	Lep	6,870,591	7044	5,896,839	I		∞	7812-437,451	112 and 36	AP014864-72	Kanda et al. (2015)
BR58	Dip/Col active	5,980,291	7227	5,578,174	35	6286	1	402,117	173 RNAs	L11T00000000	Zorzetti et al. (2015)
KB1	Antibacterial and antifungal	5,748,443	5783	4,594,360	35	5666	ŊŊ	Total 1,154,083	117 RNAs	LSNJ0100000	Jeong et al. (2016)
Al Hakam	I	5,310,000	5537	52,600,000	35	4969	1	50,000	104 and 42	CP000485-86	Challacombe et al. (2007)
BMB171	GE model	5,640,000	5760	5,330,000	35.3	5088	1	310,000	102 and 42	CP001903-4	He et al. (2010)
Chinensis CT-43	Lep/Dip	6,150,000	6270	5,486,830	35.38	5596	10	6880-281,231	85 and 39	CP001907.1-17.1.	He et al. (2011)
Finitimus-YBT-020	Crys are adhered	5,682,383	5826	5,355,490	35.3	5477	5	187,880–139,013	107 and 42	CP002508-10	Zhu et al. (2011)
Sichuansis-MC28	Lep/Dip	6,680,000	6557	5,414,461	35.41	5279	٢	7826-429,674	75 and 45	CP003687-94	Guan et al. (2012)
Kurstaki HD1	Lep	6,767,044	6928	5,631,672	35.3	5864	13	Combined 1,135,000	95 and 41	CP004870-83	Zhu et al. (2015b)
YBT-1520	Lep	6,580,536	6720	5,602,565	35.3	5830	11	Combined 978	99 and 39	CP004858-69	Zhu et al. (2015b)

Table 1 (continued)											
Bt subspecies/strain	Activity	Total genome No. of length genes	No. of genes	Chromosome genome length (bps)	Chromosome No. of GC (%) chromo genes	osomal	No. of plasmids	No. of Plasmids size plasmids (×1000 bp)	No. of tRNAs Accession and rRNAs number	Accession number	Reference
YBT-1518	Nematicidal	6,672,911	6738	6,002,284	35.4	6025	6	17,706–240,661 94 and 15	94 and 15	CP005935-40	Wang et al. (2014)
Al.Hakam	General	5,676,963	I	I	36	I	9	I	I	CP009645-51	Johnson et al. (2015)
97-27	General	5,312,686	I	Í	35	I	1	I	Í	CP010087-88	Johnson et al. (2015)
Morrisoni HD 600	Col	6,916,808	I	Í	35	I	Г	I	Í	JTHH00000000	Johnson et al. (2015)
HD-571	General	5,312,179	I	Í	35.41	I	1	I	Í	CP009599-600	Johnson et al. (2015)
HD-682	General	5,291,389	I	I	35.48	I	3	I	I	CP009717-20	Johnson et al. (2015)
Thuringiensis HD 1002	General	6,572,702	I	I	35	I	Г	I	Ι	CP009344-51	Johnson et al. (2015)
HD1011	General	6,093,375	I	I	35.15	1	4	I	I	CP009332-36	Johnson et al. (2015)
Kurstaki HD 1	Lep	6,859,374	I	I	35		14	I	I	CP009998-012	Johnson et al. (2015)
97-27	1	5,314,794	5343	5,237,682	35.36	I	-	1	105 and 41	I	Han et al. (2006)

According to Bt flagellar antigens, 72 antigenic groups (serotypes) have been distinguished (Blackburn et al. 2013; Lecadet et al. 1999; Lecadet 2013). Crickmore et al. (2016) have designed an especial database for Bt toxins with links to information on host insects, which is continually updated (www.lifesci.sussex.ac.uk/Home/ Neil Crickmore/Bt/). Based on the last updated data in this database (June 2016), about 952 toxin genes, encoding different entomopathogenic proteinaceous toxins, have been identified and characterized in the Bt strains isolated from different regions of the world. Most of these toxins are parasporal inclusions, produced during the sporulation phase. Parasporal inclusion bodies contain crystalline proteins known as delta-endotoxins and classified into two families: Cry and Cyt proteins. Based on the amino acid sequence similarities, up to now, 74 cry gene families (cry1-cry74) with 770 different cry genes and three cvt families (cvt1-cvt3) consisting of 38 cvt genes have been characterized. Other insecticidal proteins are vegetative insecticidal proteins (Vips) produced during the vegetative phase of growth. Up to now, about 138 different vip genes categorized into four groups (vip1*vip4*) have been identified and characterized (Table 2). Based on the Cry, Cyt, and Vip protein contents, each strain may be specifically active towards lepidopteran, dipteran, coleopteran, or hymenopteran pests and even other invertebrates, such as mites and nematodes (Abdelmalek et al. 2015; Salehi Jouzani et al. 2008a,b). The crv1 family contains 14 subfamilies (crv1A–N) which contain 275 cry genes. The majority of the cry1 genes are active against lepidopteran pests. The cry1b and cry11 genes from this family are active also against coleopteran pests (Nazarian et al. 2009). The cry2 family is placed in the second rank with about 82 genes, and their activity is mostly against lepidopteran or dipteran pests. The cry3 family contains 19 genes, which the majority of them are active against coleopteran insects (Table 2). In more details, the cry1, cry9, cry15, cry20, cry51, cry54, cry59, and vip genes are mainly active against the lepidopteran pests. The cry2, cry4, cry10, cry11, cry16, cry17, cry19, cry24, cry25, cry27, cry29, cry30, cry32, cry39, cry40, cry44, cry47, cry48, cry49, cry52, and cyt genes are active against dipteran pests, whereas the cry3, cry7, cry8, cry14, cry18, cry22, cry23, cry26, cry28, cry34, cry35, cry366, cry37, cry38, cry43, and cry55 are coleopteranspecific genes (Table 2). Also, during the last two decades, it has been proved that some cry genes, such as cry5, cry6, cry12, cry13, cry14, cry21, and cry55 have toxicity against plant and animal nematodes (Ruan et al. 2015; Salehi Jouzani et al. 2008b). However, it should be taken into account that some reported nematicidal activities of Cry proteins have been observed when high concentrations of them were used.

Bt and plant genetic engineering

Recent years have witnessed rapid advancements in the application of modern biotechnology, especially in the agriculture. The global acreage of GM crops across the world has dramatically increased during the last 20 years due to their socioeconomic and environmental advantages and reached to 179.7 million ha in 2015 (Salehi Jouzani et al. 2008c; Salehi Jouzani 2012; Tohidfar and Salehi Jouzani 2008; James 2015). The most widely used traits in the plant genetic engineering are herbicide and pest resistance. Bt toxin genes have been extensively used to enhance resistance to pests in crops. In 2015, the acreage of Bt transgenic crops was about 75 million ha (58.5 million ha stacked Bt/herbicide tolerance and 18 million ha Bt crops). These GM crops contain one or more different crv genes for resistance to lepidopteran and/or coleopteran pests (James 2015). The Bt crops have enhanced pesticide application reduction of more than 583 million kg throughout 1996-2014 (Brookes and Barfoot 2015; James 2015).

Since 1996, 198 Bt GM varieties and lines of eight plants, including corn, cotton, potato, soybean, tomato, poplar, rice, and eggplant have been approved for commercial release (Fig. 2). Corn, cotton, and potato with 115, 42, and 30 varieties and lines are the most approved Bt GM crops, respectively (ISAAA's GM Approval Database 2016). Seven antilepidopteran cry and vip genes, including cry1Ab, cry1A.105, cry1Ac, cry1F, cry2Ab, cry2Ae, and vip3A, have been used to enhance resistance to lepidopteran genes. The cry1Ab, cry1F, and cry1Ac are the most used genes to produce lepidopteran-resistant crops, which have been used in 61, 51, and 32 GM varieties, respectively (Fig. 3). Some Bt crops contain more than one cry or vip genes (two or three). These gene-pyramiding systems have been developed to postpone the potential pest resistance to Bt toxins produced in transgenic plants. The number of approved Bt varieties containing anticoleopteran genes is about 111, some of them also contain anti-lepidopteran pests. Four anti-coleopteran cry genes, including cry3Aa, cry3B, cry34Ab1, and cry35Ab1, have been used to enhance resistance towards coleopteran pests. Two cry34Ab1 and cry35Ab1 have been used as a hybrid gene. The cry3A and cry34Ab1-cry35Ab1, as the most used genes to produce coleopteran pests' resistant crops, have been used in 60 and 34 GM varieties, respectively (Fig. 4).

Nevertheless, commercial transgenic crops containing *cry* genes with activity against other insect orders and also against nematodes have not released yet; therefore, more research and development projects should be performed to achieve nematode-resistant crops at commercial level. In addition, in spite of the mentioned advantages, some potential risks on human health and environment have been taken into account for transgenic crops, including *Bt* crops. Typical categories of risks of *Bt* crops include possible unintended negative effects on human and animal health, the possible evolution of

Table 2 The	e summarized	The summarized list of Bt toxin genes and their activities (last updated: June, 2016)	and their activity	ies (last update	ed: June, 2016)						
Gene family	Numbers	Toxicity against	Gene family	Numbers	Toxicity against	Gene family	Numbers	Toxicity against	Gene family	Numbers	Toxicity against
cry1(A–N)	275	Lep or Col	cry23(A)	1	Col	cry45(A-B)	2	ND, AC	cry67(A)	2	ND
cry2(A-B)	82	Dip or Lep	cry24(A-C)	3	Dip	cry46(A)	3	ND, AC	cry68(A)	1	ND
cry3(A–C)	19	Col	cry25(A)	1	Dip	cry47(A)	1	Dip	cry69(A)	3	ND
cry4 (A–C)	17	Dip	cry26(A)	1	Col	cry48(A)	5	Dip	cry70(A)	3	ND
cry5 (A-E)	13	Nem	cry27(A)	1	Dip	cry49(A)	5	Dip	cry7I(A)	1	ND
cry6(A-B)	4	Nem	cry28(A)	2	Col	cry50(A-B)	3	ND	cry72(A)	1	ND
cry7 (A-L)	37	Col	cry29(A-B)	2	Dip	cry5I(A)	2	Lep	cry73(A)	1	ND
cry8 $(A-T)$	59	Col	cry30(A-G)	13	Dip	cry52(A-B)	2	Dip	cry74(A)	1	ND
cry9(A-G)	37	Lep	cry31(A)	12	ND, AC	cry53(A)	2	ND	cytI(A-D)	13	Dip
cry10(A)	5	Dip	cry32(A-W)	31	Dip	cry54(A-B)	5	Lep	cyt2(A-C)	24	Dip
cry11(A-B)	8	Dip	cry33(A)	1	ND, AC, AB	cry55(A)	3	Col and Nem	cyt3(A)	1	Dip
cry12(A)	1	Nem	cry34(A-B)	11	Col	cry56(A)	4	ND	vipI(A-D)	15	Lep
cry13(A)	1	Nem	cry35(A-B)	11	Col	cry57(A)	2	ND	vip2(A-B)	20	Lep
cry14(A)	2	Col or Nem	cry36(A)	1	Col	cry58(A)	1	ND	vip3(A–C)	102	Lep
cry15(A)	1	Lep	cry37(A)	1	Col	cry59(A-B)	2	Lep	vip4(A)	1	Lep
cry16(A)	1	Dip	cry38(A)	1	Col	cry60(A-B)	9	ND	other	9	
cry17(A)	1	Dip	cry39(A)	1	Dip	cry6I(A)	3	ND			
cry18(A-C)	б	Col	cry40(A-D)	4	Dip	cry62(A)	1	ND			
cry19(A-C)	б	Dip, Lep	cry41(A–C)	5	ND, AC	cry63(A)	1	ND, AC			
cry20(A-B)	4	Lep,	cry42(A)	1	ND	cry64(A-C)	3	ND, AC			
cry21(A-H)	10	Nem, Dip	cry43(A–C)	7	Col	cry65(A)	2	ND, AC, AB			
cry22(A-B)	7	Col	cry44(A)	1	Dip	cry66(A)	2	ND			

AB antibacterial, AC anticancer, Col Coleoptera, Dip Diptera, Lep Lepidoptera, ND no known invertebrate target, Nem nematodes

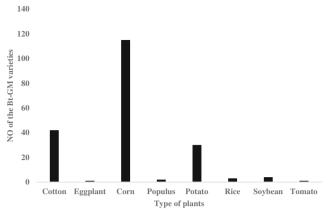
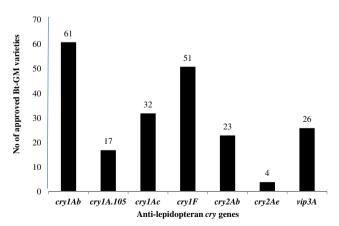



Fig. 2 The list of approved Bt crops for release

resistance in the targeted pest populations, possible effects on non-target organisms, and the transgene escape and expression in a different organism as result of transgene flow (Craig et al. 2008; Raybould 2006; Salehi Jouzani 2012). However, during the last 20 years after commercial production of *Bt* crops, no significant harm has been proved for them.

Bt as biological nematicide

Plant-parasitic nematodes, including cyst nematodes (*Heterodera* and *Globodera* spp.) and root-knot nematodes (*Meloidogyne* spp.), are piercing/sucking pests causing severe damage to different crops. These nematodes cause annual yield loss of approximately \$125 billion globally (Chitwood 2003; Yu et al. 2014, 2015; Zhang et al. 2012). Moreover, animal parasitic nematodes, by increasing the cost of veterinary services, delaying in animal growth and even causing death, are known as one of the most important factors interfering with animal production (Sinott et al. 2012). Although chemical nematicides remain the most current means of controlling root-knot nematodes, the growing concerns of environmental safety and public health lead

Fig. 3 The list of *cry* and *vip* genes used in the approved lepidopteranresistant *Bt* crops

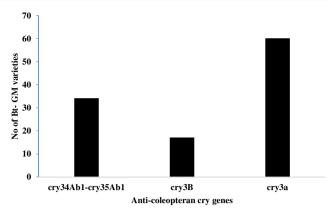


Fig. 4 The list of *cry* genes used in the approved coleopteran-resistant *Bt* crops

to the withdrawal or restricted usage of these kinds of nematicides (Yu et al. 2015).

Some *Bt* strains can infect, germinate, and replicate inside the digestive system of nematodes (Ruan et al. 2015). *Bt* strains, containing one or many families of crystal proteins, i.e., *cry5*, *cry6*, *cry12*, *cry13*, *cry14*, *cry21*, and *cry55*, have been documented to have nematicidal activities (Guo et al. 2008; Luo et al. 2013a,b; Salehi Jouzani et al. 2008b; Yu et al. 2015; Zhang et al. 2012) (Figs. 1 and 5). Moreover, these Cry proteins have synergistic effects on nematodes when present in the *Bt* strains (Yu et al. 2014). Accordingly, the expression of recombinant nematode-active Cry proteins expressed in the plants provides protection against plant-endoparasitic nematodes (Li et al. 2007, 2008).

Moreover, a few of other Bt compounds, such as thuringiensin (Devidas and Rehberger 1992; Sánchez-Soto et al. 2015), chitinase (Zhang et al. 2014), and metalloproteinase (Luo et al. 2013b), show nematicidal activities (Fig. 5). Other genes encoding nematicidal factors, including lantibiotics, enterotoxins, hemolysins, and proteases mostly controlled by the transcriptional activator PlcR, has been confirmed (Ruan et al. 2015; Zhou et al. 2014). Peng et al. (2016) proved that the presence of metalloproteinase ColB (collagenase protein) is very necessary to enhance nematicidal activities of Cry5 and Cry6 proteins. Ruan et al. (2015) have proposed two other alternative mechanisms (necrotrophism and phoresis) for Bt interactions with nematodes. Recent sequencing projects have confirmed that the genes involved in the necrotrophic life stage are under the control of the NprR (a transcriptional factor whose activity depends on the NprX signaling peptide and involves in the necrotrophism mechanism) regulator (Dubois et al. 2012). Three proteins, keratinolytic proteinase, collagenase (regulated by a pleiotropic transcriptional factor (PlcR)), and immune inhibitor A, enable a necromenic lifestyle of Bt. The keratinolytic proteinase digests collagen contents in the nematode cuticle. The second alternative mechanism is phoresy, in which Bt is carried by the nematode, either on its surface or within its intestinal tract without killing the host (Ruan et al. 2015).

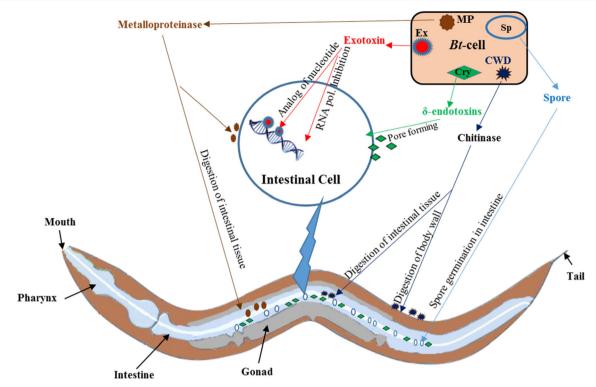


Fig. 5 Mode of action of Bt against nematodes. The crystal proteins destroy the intestine following spore germination. Multi-pathogenic factors, such as chitinase, metalloproteinase, and exotoxin, which produced during Bt cell growth, can act synergistically with crystal

proteins. *CWD* cell wall-degrading enzymes (chitinase), *Cry* crystal proteins (δ -endotoxins), *Ex* exotoxin (thuringiensin), *Mp* metalloproteinase, *Sp* spore

The nematicidal activities of *Bt* strains have been tested against different free-living nematodes, such as Caenorhabdita elegans, Pristionchus pacificus, and Chiloplacus tenuis (Devidas and Rehberger 1992; Iatsenko et al. 2014a; Luo et al. 2013a,b; Salehi Jouzani et al. 2008b), animal parasitic nematodes, such as Ascaris suum, Distolabrellus veechi, Haemonchus contortus, Trichostrongylus sp., and Ostertagia circumcincta (Kotze et al. 2005; Sinott et al. 2012; Urban et al. 2013), and plant parasitic nematodes, such as Meloidogyne incognita, Meloidogyne halpa, Pratylenchus scribneri, Tylenchorhynchus sp., Ditylenchus destructor, and Aphelenchoides sp. (Guo et al. 2008; Khan et al. 2010; Mohammed et al. 2008; Salehi Jouzani et al. 2008b; Yu et al. 2015; Zhang et al. 2012; Zi-Quan et al. 2008). The recent studies on nematicidal activities of Bt strains or their Cry proteins are summarized in Table 3. As it is clear in the Table 3, the LC₅₀ of the Cry proteins/spores for nematodes in the most of the reports was quite low. This raises hope for future application Bt strains as bionematicide. However, in spite of proving nematicidal activity of some Bt strains, there is no commercial Bt-based nematicide product in the world at the moment. This limited application may be because of ambiguity in mechanisms of nematicidal activity or low efficiency of some Bt strains.

Acaricidal effects of Bt

Some mite and tick species colonize humans and animals directly and also act as vectors for disease transmission or cause allergenic diseases. Although information concerning the effect of Bt on mites is rare, a few in vitro and in vivo studies have reported the acaricidal activity of some Bt strains (Erban et al. 2009; Dunstand-Guzmán et al. 2015; Alguisira-Ramírez et al. 2014). In the first reports, Hassanain et al. (1997) evaluated the acaricidal activities of three Bt subspecies (kurstaki, israelensis, and thuringiensis) against the soft tick Argas persicus and the hard tick Hyalomma dromedarii. The Bt. var. kurstaki and Bt var. israelensis showed the highest toxicity, respectively. The acaricidal effect of the Bt. var. kurstaki against the blacklegged tick, Ixodes scapularis Say, which acts as a vector for several animal and human diseases, has been also confirmed (Zhioua et al. 1999). In another study, Bt var. tenebrionis producing Cry3A toxin showed high toxicity (LC50 25 to 38 mg/g) against the mites Acarus siro L., Tyrophagus putrescentiae, Dermatophagoides farinae, and Lepidoglyphus destructor (Erban et al. 2009). Alquisira-Ramírez et al. (2014) isolated and characterized some Bt strains with high acaricidal activity from mite Varroa destructor (Acari: Varroidae), an ectoparasitic mite that feeds on the hemolymph of bee Apis mellifera (Hymenoptera: Apidae). Another group firstly reported the

Table 3 The list of <i>Bt</i> strains with hematicidal activities	Table 3	The list of <i>Bt</i> strains with nematicidal activities
--	---------	---

Bt strain	Gene/protein	Nematicidal activities against	Host	Nematicidal efficiency	Reference
YBT-021	ND	Meloidogyne hapla Pratylenchus scribneri	Vegetables Ramie	LC ₅₀ 35.62 μg/ml LC ₅₀ 75.65 μg/ml	Zi-Quan et al. (2008)
		Tylenchorhynchus sp.	Ramie	LC ₅₀ 94.31 µg/ml	
		Ditylenchus destructor	Sweet potato	LC ₅₀ 215.21 µg/ml	
		Aphelenchoides sp.	Different plants	LC ₅₀ 128.76 µg/ml	
ND	Exotoxin	Meloidogyne incognita Caenorhabdita elegans	Vegetable Free living	10 mg/kg soil 15.6 μg/ml	Devidas and Rehberger (1992)
BMB171-15	cry6Aa2	Caenorhabdita elegans	Free living	LC ₅₀ 7.43 µg/ml	Luo et al. (2013a)
BMB0224 BMB0250	cry55Aa1 cry6Aa2	Meloidogyne hapla	Vegetables	LC ₅₀ 23.2 μg/ml LC ₅₀ 23.9 μg/ml	Guo et al. (2008)
BMB0215	cry5Ba2			LC ₅₀ 18.1 µg/ml	
DB27	Cry21Fa1 Cry21Ha1	Caenorhabdita elegans	Free living	LC ₅₀ 13.6 μg/ml LC ₅₀ 23.9 μg/ml	Iatsenko et al. (2014a,b)
Bt7 and Bt7N	_	Meloidogyne incognita	Vegetables	LC ₅₀ 34-37 µg/ml	Mohammed et al. (2008)
<i>Bt</i> -64	_	Meloidogyne javanica	Vegetables	51% mortality	Khan et al. (2010)
YD5 and KON4	_	Meloidogyne incognita Chiloplacus tenuis	Vegetables Free living	81% mortality 77% mortality	Salehi Jouzani et al. (2008a,b,c)
		Acrobeloides enoplus	Free living	71% mortality	
BMB171-15	Cry6Aa2	Meloidogyne hapla	Vegetables	LC ₅₀ 71.08 µg/ml	Yu et al. (2015)
<i>Bt</i> 010	Chitinase	Caenorhabdita elegans	Free living	48.4% mortality (48 h)	Zhang et al. (2014)
Bt. osvaldocruzi Bt. kurstak	-	Haemonchus contortus	Sheep	47.5% 33.2%	Sinott et al. (2012)
Bt. israelensis	_			14.1%	
<i>Bt</i> WA 3.4.9	Cry5A, Cry5B, and Cry13	Haemonchus contortus	Animals	LC ₅₀ 26 ng/ml	Kotze et al. (2005)
		Trichostrongylus sp.	Animals	LC ₅₀ 47 ng/ml	
		Ostertagia circumcincta	Animals	LC ₅₀ 81 ng/ml	
Bt L366	Cry5A, Cry5B, and Cry13	Haemonchus contortus Trichostrongylus sp.	Animals Animals	LC ₅₀ 41 ng/ml LC ₅₀ 127 ng/ml	Kotze et al. (2005)
		Ostertagia circumcincta	Animals	LC ₅₀ 10 ng/ml	
_	Cry5B	Ascaris suum	Animals	100% mortality (25 ng/kg)	Urban et al. (2013)
-	Metalloproteinase ColB (collagenase)	Caenorhabdita elegans	Free living	Significantly improved toxicity of Cry5 and Cry6	Peng et al. (2016)

acaricidal activity of the *Bt* strain GP532 (LC₅₀ 1.3 mg/ml and LT₅₀ 68 h) on the mite *Psoroptes cuniculi*, known as a common ectoparasite of rabbit ear (Dunstand-Guzmán et al. 2015). Recently, a novel *Bt* strain (BPU5) was isolated from the rumen of Malabari goat, which was efficiently toxic to *Tetranychus macfarlanei* (LC₅₀ 8 mg/ml), a sucking mite infesting different crops and ornamentals (Neethu et al. 2016). Ahmed et al. (2016) reported the acaricidal activities of *Bt* var. *israelensis* (81.22% mortality) and *tenebrionis* (90. 91% mortality) against *T. putrescentiae* (Schrank), a mold mite *which is* a cosmopolitan pest of stored food products, at the rate of 32 mg/kg after 4 weeks.

In spite of confirmation of acaricidal activity of Bt strains against different ticks and mites, the mechanism of action of *acaricidal Bt* strains is unknown yet. However, the presence of enzymes like trypsin, alkaline phosphatase, and some aminopeptidases on the digestive system of the studied mites, suggests that alterations in the intestinal cells of the mites may be due to activation of Bt protoxins (Dunstand-Guzmán et al. 2015). Exploring the mechanism of action of Bt in the mite digestive system is one of the subjects which should be taken into account for the future studies on Bt. However, to have high acaricidal activity, high doses of Cry proteins/ spores (mg/ml) are required which make it impractical to use Bt as bioacaricide at commercial level. At the moment, there is no commercially available Bt products for control of mite and tick species in the world. Therefore, it will be necessary to explore new Bt strains with more powerful acaricidal activity in the future.

Bt as plant growth-promoting bacteria

Commonly, bacterial strains with beneficial effects on plant growth and development are referred to as plant growth-promoting rhizobacteria (Mishra et al. 2009a). Some strains of *Bt* colonize plant roots and have plant growth-promoting characteristics. These *Bt* strains have potentials to be used solely or in mixture with other microorganisms as biofertilizer in the agriculture (Armada et al. 2015a,b; Bai et al. 2003; Mishra et al. 2009a,b). Bai et al. (2003) confirmed that the *Bt strain* NEB17 significantly enhance soybean nodulation, growth, and yield parameters compared to *Bacillus subtilis* strains when they co-inoculated with *Bradyrhizobium japonicum* onto soybean plants. Coinoculation of an IAA-producing *Bt strain* KR1 with *Rhizobium leguminosarum*-PR1 could significantly promote the growth of field pea and lentil compared to inoculation of *R. leguminosarum*-PR1 solely (Mishra et al. 2009a). The coinoculation of *Bt*-KR1 with *B. japonicum*-SB1 also promoted the growth of soybean plants and provided a significant increase in nodule number, shoot weight, root weight, root volume, and total biomass compared to rhizobial inoculation and control (Mishra et al. 2009b).

Many *Bt* strains produce some metabolites which enhance plant growth at abiotic stress conditions. These compounds include ACC deaminase, indole-3-acetic acid (IAA), proline,

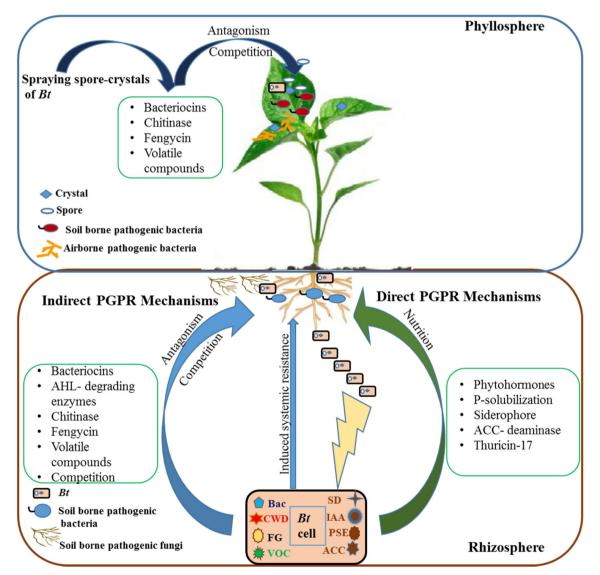


Fig. 6 Mechanisms of *Bt* as PGPR and antagonist of plant pathogenic bacteria and fungi. *AHL N*-acylhomoserine lactone, *ACC* ACC deaminase, *Bac* bacteriocin, *CWD* cell wall-degrading enzymes, *FG*

fengycin, *IAA* indole-3-acetic acid, *PSE* phosphate solubilization enzymes, *Sp* spore, *VOCs* volatile compounds

and phosphate solubilization enzymes (Fig. 6). Armada et al. (2015a) showed that when Bt was used solely or mixed with arbuscular mycorrhizal fungi (AMF), it could significantly result in an increase of shoot growth, biomass (more than 20%), and micronutrient elements in the plant shoots. It also could substantially reduce the oxidative stress through increasing antioxidant enzyme activities (superoxide dismutase, catalase, and ascorbate peroxidase) and reduction of the plant oxidative damage of lipids (malondialdehyde). In another study, the combined inoculation of Bt and AMF to maize under drought stress could significantly increase the accumulation of nutrients in the plant and decrease the oxidative damage to lipids and accumulation of proline (Armada et al. 2015b). Also, application of autochthonous microorganisms (a consortium of Bt and AMF) enhanced a significant increase in water stress alleviation for Trifolium repens in a natural arid soil under drought conditions via increasing nutrient contents and the relative water content and decreasing stomatal conductance, electrolyte leakage, proline, and ascorbate peroxidase activity (Ortiz et al. 2015).

Lee et al. (2009) confirmed that the application of bacteriocin (thuricin-17) purified from Bt strain NEB17 to leaves (spray) or roots (drench) directly stimulated the growth of both a C3 dicot (soybean) and a C4 monocot (corn) plants. Application of thuricin-17 with the N2-fixing B. japonicum under water stress condition could significantly increase plant biomass (17%), root biomass (37%), nodule biomass (55%), root abscisic acid (30%), and total nitrogen amount (17%)(Prudent et al. 2015). Recently, Cherif-Silini et al. (2016) reported the plant growth-promoting rhizobacteria (PGPR) activity for the Bt and B. subtilis strains isolated from the wheat rhizosphere in different regions of Algeria. These strains showed the maximum biofertilization (phosphate solubilization), biostimulation (IAA production), and biocontrol activities (cyanhydric acid, siderophores, and 2,3-butanediol production and antifungal activity). The possible PGPR mechanisms of Bt are summarized in the Fig. 6.

The results of previous studies on PGPR activity of *Bt* strains are very promising. Nevertheless, at the present time, there is no commercially available *Bt*-based PGPR formulation in the biofertilizer market. By finding new *Bt* strains with powerful PGPR activities and exploring details of PGPR activity of those *Bt* strains, commercial production of PGPR *Bt* strains will be available in the near future for different crop systems.

Bt as antagonist of plant and human pathogenic fungi

Commonly, antifungal effects of biocontrol agents are due to various antifungal compounds, such as antibiotics, lipopeptides, siderophores, volatile organic compounds, secondary metabolites, and cell wall-degrading enzymes. The signaling molecules inducing systemic resistance in plants should be taken into account (Gao et al. 2014; Pane et al. 2012; Shrestha et al. 2015). Cry proteins synthesized by *Bt* do not show any antifungal activity. However, some *Bt* strains produce antifungal compounds, including cell wall-degrading enzymes, lipopeptide fengycin, volatile compounds (VOCs), and signaling molecules inducing systemic resistance (Fig. 6). The antifungal activities of *Bt* strains against different plant pathogenic fungi, such as *Fusarium*, *Sclerotium*, *Colletotrichum*, *Rhizoctonia*, and *Botrytis*, have been previously confirmed (Akram et al. 2013; Reyes-Ramírez et al. 2004; Sadfi et al. 2001; Shrestha et al. 2015; Tang et al. 2012; Zheng et al. 2013).

Chitinase activity is known as one of the most important antifungal agents detected in *Bt* strains. Chitinase-producing *Bt* strains have showed high antifungal activities against *Fusarium roseum* var. *sambucinum*, the causal agent of the dry rot of potato tubers (Sadfi et al. 2001), *Sclerotium rolfsii* Sacc (Reyes-Ramírez et al. 2004), *Penicillum chrysogenum* (causal agent of human disease), *Rhizoctonia* sp. and *Fusarium oxysporum* (Gomaa 2012), *Sclerotinia minor* and *Sclerotinia sclerotiorum, the causal agents of lettuce drop disease* (Shrestha et al. 2015), *Urocystis tritici*, the causal agent of the wheat flag smut (Tao et al. 2014), *Fusarium verticillioides* (maize pathogen) (Rocha et al. 2014), and *Botrytis cinerea*, the causing agent of mold disease in fruit and crop production (Martínez-Absalón et al. 2014).

Moreover, recent studies have confirmed the systemic resistance induction by Bt strains in plants against different fungal pathogens. For instance, when roots of 2-week-old tomato seedlings were primed with vegetative cells of Bt-199 (CFU 10^{3}) by keeping them in inoculum for 30 min and then transferred into pots, the bacterium could induce systemic resistance in tomato against F. oxysporum lycopersici wilt, by a significant increase of the quantity of total phenolics (1.7-fold) and defense-related enzymes, including polyphenol oxidase (1.3-fold), phenyl ammonia lyase (1.8-fold), and peroxidase (1.4-fold). Nevertheless, the mechanism for increase of these metabolites by Bt strains is not clear (Akram et al. 2013). In another study, chitinase extracted from Bt-H3 could significantly inhibit mycelial growth of several pathogenic fungi, including Pyricularia grisea (72.2%), Thantephorus cucumris (Rhizoctonia solani) (62.6%), Fusarium vasinfectum (44.6%), Fusarium gramineum (50.0%), and F. oxysporum (55.8%). The strain could significantly increase rice seedlings' defense enzyme activity, including phenylalanine ammonia lyase (PAL) and peroxidase (POD) (Tang et al. 2012).

Another antifungal mechanism of *Bt* is the production of fengycin-like and volatile compounds (Fig. 6). Kim et al. (2004) purified a lipopeptide (fengycin) from *Bt* CMB26 with potent toxicity against phytopathogenic anthracnose fungus *Colletotrichum gloeosporioides, Escherichia coli,* and cabbage white butterfly (*Pieris rapae crucivora*). Another study reported that the *Bt-TB72* produces different volatile compounds, such as

2-nonanone, β -benzeneethanamine, 2-decanone, and thymol. These compounds *could inhibit* 80.07 and 87.06% of the mycelial growth of *C. gloeosporioides* in postharvest mangos at in vitro and in vivo levels, respectively (Zheng et al. 2013).

Many *Bt* strains also can control some human and animal pathogenic fungi, such as *Candida albicans*, *Aspergilus niger* (Roy et al. 2013), and *P. chrysogenum* (Gomaa 2012). For instance, *Bt* strain SM1 produces a fengycin-like lipopeptide with high antifungal activities against *C. albicans* and *A. niger* (Roy et al. 2013). Information about antagonistic effects of *Bt* strains against human and animal pathogenic fungi is less, and accordingly, more detailed research is necessary to be performed in the future to find ways to use these antifungal properties in the plant protection, medicine, and food industries.

Bt as antagonist of pathogenic bacteria

Some *Bt* strains may have antibacterial activities against the plant and human pathogenic bacteria and those bacteria involving in food degradation. The mechanism of antibacterial activities of *Bt* includes the production of bacteriocins (Ahern et al. 2003; Cherif et al. 2001; Paik et al. 1997) and signal interference by *N*-acylhomoserine lactone (AHL)-degrading enzymes (Dong et al. 2004).

Commonly, prokaryotes produce different antimicrobial peptides to enhance their defense against other microorganisms. Bacteriocins are the small thermotolerant antimicrobial peptides with molecular masses between 3 and 12 kDa and are ribosomally synthesized during the stationary phase. They mostly affect the growth and (or) viability of other bacteria (de la Fuente-Salcido et al. 2013). Some studies reported bacteriocin production during the sporulation and Cry synthesis in Bt strains (Ahern et al. 2003; Barboza-Corona et al. 2007; Cherif et al. 2001; de la Fuente-Salcido et al. 2013; Kamoun et al. 2011). Recently, de la Fuente-Salcido et al. (2013) have reported a list of different types of bacteriocins synthesized by Bt strains. Up to now, 18 different types of bacteriocins have been isolated and purified from Bt subspecies (during vegetative growth period), including morrisoni, kurstaki, kenyae, entomocidus, tolworthi, tochigiensis, and thuringiensis. Bt bacteriocins may show a wide or narrow bactericidal or bacteriostatic effects (de la Fuente-Salcido et al. 2013).

Bt as antagonist of plant pathogenic bacteria

Some *Bt* strains, which produce different types of bacteriocins and AHL-degrading enzymes, can potentially be used as the antagonist in the biocontrol of plant pathogenic bacteria (Fig. 6). The AHL-degrading enzyme (AiiA) produced by some *Bt* strains can attenuate the virulence of pathogenic bacteria, such as *Erwinia carotovora*, the causal agent of soft rot in the root system of the pepper plant. The antibacterial activity of AiiA is due to the quorum-quenching mechanism (Park et al. 2008). The antibacterial activities of the Bt-derived bacteriocins against different plant pathogenic bacteria, such as Agrobacterium tumefaciens (Bacthuricin F103; Kamoun et al. 2011), Pseudomonas syringae, Pseudomonas savastanoi, Paucimonas lemoignei (Thuricin Bn1; Ugras and Demirbag 2013), and B. cinerea have been reported (Hong et al. 2015; Jeong et al. 2016). Moreover, the presence of Bt (vegetative cells) in mixtures with other bacterial (Citrobacter farmer and Streptomyces avermectinius) and fungal (Paecilomyces variotii, Trichoderma parareesei TPJ-S-1, and Trichoderma viride TVJ-S-1) antagonists significantly improved their efficiency to control Ralstonia solanacearum in Naga chilli (Bora et al. 2015), tomato (Elsharkawy et al. 2015), and eucalyptus (Santiago et al. 2015). Bora et al. (2015) reported that the combination of Bt, T. parareesei, and T. viride shows the maximum antagonistic effect (91.47%) against R. solanacearum, compared to other treatments and control. In another study, the treatment of tomato roots with Bt CR-371 and S. avermectinius suppressed bacterial wilt diseases (caused by R. solanacearum) and rootknot nematode diseases (Elsharkawy et al. 2015).

Bt as an agent for control of human and animal pathogenic bacteria

Some Bt bacteriocins have high potentials to be used as excellent alternatives for the traditional antibiotic treatment against different human or animal pathogenic bacteria. They also may be used as biodegradable natural and safe food preservatives in food packaging to inhibit the growth of enterotoxigenic bacteria and to extend the shelf life of foods. The combination of Bt bacteriocins with nisin can improve their antibacterial activities (Cherif et al. 2008; de la Fuente-Salcido et al. 2008, 2013; Paik et al. 1997).

For instance, a Bt fengycin-like lipopeptide showed antibacterial activity against E. coli and Staphylococcus epidermidis (Roy et al. 2013). Some bacteriocin-like compounds produced by Mexican Bt subspecies morrisoni, kurstaki, kenyae, entomocidus, and tolworthi showed high levels of activity against Bacillus cereus and Vibrio cholerae, the agents of emetic, diarrheal, and lethal syndromes in humans (Barboza-Corona et al. 2007). Bacthuricin F103, Thuricin S, and Thurincin H show high antibacterial activity against Listeria monocytogenes and B. cereus, and Thuricin 7 prevented spoilage of raw milk and dairy products caused by Bacillus weihenstephanensis (Cherif et al. 2001). Thuricin S has antibacterial activity against a broad spectrum of bacteria, such as L. monocytogenes, B. cereus, S. enterica subsp. enterica serovar cholerae, and Pseudomonas aeruginosa, and accordingly, it is feasible to be used as a natural food preservative in the food industry (Chehimi et al. 2012; de la Fuente-Salcido et al. 2013). Also, Morricin 269, Kurstacin

287, Kenyacin 404, Entomocin 420, and Tolworthcin 524 have a broad effect against foodborne pathogenic bacteria, such as *B. cereus, Listeria innocua, L. monocytogenes, V. cholerae, Staphylococcus aureus, Staphylococcus xylosus, Shigella flexneri, Salmonella* spp., *Streptococcus pyogenes,* and *E. coli,* and other human pathogens, including *Klebsiella pneumoniae, Proteus vulgaris, Enterobacter cloacae,* and *Enterococcus faecium* (Barboza-Corona et al. 2007, 2009; de la Fuente-Salcido et al. 2008, 2013).

Bt bacteriocins also have the potential to be used in apiculture industry. Entomocin 110 is active against *Peanibacillus larvae*, the causal agent of foulbrood disease in honeybee larvae (*A. mellifera*) and other *Apis* spp. (pollinators insect), and therefore could be used as a natural and environmentally safe alternative to antibiotics, such as oxytetracycline, to control *P. larvae* (Cherif et al. 2008; de la Fuente-Salcido et al. 2013).

Bt as a source for biosynthesis of metal nanoparticles

Metal nanoparticles (NPs), due to their advanced physicochemical properties and their wide applications in different industries, have attracted attention. Various biological systems, such as bacteria, fungi, plant extracts, and other biological-based products, have been used for the green synthesis of different metal NPs (Juibari et al. 2011, 2015; Okafor et al. 2013). The synthesized NPs using microbes show significant advantages, like being clean, non-toxic, and ecofriendly, and it is also possible at ambient temperature and pressure. Consequently, several bacterial and fungal strains have been used to produce NPs (Das et al. 2014a,b; Nayak et al. 2016).

Some recent studies have proved the ability of Bt strains to produce metal NPs, such as silver (Banu et al. 2014; Jain et al. 2010; Nayak et al. 2016) and cobalt (Marimuthu et al. 2013). Jain et al. (2010) for the first time reported the high efficient silver NP green synthesis using the spore-crystal mixture of Bt. The average particle size was about 15 nm with mixed (cubic and hexagonal) structure. The AgNPs were found to be highly toxic to different multi-drug-resistant human pathogenic bacteria, including E. coli, P. aeroginosa, and S. aureus. It has been previously confirmed that some bacteria contain reducing enzymes which involve in reduction of metal ions to nanoparticles. Therefore, it may have concluded that some Bt strains contain reducing enzymes for NP biosynthesis. Marimuthu et al. (2013) have reported cobalt nanoparticle biosynthesis (Co-NPs) using a Bt strain and confirmed that Co-NPs have high larvicidal activities against malaria vector, Anopheles subpictus, and dengue vector, Aedes aegypti (Diptera: Culicidae), with LC50 values of 3.59 and 2.87 mg/ l, respectively. In another study, Banu et al. (2014) confirmed the larvicidal activity of silver nanoparticles (AgNPs) synthesized by Bt against A. aegypti (LC₅₀ 0.10 ppm and LC₉₀

0.39 ppm). Moreover, recently, the protocol to fabricate and purify silver NPs in stable form during *Bt* cell growth was optimized (Nayak et al. 2016).

As the biosynthesis of nanoparticles using microorganisms and plant extracts is costlier than that of mechanical or chemical synthesis, efforts for designing cost-effective process for biosynthesis of NPs will be continued.

Bt as the agent for bioremediation of heavy metals and pollutions

Heavy metals, pesticides, herbicides, and petroleum derivate are known as the principal source of environmental and human health concerns nowadays. These compounds can accumulate readily in the food chain and, consequently, cause hazards to the higher trophic levels (Chen et al. 2015a,b,c; Dash et al. 2014; Huang et al. 2014a,b; Thamer et al. 2013). Some Bt strains efficiently degrade some toxic pollutants. These strains can accumulate, degrade, or mineralize toxic heavy metals. Previously, Bt-based bioremediation of arsenic, cadmium, lead, copper, nickel, zinc, chromium, mercury, and uranium has been reported (Table 4). Moreover, some Bt strains can degrade persistent pesticides and herbicides, such as phenanthrene, imidacloprid (Ferreira et al. 2016), fipronil (Mandal et al. 2013), chlorpyrifos (Aceves-Diez et al. 2015; Wu et al. 2015), cyhalothrin, phenoxybenzoic acid (Chen et al. 2015a), triphenyltin (an organotin herbicide), diphenyltin, and monophenyltin (Huang et al. 2014a). Also, Bt-based efficient degradation of petroleum pollutions (diesel fuel and crude oil), polycyclic aromatic hydrocarbons (fluoranthene and pyrene (Kebria et al. 2009; Maiti et al. 2012; Thamer et al. 2013)), dyes (methylene blue (El-Sersy 2007) and acid red 119 (Dave and Dave 2009)), organic wastes (distillery effluent (Kumar and Chandra 2004), malachite green (Olukanni et al. 2013), and melanoidins (Kumar and Chandra 2006)), and also plasticizer materials (dimethyl phthalate (Brar et al. 2009; Surhio et al. 2014)) has been reported (Table 4). Accordingly, these findings confirm that Bt strains will find a significant place in bioremediation projects in the future. However, there is no Bt-based commercial product for bioremediation purposes, and therefore, it is neccessary to perfom more research and development projects to open way for commercialization of these products.

Anticancer characteristics of Bt

Cry toxins are primarily known as a family of insecticidal toxins produced by *Bt*. However, some *Bt* Cry proteins, such as Cry31A, Cry41A, Cry45A, Cry46A, Cry63A, and Cry64A, called as parasporins (PSs), do not show any insecticidal and hemolytic activity, nevertheless, have strong

Bioremediation activity	Specific activity	Strain	Degradation efficiency	Reference(s)
Heavy metals	Mercury(II), copper, and chromium	Bt var. thuringiensis, serotype 1	42.7, 18.7, and 8.9% of metals, respectively	Hassen et al. (1998)
	Mercury	Bt strain PW05	70–95%	Dash et al. (2014)
	Zinc and lead	Bt strain Simi	54% after 4 days	Kumar et al. (2015)
	Cadmium, lead, and copper	Bt strain L14	76, 80, and 21%, respectively	Guo et al. (2010)
	Cadmium, chromium, copper, lead, and nickel	Bt strain OSM29	Ni (94%), Cu (91.8%), and Cd (87%) of 25 mg/l	Khan and Zaidi (2013)
	Arsenic, copper, lead, nickel, and zinc	Bt strain GDB-1	8–77%	Babu et al. (2013)
	Uranium(VI)	Bt strain BRC-ZYR3	400 mg U/g biomass (dry weight)	Pan et al. (2015)
	Chromium	Bt strain Cr-S1	87.04% within 24 h	Jahan et al. (2016)
	Lead(II)	Bt strain 016	Biosorption 164.77 mg/g	Chen et al. (2015a,b,c)
	Nickel	Bt strain KUNi1	82% of 2 mM Ni	Das et al. (2014a,b)
	Chromium (Cr)	Bt strain BRC-ZYR2	25–75 mg/l after 24	Huang et al. (2014a,b)
Pesticides and herbicides	Phenanthrene and imidacloprid	Bt from marine sediment	-	Ferreira et al. (2016)
	Fipronil	Bt strain from sugarcane fields	100% after 42 days	Mandal et al. (2013)
	Chlorpyrifos	Bt strain Bts	More than 83% degradation	Aceves-Diez et al. (2015)
	Cyhalothrin and 3-phenoxybenzoic acid	Bt strain ZS-19	100% of 100 μg/ml and 80% of 800 μg/ml within 72 h	Chen et al. (2015a)
	Chlorpyrifos	Bt strain BRC-HZM2	88.9% after 48 h	Wu et al. (2015)
	Triphenyltin	Bt from contaminated sediments	70–80%	Huang et al. (2014a,b)
Oil pollutions	Diesel fuel	<i>Bt</i> strain R	85.20% of diesel fuel	Kebria et al. (2009)
and plasticizers	Light crude oil	Bt strain	Up to 80%	Thamer et al. (2013)
	PAH (fluoranthene and pyrene)	Bt strain NA2	Up to 70%	Maiti et al. (2012)
	Dimethyl phthalate (DMP)	Bt from cotton field soil	99% of 400 mg/l of DMP	Surhio et al. (2014)
	Dimethyl phthalate	Bt var. kurstaki	97–99% of 500 mg/l DMP	Brar et al. (2009)
Dyes	Acid red 119 and actual azo	Bt strain SRDD	50-70% decolorization	Dave and Dave (2009)
	Methylene blue	Bt strain 4G1	98%	El-Sersy (2007)
	Malachite green	Bt strain RUN1	85%	Olukanni et al. (2013)
	Ethidium bromide	Bt strain PSU9	Large portion of EtR was degraded	Sukhumungoon et al. (2013)
Organic wastes	Chicken feather waste (keratin)	Bt israelensis H14 (IPS-82)	100% of 5 g/l keratin	Poopathi and Abidha (2008)
	Distillery effluent	MTCC 4714	40–50%	Kumar and Chandra (2004)
	Synthetic molasses melanoidins	MTCC 4714	6–50%	Kumar and Chandra (2006)

Table 4 Ability of Bt strains to be used as source of bioremediation of different environmental pollutant materials

cytocidal activity against human cancer cells (without affecting normal ones) when digested with proteases (Ammons et al. 2016; Ohba et al. 2009). The Committee of Parasporin Classification and Nomenclature have registered 19 different parasporins, which are grouped in six subclasses (PS1, PS2, PS3, PS4, PS5, and PS6) according to their amino acid sequence homology (Ammons et al. 2016; Ohba et al. (2009); Okumura et al. 2011). Anticancer activities of the parasporins have been confirmed against different cancer cells, such as human cervical cancer cells (HeLa (Brasseur et al. 2015; Katayama et al. 2005; Krishnan et al. 2010; Mizuki et al. 1999) and SiHa (Periyasamy et al. 2016)), murine lymphoma L5178YR cell line (Franco-Molina et al. 2016), human leukemia T cells (MOLT-4 (Hayakawa et al. 2007; Katayama et al. 2005; Mizuki et al. 1999; Okumura et al. 2005)), CEM-SS (Krishnan et al. 2010), human uterus endometrium adenocarcinoma cell lines Hec-1A and KLE (Brasseur et al. 2015), myeloid leukemia cells (HL60) and liver (hepatocyte) cancer cell (HepG2 (Brasseur et al. 2015; Katayama et al. 2005; Okumura et al. 2005; Yamashita et al. 2005)), human epithelial colorectal adenocarcinoma cell line (CACO-2 (Brasseur et al. 2015; Okumura et al. 2005), endometrial adenocarcinoma (Sawano (Okumura et al. 2005)), adherent human colon cancer cells (HT-29 (Krishnan et al. 2010), HCT-250 (Okumura et al. 2005; Poornima et al. 2010), HCT 116 and SW620 (Periyasamy et al. 2016)), human prostate cancer cell line (PC-3 (Brasseur et al. 2015; Hayakawa et al. 2007)), human histiocytic lymphoma (U-937 (Okumura et al. 2005; Poornima et al. 2010)), and human breast cancer cell lines (MCF-7 and MDA-MB231 (Brasseur et al. 2015) and Jurkat cells (Hayakawa et al. 2007)).

Recently, the significant increase in the incidence of cancer and the limitations of the existing treatment methods have pushed scientists to perform intensive research projects to find new efficient therapeutic agents. Since parasporins are known as potential candidates for targeted anticancer therapy, characterization of their mode of action, which is probably through receptor mediation, is of importance (Periyasamy et al. 2016; Poornima et al. 2010). The known parasporins exhibit a different mode of action against various cancer cell lines (Ekino et al. 2014; Mizuki et al. 1999; Periyasamy et al. 2016; Yamashita et al. 2005). PS-1 induces cancer cell death by activating signals of apoptosis and increasing Ca²⁺ concentration. The beclin-1 in the HeLa cell line acts as the receptor of PS-1 (Katayama et al. 2005). PS-2 is a pore-forming toxin and serves as a cytolysin through targeting on the cancer cell plasma membrane. The structure and function of this parasporin are similar to insecticidal Cry proteins and therefore requires glycosylphosphatidylinositol-anchored proteins for its oligomerization and pore formation on cancer cells (Aldeewan et al. 2014). PS-3 and PS-6 have similar three-domain structure to insecticidal Cry toxins. They may also act as a poreforming toxin, which affects the cancer cell plasma membrane (Aldeewan et al. 2014; Yamashita et al. 2005). PS4 kills cancer cells through non-specifically binding to the plasma membrane and forming oligomeric complexes in the target cell membranes (Aldeewan et al. 2014; Okumura et al. 2011). At the present time, there is no Bt-based pharmaceuticals as anticancer bioproducts in the market, but by exploring the details of Bt-parasporin mechanisms of action against different cancers, these proteins may practically be used in the future as the anticancer pharmaceuticals.

Future considerations

Bt has been used for decades as the most successful microbial insecticide in agriculture and medicine sectors, and it is expected that this advancing trend will be well continued in the future. During the last two decades, *Bt* recombinant toxin genes have been widely used to enhance resistance to insect

pests in crops. Currently, the share of Bt crops, containing one or more different cry genes for resistance to lepidopteran and/or coleopteran pests, is a striking part of the global acreage of all transgenic crops, and this adoption trend expected to be increased in the future. One of the promising strategies is pyramiding of Bt toxin genes in Bt wild-type strains or GM plants to expand their pest control efficacy and range and also to delay pest resistance to bioinsecticide or Bt transgenic crops. Besides its broad application as insecticide and gene source for genetic engineering, over the past several years, different studies have confirmed new characteristics which make Bt as a suitable candidate for applications in other avenues. These potential applications of Bt include biocontrol of plant nematodes and mites, antagonistic effects against plant and animal pathogenic bacteria and fungi, plant growth-promoting activities, bioremediation of different pollutants, biosynthesis of different nanoparticles, and anticancer activities. Among these characteristics, one promising field is the potential for Bt proteins to act against cancer cells due to the production of parasporins, toxins that have a cytotoxic effect on the cells changed by some cancers. However, except for application of Bt as biopesticide and as source of genes for plant genetic engineering, it has not been commercially used for other mentioned applications, such as bioremediation, biocontrol of plant pathogens, NP biosynthesis, or control of cancer yet.

Knowledge about genome structure, toxin genes, mode of action, and different features of Bt has critically advanced during the last decades. Nevertheless, detailed understandings of biochemical and physiological pathways and mode of action of Bt especially in the field of novel characterized features have been limited due to lack of functional genomics, proteomics, and metabolomic information. Recent advances in nextgeneration sequencing, genomics, transcriptomics, proteomics, metabolomics, and genetic engineering technologies profoundly open insights into Bt biochemical and physiological pathways at the molecular level, genome structure and function, and their novel characteristics. Such innovations will undoubtedly lead to explore novel Bt strains with more potent insecticide activities or novel features which will enhance the implementation of these strains in other medical, agronomical, and industrial avenues. The most promising area of investigation on Bt will be the discovery, identification, and validation of novel molecular targets, such as Cry, Cyt, and Vip proteins, cell wall-degrading enzymes, plant growth-promoting compounds, and parasporins to develop new efficient insecticides, nematicides, bactericides, fungicides, biofertilizers, and anticancer pharmaceuticals.

Acknowledgments The authors thank colleagues of Microbial Biotechnology Department of ABRII for their help and assistance in preparing the review paper.

Compliance with ethical standards

Funding This work was partially funded by ABRII as a part of the project with number 1-013-140000-05-8512-0000.

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

- Abdelmalek N, Sellami S, Ben Kridis A, Tounsi S, Rouis S (2015) Molecular characterisation of *Bacillus thuringiensis* strain MEB4 highly toxic to the Mediterranean flour moth *Ephestia kuehniella* Zeller (Lepidoptera: Pyralidae). Pest Manag Sci. doi:10.1002/ps.4066
- Aceves-Diez AE, Estrada-Castañeda KJ, Castañeda-Sandoval LM (2015) Use of *Bacillus thuringiensis* supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils. J Environ Manag 157:213–219. doi:10.1016/j.jenvman.2015.04.026
- Ahern M, Verschueren S, Van Sinderen D (2003) Isolation and characterisation of a novel bacteriocin produced by *Bacillus thuringiensis* strain B439. FEMS Microbiol Let 220:127–131. doi:10.1016/ S0378-1097(03)00086-7
- Ahmed N, Wang M, Shu S (2016) Effect of commercial Bacillus thuringiensis toxins on Tyrophagus putrescentiae (Schrank) fed on wolfberry (Lycium barbarum L.). Int J Acarol 42:1–6. doi:10.1080/ 01647954.2015.1109707
- Akram W, Mahboob A, Javed AA (2013) Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. Eur J Microbiol Immunol 3:275–280. doi:10.1556/EuJMI.3.2013.4.7
- Aldeewan A, Zhang Y, Su L (2014) Bacillus thuringiensis parasporins functions on cancer cells. Int J Pure App Biosci 2:67–74
- Alquisira-Ramírez EV, Paredes-Gonzalez JR, Hernández-Velázquez VM, Ramírez-Trujillo JA, Peña-Chora G (2014) *In vitro* susceptibility of *Varroa destructor* and *Apis mellifera* to native strains of *Bacillus thuringiensis*. Apidol 45:707–718. doi:10. 1007/s13592-014-0288-z
- Ammons DR, Short JD, Bailey J, Hinojosa G, Tavarez L, Salazar M, Rampersad JN (2016) Anti-cancer parasporin toxins are associated with different environments: discovery of two novel parasporin 5-like genes. Curr Microbiol 72:184–189. doi:10.1007/s00284-015-0934-3
- Armada E, Probanza A, Roldán A, Azcón R (2015a) Native plant growth promoting bacteria *Bacillus thuringiensis* and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in *Lavandula dentata* plants. J Plant Physiol 192:1–12. doi:10.1016/j. jplph.2015.11.007
- Armada E, Azcon R, Lopez-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015b) Autochthonous arbuscular mycorrhizal fungi and *Bacillus thuringiensis* from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74. doi:10.1016/j.plaphy.2015.03.004
- Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by *Alnus firma* with endophytic *Bacillus thuringiensis* GDB-1. J Hazard Mater 250:477–483. doi:10.1016/j. jhazmat.2013.02.014
- Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of strains with *Bradyrhizobium japonicum*. Crop Sci 43:1774–1781. doi:10.2135/cropsci2003. 1774

- Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using *Bacillus thuringiensis* against dengue vector, *Aedes aegypti* (Diptera: Culicidae). Parasitol Res 113:311–316. doi:10.1007/s00436-013-3656-0
- Barbosa LC, Farias DL, Silva ID, Melo FL, Ribeiro BM, Aguiar RW (2015) Draft genome sequence of *Bacillus thuringiensis* 147, a Brazilian strain with high insecticidal activity. Mem Inst Oswaldo Cruz 110:822–823. doi:10.1590/0074-02760150273
- Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances produced by Mexican strains of *Bacillus thuringiensis*. Arch Microbiol 187: 117–126
- Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2009) Activity of bacteriocins synthesized by *Bacillus thuringiensis* against *Staphylococcus aureus* isolates associated to bovine mastitis. Veter Microbiol 138:179–183. doi:10. 1007/s00203-006-0178-5
- BCC Research Report (2015) Biopesticides: The Global Market. CHM029E
- Blackburn MB, Martin PA, Kuhar D, Farrar RR Jr, Gundersen-Rindal DE (2013) Phylogenetic distribution of phenotypic traits in *Bacillus thuringiensis* determined by multilocus sequence analysis. PLoS One 8:e66061. doi:10.1371/journal.pone.0066061
- Bora LC, Kataki L, Talukdar K, Nath BC, Sarkar R (2015) Molecular characterizations of microbial antagonists and development of bioformulations for management of bacterial wilt of Naga chilli (*Capsicum chinens* jacq.) in Assam. J Exp Biol 3:2
- Brar SK, Verma M, Tyagi RD, Valéro JR, Surampalli RY (2009) Concurrent degradation of dimethyl phthalate (DMP) during production of *Bacillus thuringiensis* based biopesticides. J Hazard Mater 171:1016–1023. doi:10.1016/j.jhazmat.2009.06.108
- Brasseur K, Auger P, Asselin E, Parent S, Côté JC, Sirois M (2015) Parasporin-2 from a new *Bacillus thuringiensis* 4r2 strain induces caspases activation and apoptosis in human cancer cells. PLoS One 10:e0135106. doi:10.1371/journal.pone.0135106
- Brookes G, Barfoot P (2015) Environmental impacts of genetically modified (GM) crop use 1996–2013: impacts on pesticide use and carbon emissions. GM Crops Food 6:103–133. doi:10.1080/21645698. 2015.1025193
- Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C (2007) The complete genome sequence of *Bacillus thuringiensis* Al Hakam. J Bacteriol 189:3680–3681. doi:10.1128/JB.00241-07
- Chehimi S, Limam F, Lanneluc I, Delalande F, van Dorsselaer A, Sable S (2012) Identification of three novel *B thuringiensis* strains that produce the Thuricin S bacteriocin. *Bt* Res 3(1). doi:10.5376/bt.2012.03.0002
- Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, Zhou J, He F, Hu M, Zhang LH (2015a) Pathway and kinetics of cyhalothrin biodegradation by *Bacillus thuringiensis* strain ZS-19. Sci Rep 5. doi:10.1038/ srep08784
- Chen Z, Chen H, Pan X, Lin Z, Guan X (2015b) Investigation of methylene blue biosorption and biodegradation by *Bacillus thuringiensis* 016. Water Air Soil Poll 226:1–8. doi:10.1007/s11270-015-2417-3
- Chen Z, Pan X, Chen H, Lin Z, Guan X (2015c) Investigation of lead (II) uptake by *Bacillus thuringiensis* 016. World J Microbiol Biotechnol 31:1729–1736. doi:10.1007/s11274-015-1923-1
- Cherif A, Ouzari H, Daffonchio D, Cherif H, Ben Slama K, Hassen A, Jaoua S (2001) Thuricin 7: a novel bacteriocin produced by *Bacillus thuringiensis* BMG1 7, a new strain isolated from soil. Lett Appl Microbiol 32:243–247. doi:10.1046/j.1472-765X.2001.00898.x
- Cherif A, Rezgui W, Raddadi N, Daffonchio D, Boudabous A (2008) Characterization and partial purification of entomocin 110, a newly identified bacteriocin from *Bacillus thuringiensis* subsp Entomocidus HD110. Microbiol Res 163:684–692. doi:10.1016/j. micres.2006.10.005

- Cherif-Silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A (2016) Phylogenetic and plant-growth-promoting characteristics of *Bacillus* isolated from the wheat rhizosphere. Ann Microbiol:1–11. doi:10.1007/s13213-016-1194-6
- Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:748–753. doi:10.1002/ps.684
- Craig W, Tepfer M, Degrassi G, Ripandelli D (2008) An overview of general features of risk assessments of genetically modified crops. Euphytica 164:853–880
- Crickmore N, Zeigler DR, Feitelson J (2016) Bacillus thuringiensis Toxin Nomenclature http://wwwlifescisussexacuk/Home/Neil_ Crickmore/Bt/ (Accessed on June, 2016)
- Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014b) Extracellular synthesis of silver nanoparticles by the *Bacillus* strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126. doi:10.1007/s13205-013-0130-8
- Das P, Sinha S, Mukherjee SK (2014a) Nickel bioremediation potential of *Bacillus thuringiensis* KUNi1 and some environmental factors in nickel removal. Biorem J 18:169–177. doi:10.1080/10889868.2014.889071
- Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium *Bacillus thuringiensis* PW-05. Environ Sci Poll Res 21:2642–2653. doi:10.1007/s11356-013-2206-8
- Dave SR, Dave RH (2009) Isolation and characterization of Bacillus thuringiensis for acid red 119 dye decolourisation. Bioresource Technol 100:249–253. doi:10.1016/j.biortech.2008.05.019
- de la Fuente-Salcido N, Alanís-Guzmán MG, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE (2008) Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of *Bacillus thuringiensis*. Arch Microbiol 190:633–640
- de la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE (2013) Bacteriocins of *Bacillus thuringiensis* can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Canad J Microbiol 59:515–522. doi:10.1139/ cjm-2013-0284
- Devidas P, Rehberger LA (1992) The effects of exotoxin (thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant Soil 145:115–120. doi:10.1007/BF00009547
- Doggett NA, Stubben CJ, Chertkov O, Bruce DC, Detter JC, Johnson SL, Han CS (2013) Complete genome sequence of *Bacillus thuringiensis* serovar israelensis strain HD-789. Genome Announc 1:e01023–e01013. doi:10.1128/genomeA.01023-13
- Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal *Bacillus thuringiensis* silences *Erwinia carotovora* virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960. doi:10.1128/AEM.70.2.954-960.2004
- Dong Z, Li J, Zheng J, Geng C, Peng D, Sun M (2016) Complete genome sequence of *Bacillus thuringiensis* CTC—a typical strain with high production of S-layer proteins. J Biotechnol 220:100–101. doi:10. 1016/j.jbiotec.2015.12.027
- Dubois T, Faegri K, Perchat S, Lemy C, Buisson C, Nielsen-LeRoux C, Gohar M, Jacques P, Ramarao N, Kolstø AB, Lereclus D (2012) Necrotrophism is a quorum-sensing-regulated lifestyle in *Bacillus thuringiensis*. PLoS Pathog 8:e1002629. doi:10.1371/journal.ppat. 1002629
- Dunstand-Guzmán E, Peña-Chora G, Hallal-Calleros C, Pérez-Martínez M, Hernández-Velazquez VM, Morales-Montor J, Flores-Pérez FI (2015) Acaricidal effect and histological damage induced by *Bacillus thuringiensis* protein extracts on the mite *Psoroptes cuniculi*. Parasit Vectors 8:1. doi:10.1186/s13071-015-0890-6
- Ekino K, Okumura S, Ishikawa T, Kitada S, Saitoh H, Akao T, Oka T, Nomura Y, Ohba M, Shin T, Mizuki E (2014) Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by *Bacillus thuringiensis* A1100 strain. Toxins 6:1882–1895. doi:10. 3390/toxins6061882

- El-Sersy NA (2007) Bioremediation of methylene blue by *Bacillus thuringiensis* 4 G 1: application of statistical designs and surface plots for optimization. Biotechnol 6:34–39
- Elsharkawy MM, Nakatani M, Nishimura M, Arakawa T, Shimizu M, Hyakumachi M (2015) Control of tomato bacterial wilt and rootknot diseases by *Bacillus thuringiensis* CR-371 and *Streptomyces avermectinius* NBRC14893. Acta Agri Scandinavica, Section B— Soil Plant Sci 65:575–580. doi:10.1080/09064710.2015.1031819
- Erban T, Nesvorna M, Erbanova M, Hubert J (2009) Bacillus thuringiensis var tenebrionis control of synanthropic mites (Acari: Acaridida) under laboratory conditions. Exp App Acarol 49:339– 346. doi:10.1007/s10493-009-9265-z
- Ferreira L, Rosales E, Danko AS, Sanromán MA, Pazos MM (2016) Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf Environ Prot 101:19–26. doi:10.1016/j. psep.2015.05.003
- Franco-Molina MA, Mendoza-Gamboa E, Roman-Calderon ME, Zapata-Benavides P, Rivera-Morales LG, Zapata-Monsivais L, Coronado-Cerda EE, Sierra-Rivera CA, Tamez-Guerra R, Rodriguez-Padilla C (2016) *In vitro* antitumoral activity of soluble protein extracts of *Bacillus thuringiensis*. Afr J Microbiol Res 10:324–329. doi:10. 5897/AJMR2015.7551
- Gao X, Han Q, Chen Y, Qin H, Huang L, Kang Z (2014) Biological control of oilseed rape Sclerotinia stem rot by *Bacillus subtilis* strain Em7. Biocontrol Sci Tech 24:39–52. doi:10.1080/09583157.2013.844223
- Gao Q, Zheng J, Zhu L, Ruan L, Peng D, Sun M (2015) Complete genome sequence of *Bacillus thuringiensis* tenebrionis 4AA1, a typical strain with toxicity to Coleopteran insects. J Biotechnol 204:15–16. doi:10.1016/j.jbiotec.2015.03.009
- Gomaa EZ (2012) Chitinase production by *Bacillus thuringiensis* and *Bacillus licheniformis*: their potential in antifungal biocontrol. J Microbiol 50:103–111. doi:10.1007/s12275-012-1343-y
- Guan P, Ai P, Dai X, Zhang J, Xu L, Zhu J, Li Q, Deng Q, Li S, Wang S, Liu H (2012) Complete genome sequence of *Bacillus thuringiensis* serovar Sichuansis strain MC28. J Bacteriol 194:6975–6975. doi: 10.1128/JB.01861-12
- Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from *Bacillus thuringiensis* strain YBT-518. Appl Environ Microbiol 74:6997– 7001. doi:10.1128/AEM.01346-08
- Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium *Bacillus sp* L14. Bioresource Technol 101:8599–8605. doi:10.1016/j.biortech.2010.06.085
- Gutiérrez-Chávez AJ, Martínez-Ortega EA, Valencia-Posadas M, León-Galván MF, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE (2016) Potential use of *Bacillus thuringiensis* bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats. Folia Microbiol 61:11–19. doi:10.1007/s12223-015-0404-0
- Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C (2006) Pathogenomic sequence analysis of *Bacillus cereus* and *Bacillus thuringiensis* isolates closely related to *Bacillus anthracis*. J Bacteriol 188:3382–3390. doi:10.1128/JB.188.9.3382-3390.2006
- Hassanain MA, Garhy ME, Abdel-Ghaffar FA, El-Sharaby A, Megeed KN (1997) Biological control studies of soft and hard ticks in Egypt I the effect of Bacillus thuringiensis varieties on soft and hard ticks (Ixodidade). Parasitol Res 83:209–213
- Hassen A, Saidi N, Cherif M, Boudabous A (1998) Effects of heavy metals on *Pseudomonas aeruginosa* and *Bacillus thuringiensis*. Bioresource Technol 65:73–82. doi:10.1016/S0960-8524(98)00011-X
- Hayakawa T, Kanagawa R, Kotani Y, Kimura M, Yamagiwa M, Yamane Y, Takebe S, Sakai H (2007) Parasporin-2Ab, a newly isolated cytotoxic crystal protein from *Bacillus thuringiensis*. Curr Microbiol 55:278–283. doi:10.1007/s00284-006-0351-8

- He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S, Yu Z (2010) Complete genome sequence of *Bacillus thuringiensis* mutant strain BMB171. J Bacteriol 192:4074–4075. doi:10.1128/JB.00562-10
- He J, Wang J, Yin W, Shao X, Zheng H, Li M, Zhao Y, Sun M, Wang S, Yu Z (2011) Complete genome sequence of *Bacillus thuringiensis* subsp chinensis strain CT-43. J Bacteriol 193:3407–3408. doi:10. 1128/JB.05085-11
- Hong CE, Jo SH, Moon JY, Lee JS, Kwon SY, Park JM (2015) Isolation of novel leaf-inhabiting endophytic bacteria in *Arabidopsis thaliana* and their antagonistic effects on phytophathogens. Plant Biotechnol Rep 9:451–458. doi:10.1007/s11816-015-0372-5
- Hu Y, Aroian RV (2012) Promise of Bacillus thuringiensis crystal proteins as Anthelmintics. Parasitic Helminths: Targets, Screens, Drugs and Vaccines:267–281. doi:10.1002/9783527652969.ch16
- Huang J, Ye J, Ma J (2014a) Triphenyltin biosorption, dephenylation pathway and cellular responses during triphenyltin biodegradation by *Bacillus thuringiensis* and tea saponin. Chem Eng J 249:167–173 dx.doi.org/10.1016/j.cej.2014.03.110
- Huang TP, Ying XI, Jie-Ru PA, Zhi CH, Li-Fen LI, Lei XU, Zhang LL, Xiong GU (2014b) Aerobic Cr (VI) reduction by an indigenous soil isolate *Bacillus thuringiensis* BRC-ZYR2. Pedosphere 24:652–661. doi:10.1016/S1002-0160(14)60051-5
- Iatsenko I, Boichenko I, Sommer RJ (2014a) Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl Environ Microbiol 80: 3266–3275. doi:10.1128/AEM.00464-14
- Iatsenko I, Corton C, Pickard DJ (2014b) Draft genome sequence of highly nematicidal *Bacillus thuringiensis* DB27. Genome Announc 2:e00101–e00114. doi:10.1128/genomeA.00101-14
- ISAAA's GM Approval Database, 2016 http://wwwisaaaorg/ gmapprovaldatabase/
- Jahan N, Idrees M, Zahid MT, Ali NM, Hussain M (2016) Molecular identification and characterization of heavy metal resistant bacteria and their role in bioremediation of chromium. British Microbiol Res J 13(6)
- Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of *Bacillus thuringiensis*. Indian J Exp Biol 48:1152 http:// imsear.hellis.org/handle/123456789/145076
- Jain D, Saharan V, Pareek S (2016) Current status of *Bacillus thuringiensis*: insecticidal crystal proteins and transgenic crops in advances in plant breeding strategies: agronomic, abiotic and biotic stress traits (657–698). Springer International Publishing, New York. doi:10.1007/978-3-319-22518-0_18
- James C (2015) Global Status of Commercialized Biotech/GM Crops: 2015 ISAAA Brief No 51 ISAAA: Ithaca, NY. http://www.isaaa. org/resources/publications/annualreport/2015/default.asp
- Jeong H, Jo SH, Hong CE, Park JM (2016) Genome sequence of the endophytic bacterium *Bacillus thuringiensis* strain KB1, a potential biocontrol agent against phytopathogens. Genome Announc 4: e00279–e00216. doi:10.1128/genomeA.00279-16
- Jisha VN, Smitha RB, Benjamin S (2013) An overview on the crystal toxins from *Bacillus thuringiensis*. Adv Microbiol 3(05):462. doi: 10.4236/aim.2013.35062
- Johnson SL, Daligault HE, Davenport KW, Jaissle J, Frey KG, Ladner JT, Broomall SM, Bishop-Lilly KA, Bruce DC, Gibbons HS, Coyne SR (2015) Complete genome sequences for 35 biothreat assay-relevant *Bacillus* species. Genome Announc 3:e00151–e00115. doi:10.1128/ genomeA.00151-15
- Juibari MM, Yeganeh LP, Abbasalizadeh S, Azarbaijani R, Mousavi SH, Tabatabaei M, Jouzani GS, Salekdeh GH (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Let 65:1014–1017. doi:10.1007/s12668-015-0185-6

- Juibari MM, Yeganeh LP, Abbasalizadeh S, Azarbaijani R, Mousavi SH, Tabatabaei M, Jouzani GS, Salekdeh GH (2015) Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain Thermo-BF for extracellular biosynthesis of functionalized gold nanoparticles. BioNanoSci 5:233–241. doi:10.1007/s12668-015-0185-6
- Kamoun F, Fguira IB, Hassen NB, Mejdoub H, Lereclus D, Jaoua S (2011) Purification and characterization of a new *Bacillus* thuringiensis bacteriocin active against *Listeria monocytogenes*, *Bacillus cereus* and *Agrobacterium tumefaciens*. Appl Biochem Biotechnol 165:300–314. doi:10.1007/s12010-011-9252-9
- Kanda K, Nakashima K, Nagano Y (2015) Complete genome sequence of *Bacillus thuringiensis serovar tolworthi* strain Pasteur Institute Standard. Genome Announc 3:e00710–e00715. doi:10.1128/ genomeA.00710-15
- Katayama H, Yokota H, Akao T, Nakamura O, Ohba M, Mekada E, Mizuki E (2005) Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of *Bacillus thuringiensis*. J Biochem 137:17–25. doi:10.1093/jb/mvi003
- Kebria DY, Khodadai A, Ganjidoust H, Badkoubi A, Amoozegar MA (2009) Isolation and characterization of a novel native *Bacillus* strain capable of degrading diesel fuel. Int J Environ Sci Technol 6:435–442. doi:10.1007/BF03326082
- Khan MQ, Abbasi MW, Zaki MJ, Khan SA (2010) Evaluation of *Bacillus thuringiensis* isolates against root-knot nematodes following seed application in okra and mungbean. Pakistan J Botany 42:2903–2910
- Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by *Bacillus thuringiensis* CMB26. J Appl Microbiol 97:942–949. doi: 10.1111/j.1365-2672.2004.02356.x
- Kotze AC, O'grady J, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Toxicity of *Bacillus thuringiensis* to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol 35:1013–1022. doi:10.1016/j.ijpara.2005.03.010
- Krishnan K, Ker JE, Mohammed SM, Nadarajah VD (2010) Identification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa *Bacillus thuringiensis* parasporal protein cytotoxic against leukaemic cells. J Biomed Sci 17:86. doi:10.1186/1423-0127-17-86
- Kumar P, Chandra R (2004) Detoxification of distillery effluent through Bacillus thuringiensis (MTCC 4714) enhanced phytoremediation potential of Spirodela polyrrhiza (L) Schliden Bull Environ Contam. Toxicol 73:903–910. doi:10.1007/s00128-004-0512-z
- Kumar P, Chandra R (2006) Decolourisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of *Bacillus spp*. Bioresource Technol 97:2096–2102. doi:10.1016/j. biortech.2005.10.012
- Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P (2015) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Oriental J Chem 31:357–361
- Lacey LA, Frutos R, Kaya HK, Vail P (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1– 41. doi:10.1006/bcon.2001.0938
- Lecadet MM (2013) *Bacillus thuringiensis* toxins—the proteinaceous crystal. Bacterial Protein Toxins 3:437–471
- Lecadet MM, Frachon E, Dumanoir VC, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of *Bacillus thuringiensis*. J Appl Microbiol 86:660–672. doi:10.1046/j.1365-2672.1999.00710.x
- Lee KD, Gray EJ, Mabood F, Jung WJ, Charles T, Clark SR, Ly A, Souleimanov A, Zhou X, Smith DL (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755. doi:10. 1007/s00425-008-0870-6
- Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal *Bacillus thuringiensis* crystal protein. Plant Biotechnol J 5:455–464

- Li XQ, Tan A, Voegtline M, Bekele S, Chen CS, Aroian RV (2008) Expression of Cry5B protein from *Bacillus thuringiensis* in plant roots confers resistance to root-knot nematode. Biol Control 47:97–102
- Li Q, Zou T, Ai P, Pan L, Fu C, Li P, Zheng A (2015a) Complete genome sequence of *Bacillus thuringiensis* HS18-1. J Biotechnol 214:61–62
- Li Q, Xu LZ, Zou T, Ai P, Huang GH, Li P, Zheng AP (2015b) Complete genome sequence of *Bacillus thuringiensis* strain HD521 Standards. Genomic Sci 10:1. doi:10.1186/s40793-015-0058-1
- Liu G, Song L, Shu C, Wang P, Deng C, Peng Q, Lereclus D, Wang X, Huang D, Zhang J, Song F (2013) Complete genome sequence of *Bacillus thuringiensis* subsp kurstaki strain HD73. Genome Announc 1:e00080–e00013. doi:10.1128/genomeA.00080-13
- Luo H, Xiong J, Zhou Q, Xia L, Yu Z (2013a) The effects of *Bacillus thuringiensis* Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of *Caenorhabditis elegans*. Appl Microbiol Biotechnol 97:10135–10142. doi:10.1007/s00253-013-5249-3
- Luo X, Chen L, Huang Q, Zheng J, Zhou W, Peng D, Ruan L, Sun M (2013b) *Bacillus thuringiensis* metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl Environ Microbiol 79:460–468. doi:10.1128/AEM.02551-12
- Maiti A, Das S, Bhattacharyya N (2012) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons by *Bacillus thuringiensis* strain NA2. J Sci 1:72–75 www.worldsciencepublisher.org
- Mandal K, Singh B, Jariyal M, Gupta VK (2013) Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicol Environ Saf 93:87– 92. doi:10.1016/j.ecoenv.2013.04.001
- Marimuthu S, Rahuman AA, Kirthi AV, Santhoshkumar T, Jayaseelan C, Rajakumar G (2013) Eco-friendly microbial route to synthesize cobalt nanoparticles using *Bacillus thuringiensis* against malaria and dengue vectors. Parasitol Res 112:4105–4112. doi:10.1007/s00436-013-3601-2
- Martínez-Absalón S, Rojas-Solís D, Hernández-León R, Prieto-Barajas C, Orozco-Mosqueda MD, Peña-Cabriales JJ, Sakuda S, Valencia-Cantero E, Santoyo G (2014) Potential use and mode of action of the new strain *Bacillus thuringiensis* UM96 for the biological control of the grey mould phytopathogen *Botrytis cinerea*. Biocontrol Sci Tech 24:1349–1362. doi:10.1080/09583157.2014.940846
- Melo AL, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Critical Rev Biotechnol 36:317–326. doi:10.3109/07388551.2014.960793
- Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009a) Coinoculation of *Bacillus thuringeinsis*-KR1 with *Rhizobium leguminosarum* enhances plant growth and nodulation of pea (*Pisum sativum* L) and lentil (*Lens culinaris* L). World J Microbiol Biotechnol 25:753–761. doi:10.1007/s11274-009-9963-z
- Mishra PK, Mishra S, Selvakumar G, Kundu S, Shankar Gupta H (2009b) Enhanced soybean (*Glycine max* L) plant growth and nodulation by *Bradyrhizobium japonicum*-SB1 in presence of *Bacillus thuringiensis*-KR1. Acta Agric Scand Section B–Soil and Plant Sci 59:189–196. doi:10.1080/09064710802040558
- Mizuki E, Ohba M, Akao T, Yamashita S, Saitoh H, Park YS (1999) Unique activity associated with non-insecticidal *Bacillus thuringiensis* parasporal inclusions: in vitro cell-killing action on human cancer cells. J Appl Microbiol 86:477–486. doi:10.1046/j. 1365-2672.1999.00692.x
- Mohammed SH, El Saedy MA, Enan MR, Ibrahim NE, Ghareeb A, Moustafa SA (2008) Biocontrol efficiency of *Bacillus thuringiensis* toxins against root-knot nematode, *Meloidogyne incognita*. J Cell Mol Biol 7:57–66 http://jcmb.halic.edu.tr
- Murawska E, Fiedoruk K, Bideshi DK, Swiecicka I (2013) Complete genome sequence of *Bacillus thuringiensis subsp thuringiensis* strain IS5056, an isolate highly toxic to *Trichoplusia ni*. Genome Announc 1:e00108–e00113. doi:10.1128/genomeA.00108-13
- Nayak PS, Arakha M, Kumar A, Asthana S, Mallick BC, Jha S (2016) An approach towards continuous production of silver nanoparticles using *Bacillus thuringiensis*. RSC Adv 6:8232–8242. doi:10.1039/ C5RA21281B

- Nazarian A, Jahangiri R, Salehi Jouzani G, Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M, Alamisaeid K (2009) Coleopteranspecific and putative novel *cry* genes in Iranian native *Bacillus thuringiensis* collection. J Invertebr Pathol 102:101–109. doi:10. 1016/j.jip.2009.07.009
- Neethu KB, Priji P, Unni KN, Sajith S, Sreedevi S, Ramani N, Anitha K, Rosana B, Girish MB, Benjamin S (2016) New *Bacillus thuringiensis* strain isolated from the gut of Malabari goat is effective against *Tetranychus macfarlanei*. J Appl Entomol 140:187– 198. doi:10.1111/jen.12235
- Ohba M, Mizuki E, Uemori A (2009) Parasporin, a new anticancer protein group from *Bacillus thuringiensis*. Anticancer Res 29:427–433 http://ar.iiarjournals.org/content/29/1/427.short
- Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10:5221– 5238. doi:10.3390/ijerph10105221
- Okumura S, Saitoh H, Ishikawa T, Wasano N, Yamashita S, Kusumoto KI, Akao T, Mizuki E, Ohba M, Inouye K (2005) Identification of a novel cytotoxic protein, Cry45Aa, from *Bacillus thuringiensis* A1470 and its selective cytotoxic activity against various mamma-lian cell lines. J Agric Food Chem 53:6313–6318. doi:10.1021/jt0506129
- Okumura S, Saitoh H, Ishikawa T, Inouye K, Mizuki E (2011) Mode of action of parasporin-4, a cytocidal protein from *Bacillus thuringiensis*. BBA Biomemb 1808:1476–1482. doi:10.1016/j. bbamem.2010.11.003
- Olukanni OD, Adenopo A, Awotula AO, Osuntoki AA (2013) Biodegradation of malachite green by extracellular laccase producing *Bacillus thuringiensis* RUN1. J Basic Appl Sci 9:543
- Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96. doi:10.1016/j.jplph.2014.08.019
- Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by *Bacillus thuringiensis* strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129. doi:10.1016/j.sjbs.2012.11.006
- Paik HD, Bae SS, Park SH, Pan JG (1997) Identification and partial characterization of tochicin, a bacteriocin produced by *Bacillus thuringiensis* subsp tochigiensis. J Ind Microbiol Biotechnol 19: 294–298. doi:10.1038/sj.jim.2900462
- Pan X, Chen Z, Chen F, Cheng Y, Lin Z, Guan X (2015) The mechanism of uranium transformation from U (VI) into nano-uramphite by two indigenous *Bacillus thuringiensis* strains. J Hazard Mater 297:313– 319 dx.doi.org/10.1016/j.jhazmat.2015.05.019
- Pane C, Villecco D, Campanile F, Zaccardelli M (2012) Novel strains of bacillus, isolated from compost and compost amended soils, as biological control agents against soil-borne phytopathogenic fungi. Biocontrol Sci Tech 22:1373–1388. doi:10.1080/09583157.2012.729143
- Park SJ, Park SY, Ryu CM, Park SH, Lee JK (2008) The role of AiiA, a quorum-quenching enzyme from *Bacillus thuringiensis*, on the rhizosphere competence. J Microbiol Biotechnol 18:1518–1521
- Peng D, Lin J, Huang Q, Zheng W, Liu G, Zheng J, Zhu L, Sun M (2016) A novel metalloproteinase virulence factor is involved in *Bacillus thuringiensis* pathogenesis in nematodes and insects. Environ Microbiol. doi:10.1111/1462-2920.13069
- Periyasamy A, Kkani P, Chandrasekaran B, Ponnusamy S, Viswanathan S, Selvanayagam P, Rajaiah S (2016) Screening and characterization of a non-insecticidal *Bacillus thuringiensis* strain producing parasporal protein with selective toxicity against human colon cancer cell lines. Ann Microbiol:1–12. doi:10.1007/s13213-016-1204-8
- Poopathi S, Abidha S (2008) Biodegradation of poultry waste for the production of mosquitocidal toxins. Int Biodeter Biodegr 62:479– 482. doi:10.1016/j.ibiod.2008.03.005

- Poornima K, Selvanayagam P, Shenbagarathai R (2010) Identification of native *Bacillus thuringiensis* strain from South India having specific cytocidal activity against cancer cells. J Appl Microbiol 109:348– 354. doi:10.1111/j.1365-2672.2010.04697.x
- Prudent M, Salon C, Souleimanov A, Emery RN, Smith DL (2015) Soybean is less impacted by water stress using *Bradyrhizobium japonicum* and thuricin-17 from *Bacillus thuringiensis*. Agron Sustain Dev 35:749–757. doi:10.1007/s13593-014-0256-z
- Raybould A (2006) Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops. Environ Biosaf Res 5:119–125
- Reyes-Ramírez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE (2004) Antifungal activity of *Bacillus thuringiensis* chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69:M131– M134. doi:10.1111/j.1365-2621.2004.tb10721.x
- Rocha LO, Tralamazza SM, Reis GM, Rabinovitch L, Barbosa CB, Corrêa B (2014) Multi-method approach for characterizing the interaction between *Fusarium verticillioides* and *Bacillus thuringiensis* subsp kurstaki. PLoS One 9:e92189. doi:10.1371/ journal.pone.0092189
- Roy A, Mahata D, Paul D, Korpole S, Franco OL, Mandal SM (2013) Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from *Bacillus thuringiensis* strain SM1. Front Microbiol 4:10–3389. doi:10. 3389/fmicb.2013.00332
- Ruan L, Crickmore N, Peng D, Sun M (2015) Are nematodes a missing link in the confounded ecology of the entomopathogen *Bacillus thuringiensis*? Trends Microbiol 23:341–346. doi:10.1016/j.tim. 2015.02.011
- Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of bacterial isolates from salty soils and *Bacillus thuringiensis* strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol:101–117 http://www.jstor.org/stable/41998046
- Salehi Jouzani G (2012) Risk assessment of GM crops; challenges in regulations and science. J Biosafety 1:4. doi:10.4172/2167-0331. 1000e113
- Salehi Jouzani G, Abad AP, Seifinejad A, Marzban R, Kariman K, Maleki B (2008a) Distribution and diversity of dipteran-specific *cry* and *cyt* genes in native *Bacillus thuringiensis* strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol 35:83–94. doi:10. 1007/s10295-007-0269-6
- Salehi Jouzani G, Seifinejad A, Saeedizadeh A, Nazarian A, Yousefloo M, Soheilivand S, Mousivand M, Jahangiri R, Yazdani M, Amiri RM, Akbari S (2008b) Molecular detection of nematicidal crystalliferous *Bacillus thuringiensis* strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Canad J Microbiol 54:812–822. doi:10.1139/W08-074
- Salehi Jouzani G, Goldenkova IV, Piruzian ES (2008c) Expression of hybrid cry3aM–licBM2 genes in transgenic potatoes (Solanum tuberosum). Plant Cell Tissue Organ Cult 92:321–325. doi:10. 1007/s11240-007-9333-1
- Sánchez-Soto AI, Saavedra-González GI, Ibarra JE, Salcedo-Hernández R, Barboza-Corona JE, Rincón-Castro D (2015) Detection of βexotoxin synthesis in *Bacillus thuringiensis* using an easy bioassay with the nematode *Caenorhabditis elegans*. Lett Appl Microbiol 61: 562–567
- Santiago TR, Grabowski C, Rossato M, Romeiro RS, Mizubuti ES (2015) Biological control of eucalyptus bacterial wilt with rhizobacteria. Biol Control 80:14–22. doi:10.1016/j.biocontrol. 2014.09.007
- Seifinejad A, Salehi Jouzani G, Hosseinzadeh A, Abdmishani C (2008) Characterization of Lepidoptera-active *cry* and *vip* genes in Iranian *Bacillus thuringiensis* strain collection. Biol Control 44:216–226. doi:10.1016/j.biocontrol.2007.09.010

- Sheppard AE, Poehlein A, Rosenstiel P, Liesegang H, Schulenburg H (2013) Complete genome sequence of *Bacillus thuringiensis* strain 407 Cry. Genome Announc 1:e00158–e00112. doi:10.1128/ genomeA.00158-12
- Shrestha A, Sultana R, Chae JC, Kim K, Lee KJ (2015) Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. Eur J Plant Pathol 142:577–589. doi:10.1007/s10658-015-0636-5
- Singh M, Kumar P, Patel SK, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by *Bacillus thuringiensis*. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7
- Sinott MC, Cunha Filho NA, Castro LL, Lorenzon LB, Pinto NB, Capella GA, Leite FP (2012) *Bacillus spp* toxicity against *Haemonchus contortus* larvae in sheep fecal cultures. Exp Parasitol 132:103– 108. doi:10.1016/j.exppara.2012.05.015
- Sukhumungoon P, Rattanachuay P, Hayeebilan F, Kantachote D (2013) Biodegradation of ethidium bromide by *Bacillus thuringiensis* isolated from soil. Afr J Microbiol Res 7:471–476. doi:10.5897/ AJMR12.1642
- Surhio MA, Talpur FN, Nizamani SM, Amin F, Bong CW, Lee CW, Ashraf MA, Shah MR (2014) Complete degradation of dimethyl phthalate by biochemical cooperation of the *Bacillus thuringiensis* strain isolated from cotton field soil. RSC Adv 4:55960–55966. doi: 10.1039/C4RA09465D
- Tang Y, Zou J, Zhang L, Li Z, Ma C, Ma N (2012) Anti-fungi activities of Bacillus thuringiensis H3 chitinase and immobilized chitinase particles and their effects to rice seedling defensive enzymes. J Nanosci Nanotechnol 12:8081–8086 https://doi.org/10.1166/jnn.2012.6639
- Tao A, Pang F, Huang S, Yu G, Li B, Wang T (2014) Characterization of endophytic *Bacillus thuringiensis* strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci Tech 24:901–924. doi:10.1080/09583157.2014.904502
- Thamer M, Al-Kubaisi AR, Zahraw Z, Abdullah HA, Hindy I, Khadium A (2013) Biodegradation of Kirkuk light crude oil by *Bacillus thuringiensis*, Northern of Iraq. Nat Sci 5. doi:10.4236/ns 2013 57104
- Tohidfar M, Salehi Jouzani G (2008) Genetic engineering of crop plants for enhanced resistance to insects and diseases in Iran. Transgen Plant J 2:151–156
- Tohidfar M, Zare N, Salehi Jouzani G, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (*Medicago sativa*) using a synthetic *cry3a* gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Organ Cult 113:227–235. doi:10. 1007/s11240-012-0262-2
- Ugras S, Demirbag Z (2013) Screening antibacterial activity of entomopathogenic bacteria isolated from pests of hazelnut. Biol 68:592– 598 https://www.degruyter.com/view/j/biolog.2013.68.issue-4/ s11756-013-0210-6/s11756-013-0210-6.xml
- Urban JF Jr, Hu Y, Miller MM, Scheib U, Yiu YY, Aroian RV (2013) Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum. PLoS Negl Trop Dis 7:e2263. doi:10. 1371/journal.pntd.0002263
- Velivelli SL, De Vos P, Kromann P, Declerck S, Prestwich BD (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32:493–496. doi:10.1016/j.tibtech.2014.07.002
- Wang P, Zhang C, Guo M, Guo S, Zhu Y, Zheng J, Zhu L, Ruan L, Peng D, Sun M (2014) Complete genome sequence of *Bacillus thuringiensis* YBT-1518, a typical strain with high toxicity to nematodes. J Biotechnol 171:1–2. doi:10.1016/j.jbiotec.2013.11.023
- Wu S, Peng Y, Huang Z, Huang Z, Xu L, Ivan G, Guan X, Zhang L, Zou S (2015) Isolation and characterization of a novel native *Bacillus thuringiensis* strain BRC-HZM2 capable of degrading chlorpyrifos. J Basic Microbiol 55:389–397. doi:10.1002/jobm.201300501
- Yamashita S, Katayama H, Saitoh H, Akao T, Park YS, Mizuki E, Ohba M, Ito A (2005) Typical three-domain Cry proteins of *Bacillus thuringiensis* strain A1462 exhibit cytocidal activity on limited human cancer cells. J Biochem 138:663–672. doi:10.1093/jb/mvi177

- Yu Z, Luo H, Xiong J, Zhou Q, Xia L, Sun M, Li L (2014) Bacillus thuringiensis Cry6A exhibits nematicidal activity to Caenorhabditis elegans bre mutants and synergistic activity with Cry5B to C elegans. Lett Appl Microbiol 58:511–519. doi:10.1111/lam.12219
- Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Sun M, Li L, Yu Z (2015) The diverse nematicidal properties and biocontrol efficacy of *Bacillus thuringiensis* Cry6A against the root-knot nematode *Meloidogyne hapla*. J Invertebr Pathol 125:73–80. doi:10.1016/j.jip.2014.12.011
- Zhang F, Peng D, Ye X, Yu Z, Hu Z, Ruan L, Sun M (2012) In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla. PLoS One 7:e38534. doi:10.1371/journal.pone.0038534
- Zhang L, Yu J, Xie Y, Lin H, Huang Z, Xu L, Gelbič I, Guan X (2014) Biological activity of *Bacillus thuringiensis* (Bacillales: Bacillaceae) chitinase against *Caenorhabditis elegans* (Rhabditida: Rhabditidae). J Econom Entomol 107:551–558. doi:10.1603/EC13201
- Zheng M, Shi J, Shi J, Wang Q, Li Y (2013) Antimicrobial effects of volatiles produced by two antagonistic bacillus strains on the anthracnose pathogen in postharvest mangos. Biol Control 65:200– 206. doi:10.1016/j.biocontrol.2013.02.004
- Zhioua E, Heyer K, Browning M, Ginsberg HS, LeBrun RA (1999) Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae). J Med Entomol 36:900–902. doi:10. 1093/jmedent/36.6.900
- Zhou M, Yu H, Yin X, Sabour PM, Chen W, Gong J (2014) Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One 9:e89004. doi:10.1371/journal.pone.0089004

- Zhu Y, Shang H, Zhu Q, Ji F, Wang P, Fu J, Deng Y, Xu C, Ye W, Zheng J, Zhu L (2011) Complete genome sequence of *Bacillus thuringiensis* serovar finitimus strain YBT-020. J Bacteriol 193:2379–2380. doi: 10.1128/JB.00267-11
- Zhu L, Tian LJ, Zheng J, Gao QL, Wang YY, Peng DH, Ruan LF, Sun M (2015a) Complete genome sequence of *Bacillus thuringiensis* serovar galleriae strain HD-29, a typical strain of commercial biopesticide. J Biotechnol 195:108–109. doi:10.1016/j.jbiotec. 2014.12.021
- Zhu L, Peng D, Wang Y, Ye W, Zheng J, Zhao C, Han D, Geng C, Ruan L, He J, Yu Z (2015b) Genomic and transcriptomic insights into the efficient entomopathogenicity of *Bacillus thuringiensis*. Sci Rep 5. doi:10.1038/srep14129
- Zhu J, Zhang Q, Cao Y, Li Q, Zhu Z, Wang L, Li P (2016) The complete genome sequence of *Bacillus thuringiensis serovar Hailuosis* YWC2-8. J Biotechnol 219:38–39. doi:10.1016/j. jbiotec.2015.12.016
- Zi-Quan Y, Qian-Lan W, Bin L, Xue Z, Zi-Niu Y, Ming S (2008) Bacillus thuringiensis crystal protein toxicity against plant-parasitic nematodes. Chinese J Agric Biotechnol 5: 13–17. doi: 10.1017/ S1479236208002003
- Zorzetti J, Ricietto AP, da Silva CR, Wolf IR, Vilas-Bôas GT, Neves PM, Meneguim AM, Vilas-Boas LA (2015) Genome sequence of the mosquitocidal *Bacillus thuringiensis* strain BR58, a biopesticide product effective against the coffee berry borer (*Hypothenemus hampei*). Genome Announc 3:e01232–e01215. doi:10.1128/ genomeA.01232-15