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Abstract Bacillus thuringiensis (Bt) is known as themost suc-
cessful microbial insecticide against different orders of insect
pests in agriculture and medicine. Moreover, Bt toxin genes also
have been efficiently used to enhance resistance to insect pests in
geneticallymodified crops. In light of the scientific advantages of
new molecular biology technologies, recently, some other new
potentials of Bt have been explored. These new environmental
features include the toxicity against nematodes, mites, and ticks,
antagonistic effects against plant and animal pathogenic bacteria
and fungi, plant growth-promoting activities (PGPR), bioreme-
diation of different heavy metals and other pollutants, biosynthe-
sis of metal nanoparticles, production of polyhydroxyalkanoate
biopolymer, and anticancer activities (due to parasporins). This
review comprehensively describes recent advances in the Bt
whole-genome studies, the last updated known Bt toxins and
their functions, and application of cry genes in plant genetic
engineering. Moreover, the review thoroughly describes the
new features ofBtwhichmake it a suitable cell factory that might
be used for production of different novel valuable bioproducts.

Keywords Anticancer . Antagonistic effect . Bacillus
thuringiensis . Bioacaricide . Bioremediation . Nanoparticle
biosynthesis . Plant growth-promoting rhizobacteria (PGPR) .
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Introduction

The use of environmental-friendly microbial insecticides as sub-
stitutes for harmful chemical pesticides is an alternative for mass
control of destructive crop pests. The global market for biocon-
trol agents (macro and micro) is about 3.5 billion USDwith 16%
annual growth, which consists approximately 8% of the global
pesticides trade (50 billion USD). The share of microbial insec-
ticides is about 807 million USD (BCC Research Report 2015;
Lacey et al. 2015; Velivelli et al. 2014).

Bacillus thuringiensis (Bt) is an aerobic, spore-forming,
gram-positive, and entomopathogenic bacterium that produces
parasporal crystal proteins or δ-endotoxins (Cry). These Cry pro-
teins are toxic to a wide variety of insect pests, such as
Lepidoptera, Coleoptera, and Diptera (Salehi Jouzani et al.
2008a,b). Bt has been considered as the most successful
bioinsecticide during the last century. Currently, it consists of
more than 98 (424 million USD) of formulated sprayable bacte-
rial pesticides (Lacey et al. 2015). The species Bt commonly
consists of a large family of different subspecies which are cate-
gorized in different subspecies with different phylogenetic and
serotyping features (such asBt subsp. kurstaki,Bt subsp. aizawai,
Bt subsp. tenebrionis, Bt subsp. Israelensis, etc.). In addition,
each Bt subspecies consists of different strains and serotypes
(Seifinejad et al. 2008). Bt is known as a fast-acting and host-
specific bioinsecticide, so its adverse effects on non-target organ-
isms are very limited. Moreover, its production (upstream and
downstream processes) and application (conventional spraying
or genetically modified (GM) Bt crops) are easy and cheap (Jain
et al. 2016; Lacey et al. 2015). Accordingly, Bt has been effi-
ciently used as the source of cry genes in plant genetic engineer-
ing to make transgenic crops resistant to different pests (Melo
et al. 2016; Salehi Jouzani et al. 2008c; Tohidfar and Salehi
Jouzani 2008; Tohidfar et al. 2013; Jain et al. 2016) and also
has potential to be used as a nematicide to control plant

* Gholamreza Salehi Jouzani
gsalehi@abrii.ac.ir

1 Microbial Biotechnology Department, Agricultural Biotechnology
Research Institute of Iran (ABRII), Agricultural Research, Education
and Extension Organization (AREEO), Fahmideh Blvd., P.O. Box:
31535-1897, Karaj, Iran

Appl Microbiol Biotechnol (2017) 101:2691–2711
DOI 10.1007/s00253-017-8175-y

http://orcid.org/0000-0001-5419-8794
http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-017-8175-y&domain=pdf


pathogenic nematodes (Iatsenko et al. 2014a,b, Salehi Jouzani
et al. 2008b).Moreover, recent studies have confirmedmore new
potentials of differentBt strains.These new features are including
plant growth promoting (Armada et al. 2015a,b), bioremediation
of heavy metals and other chemicals (Aceves-Diez et al. 2015;
Dash et al. 2014; Melo et al. 2016), anticancer activities
(Periyasamy et al. 2016), polymer production (Singh et al.
2013), and antagonistic effects against plant and animal patho-
genic microorganisms (Gutiérrez-Chávez et al. 2016; Roy et al.
2013) (Fig. 1).

In spite of publication of some review papers focused on
different aspects of Bt during the last years (e.g., De la Fuente-
Salcido et al. 2013; Hu and Aroian 2012; Jisha et al. 2013;
Melo et al. 2016), there is no comprehensive review present-
ing an integrated package of data on biotechnological appli-
cations (as insecticide and gene source for plant genetic engi-
neering), insecticidal proteins, whole-genome structure, and
also recent explored potential applications of Bt in the last
5 years. Accordingly, the objective of the present paper is to
comprehensively review the recent advances in new features
and potential applications of Bt strains.

Recent advances in the Bt genome studies

Various studies during the last century resulted in the detection
and characterization of a dozen different genes encoding insec-
ticidal bioactive substances in Bt strains isolated from different
regions of the world. However, the conventional methods often
fail to obtain a comprehensive understanding of those genes

and insecticidal active substances, as they are very diverse,
and their encoded proteins have a relatively short half-life.
Recent advances in the next-generation sequencing and new
Bomics^ technologies, such as genomics, transcriptomics, pro-
teomics, and transcriptomics, have enhanced deep insights into
genome diversity among Bacillus species and also among dif-
ferent Bt subspecies and strains. Bt genome projects have been
expected to increase and accelerate detection of novel patho-
genic genes and related regulatory factors. Moreover, a combi-
nation of genomics, transcriptomics, proteomics, and metabo-
lomics could be used to study Bt toxin proteins with different
characteristics and activities (Dong et al. 2016).

Until now, whole and partial genome sequences of more than
60Bt strains (about 30 complete sequences) have been submitted
to the GeneBank. The full-length genome (including one to mul-
tiple plasmids) of the studied Bt strains spans from 5.3 to
6.87 Mb. The number of genes in the studied Bt strains varies
from 5343 to 7227, and the number of plasmids ranges between
1 and 13. The guanine-cytosine content (GC) of the Bt genomes
is between 31.4 and 35. 48% (Table 1). Accordingly, these re-
ports confirm the vast genetic diversity among the studied strains,
and therefore, by exploring new strains, novel toxin genes and
proteins most probably will be detected.

Bt insecticidal genes and their host specificity:
an update

Bt constitutes a large family of subspecies which recog-
nized as entomopathogens and found in various habitats.

Fig. 1 Bt cell factory potentials.
ACC ACC deaminase, Bac
bacteriocin, CWD cell wall-
degrading enzymes, Col
Coleoptera, Cry crystal proteins
(δ-endotoxins), Cyt cytolytic pro-
teins, Dip Diptera, DY dyes, HP
herbicides,HM heavymetals, IAA
indole-3-acetic acid, Lep
Lepidoptera, OL oil (petroleum),
Par parasporin, PB
bioremediation involving
proteins, Pl plasmid, PS pesticide,
PSE phosphate solubilization
enzymes, PV plastics, RE
reducing enzymes, Sp spore, Vip
vegetative insecticidal proteins
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According to Bt flagellar antigens, 72 antigenic groups
(serotypes) have been distinguished (Blackburn et al.
2013; Lecadet et al. 1999; Lecadet 2013). Crickmore
et al. (2016) have designed an especial database for Bt
toxins with links to information on host insects, which is
continually updated (www.lifesci.sussex.ac.uk/Home/
Neil_Crickmore/Bt/). Based on the last updated data in
this database (June 2016), about 952 toxin genes,
encoding different entomopathogenic proteinaceous
toxins, have been identified and characterized in the Bt
strains isolated from different regions of the world. Most
of these toxins are parasporal inclusions, produced during
the sporulation phase. Parasporal inclusion bodies contain
crystalline proteins known as delta-endotoxins and classi-
fied into two families: Cry and Cyt proteins. Based on the
amino acid sequence similarities, up to now, 74 cry gene
families (cry1–cry74) with 770 different cry genes and
three cyt families (cyt1–cyt3) consisting of 38 cyt genes
have been characterized. Other insecticidal proteins are
vegetative insecticidal proteins (Vips) produced during
the vegetative phase of growth. Up to now, about 138
different vip genes categorized into four groups (vip1–
vip4) have been identified and characterized (Table 2).
Based on the Cry, Cyt, and Vip protein contents, each
strain may be specifically active towards lepidopteran,
dipteran, coleopteran, or hymenopteran pests and even
other invertebrates, such as mites and nematodes
(Abdelmalek et al. 2015; Salehi Jouzani et al. 2008a,b).
The cry1 family contains 14 subfamilies (cry1A–N) which
contain 275 cry genes. The majority of the cry1 genes are
active against lepidopteran pests. The cry1b and cry1I
genes from this family are active also against coleopteran
pests (Nazarian et al. 2009). The cry2 family is placed in
the second rank with about 82 genes, and their activity is
mostly against lepidopteran or dipteran pests. The cry3
family contains 19 genes, which the majority of them
are active against coleopteran insects (Table 2). In more
details, the cry1, cry9, cry15, cry20, cry51, cry54, cry59,
and vip genes are mainly active against the lepidopteran
pests. The cry2, cry4, cry10, cry11, cry16, cry17, cry19,
cry24, cry25, cry27, cry29, cry30, cry32, cry39, cry40,
cry44, cry47, cry48, cry49, cry52, and cyt genes are ac-
tive against dipteran pests, whereas the cry3, cry7, cry8,
cry14, cry18, cry22, cry23, cry26, cry28, cry34, cry35,
cry366, cry37, cry38, cry43, and cry55 are coleopteran-
specific genes (Table 2). Also, during the last two de-
cades, it has been proved that some cry genes, such as
cry5, cry6, cry12, cry13, cry14, cry21, and cry55 have
toxicity against plant and animal nematodes (Ruan et al.
2015; Salehi Jouzani et al. 2008b). However, it should be
taken into account that some reported nematicidal activi-
ties of Cry proteins have been observed when high con-
centrations of them were used.

Bt and plant genetic engineering

Recent years have witnessed rapid advancements in the appli-
cation of modern biotechnology, especially in the agriculture.
The global acreage of GM crops across the world has dramat-
ically increased during the last 20 years due to their socioeco-
nomic and environmental advantages and reached to 179.7 mil-
lion ha in 2015 (Salehi Jouzani et al. 2008c; Salehi Jouzani
2012; Tohidfar and Salehi Jouzani 2008; James 2015). The
most widely used traits in the plant genetic engineering are
herbicide and pest resistance. Bt toxin genes have been exten-
sively used to enhance resistance to pests in crops. In 2015, the
acreage of Bt transgenic crops was about 75 million ha (58.5
million ha stacked Bt/herbicide tolerance and 18 million ha Bt
crops). These GMcrops contain one ormore different cry genes
for resistance to lepidopteran and/or coleopteran pests (James
2015). The Bt crops have enhanced pesticide application reduc-
tion of more than 583 million kg throughout 1996–2014
(Brookes and Barfoot 2015; James 2015).

Since 1996, 198 Bt GM varieties and lines of eight plants,
including corn, cotton, potato, soybean, tomato, poplar, rice,
and eggplant have been approved for commercial release
(Fig. 2). Corn, cotton, and potato with 115, 42, and 30 varie-
ties and lines are the most approved BtGMcrops, respectively
(ISAAA’s GM Approval Database 2016). Seven anti-
lepidopteran cry and vip genes, including cry1Ab,
cry1A.105, cry1Ac, cry1F, cry2Ab, cry2Ae, and vip3A, have
been used to enhance resistance to lepidopteran genes. The
cry1Ab, cry1F, and cry1Ac are the most used genes to produce
lepidopteran-resistant crops, which have been used in 61, 51,
and 32 GM varieties, respectively (Fig. 3). Some Bt crops
contain more than one cry or vip genes (two or three). These
gene-pyramiding systems have been developed to postpone
the potential pest resistance to Bt toxins produced in transgen-
ic plants. The number of approved Bt varieties containing anti-
coleopteran genes is about 111, some of them also contain
anti-lepidopteran pests. Four anti-coleopteran cry genes, in-
cluding cry3Aa, cry3B, cry34Ab1, and cry35Ab1, have been
used to enhance resistance towards coleopteran pests. Two
cry34Ab1 and cry35Ab1 have been used as a hybrid gene.
The cry3A and cry34Ab1–cry35Ab1, as the most used genes
to produce coleopteran pests’ resistant crops, have been used
in 60 and 34 GM varieties, respectively (Fig. 4).

Nevertheless, commercial transgenic crops containing cry
genes with activity against other insect orders and also against
nematodes have not released yet; therefore, more research and
development projects should be performed to achieve
nematode-resistant crops at commercial level. In addition, in
spite of the mentioned advantages, some potential risks on
human health and environment have been taken into account
for transgenic crops, including Bt crops. Typical categories of
risks of Bt crops include possible unintended negative effects
on human and animal health, the possible evolution of
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resistance in the targeted pest populations, possible effects on
non-target organisms, and the transgene escape and expres-
sion in a different organism as result of transgene flow (Craig
et al. 2008; Raybould 2006; Salehi Jouzani 2012). However,
during the last 20 years after commercial production of Bt
crops, no significant harm has been proved for them.

Bt as biological nematicide

Plant-parasitic nematodes, including cyst nematodes
(Heterodera and Globodera spp.) and root-knot nematodes
(Meloidogyne spp.), are piercing/sucking pests causing severe
damage to different crops. These nematodes cause annual yield
loss of approximately $125 billion globally (Chitwood 2003; Yu
et al. 2014, 2015; Zhang et al. 2012). Moreover, animal parasitic
nematodes, by increasing the cost of veterinary services, delaying
in animal growth and even causing death, are known as one of
the most important factors interfering with animal production
(Sinott et al. 2012). Although chemical nematicides remain the
most current means of controlling root-knot nematodes, the
growing concerns of environmental safety and public health lead

to the withdrawal or restricted usage of these kinds of nemati-
cides (Yu et al. 2015).

Some Bt strains can infect, germinate, and replicate inside
the digestive system of nematodes (Ruan et al. 2015). Bt
strains, containing one or many families of crystal proteins,
i.e., cry5, cry6, cry12, cry13, cry14, cry21, and cry55, have
been documented to have nematicidal activities (Guo et al.
2008; Luo et al. 2013a,b; Salehi Jouzani et al. 2008b; Yu
et al. 2015; Zhang et al. 2012) (Figs. 1 and 5). Moreover, these
Cry proteins have synergistic effects on nematodes when pres-
ent in the Bt strains (Yu et al. 2014). Accordingly, the expres-
sion of recombinant nematode-active Cry proteins expressed
in the plants provides protection against plant-endoparasitic
nematodes (Li et al. 2007, 2008).

Moreover, a few of otherBt compounds, such as thuringiensin
(Devidas and Rehberger 1992; Sánchez-Soto et al. 2015),
chitinase (Zhang et al. 2014), and metalloproteinase (Luo et al.
2013b), show nematicidal activities (Fig. 5). Other genes
encoding nematicidal factors, including lantibiotics, enterotoxins,
hemolysins, and proteases mostly controlled by the transcription-
al activator PlcR, has been confirmed (Ruan et al. 2015; Zhou
et al. 2014). Peng et al. (2016) proved that the presence of me-
talloproteinase ColB (collagenase protein) is very necessary to
enhance nematicidal activities of Cry5 and Cry6 proteins. Ruan
et al. (2015) have proposed two other alternative mechanisms
(necrotrophism and phoresis) for Bt interactions with nematodes.
Recent sequencing projects have confirmed that the genes in-
volved in the necrotrophic life stage are under the control of
the NprR (a transcriptional factor whose activity depends on
the NprX signaling peptide and involves in the necrotrophism
mechanism) regulator (Dubois et al. 2012). Three proteins,
keratinolytic proteinase, collagenase (regulated by a pleiotropic
transcriptional factor (PlcR)), and immune inhibitor A, enable a
necromenic lifestyle of Bt. The keratinolytic proteinase digests
collagen contents in the nematode cuticle. The second alternative
mechanism is phoresy, in which Bt is carried by the nematode,
either on its surface or within its intestinal tract without killing the
host (Ruan et al. 2015).
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The nematicidal activities of Bt strains have been tested
against different free- l iving nematodes, such as
Caenorhabdita elegans, Pristionchus pacificus, and
Chiloplacus tenuis (Devidas and Rehberger 1992;
Iatsenko et al. 2014a; Luo et al. 2013a,b; Salehi Jouzani
et al. 2008b), animal parasitic nematodes, such as Ascaris
suum, Distolabrellus veechi, Haemonchus contortus,
Trichostrongylus sp., and Ostertagia circumcincta (Kotze
et al. 2005; Sinott et al. 2012; Urban et al. 2013), and plant
parasitic nematodes, such as Meloidogyne incognita,
Me l o i d o g y n e ha l p a , P ra t y l e n c h u s s c r i b n e r i ,
Tylenchorhynchus sp., Ditylenchus destructor, and
Aphelenchoides sp. (Guo et al. 2008; Khan et al. 2010;
Mohammed et al. 2008; Salehi Jouzani et al. 2008b; Yu
et al. 2015; Zhang et al. 2012; Zi-Quan et al. 2008). The
recent studies on nematicidal activities of Bt strains or their
Cry proteins are summarized in Table 3. As it is clear in the
Table 3, the LC50 of the Cry proteins/spores for nematodes
in the most of the reports was quite low. This raises hope for
future application Bt strains as bionematicide. However, in
spite of proving nematicidal activity of some Bt strains,
there is no commercial Bt-based nematicide product in the
world at the moment. This limited application may be be-
cause of ambiguity in mechanisms of nematicidal activity
or low efficiency of some Bt strains.

Acaricidal effects of Bt

Some mite and tick species colonize humans and animals
directly and also act as vectors for disease transmission or
cause allergenic diseases. Although information concerning the
effect of Bt on mites is rare, a few in vitro and in vivo studies
have reported the acaricidal activity of some Bt strains (Erban
et al. 2009; Dunstand-Guzmán et al. 2015; Alquisira-Ramírez
et al. 2014). In the first reports, Hassanain et al. (1997) evaluated
the acaricidal activities of three Bt subspecies (kurstaki,
israelensis, and thuringiensis) against the soft tickArgas persicus
and the hard tick Hyalomma dromedarii. The Bt. var. kurstaki
and Bt var. israelensis showed the highest toxicity, respectively.
The acaricidal effect of the Bt. var. kurstaki against the black-
legged tick, Ixodes scapularis Say, which acts as a vector for
several animal and human diseases, has been also confirmed
(Zhioua et al. 1999). In another study, Bt var. tenebrionis produc-
ing Cry3A toxin showed high toxicity (LC50 25 to 38 mg/g)
against the mites Acarus siro L., Tyrophagus putrescentiae,
Dermatophagoides farinae, and Lepidoglyphus destructor
(Erban et al. 2009). Alquisira-Ramírez et al. (2014) isolated
and characterized some Bt strains with high acaricidal activity
from mite Varroa destructor (Acari: Varroidae), an ectopara-
sitic mite that feeds on the hemolymph of bee Apis mellifera
(Hymenoptera: Apidae). Another group firstly reported the

Fig. 5 Mode of action of Bt against nematodes. The crystal proteins
destroy the intestine following spore germination. Multi-pathogenic
factors, such as chitinase, metalloproteinase, and exotoxin, which
produced during Bt cell growth, can act synergistically with crystal

proteins. CWD cell wall-degrading enzymes (chitinase), Cry crystal
proteins (δ-endotoxins), Ex exotoxin (thuringiensin), Mp
metalloproteinase, Sp spore
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acaricidal activity of the Bt strain GP532 (LC50 1.3 mg/ml and
LT50 68 h) on the mite Psoroptes cuniculi, known as a com-
mon ectoparasite of rabbit ear (Dunstand-Guzmán et al.
2015). Recently, a novel Bt strain (BPU5) was isolated from
the rumen of Malabari goat, which was efficiently toxic to
Tetranychus macfarlanei (LC50 8 mg/ml), a sucking mite
infesting different crops and ornamentals (Neethu et al.
2016). Ahmed et al. (2016) reported the acaricidal activities
of Bt var. israelensis (81.22% mortality) and tenebrionis (90.
91% mortality) against T. putrescentiae (Schrank), a mold
mite which is a cosmopolitan pest of stored food products, at
the rate of 32 mg/kg after 4 weeks.

In spite of confirmation of acaricidal activity of Bt strains
against different ticks and mites, the mechanism of action of
acaricidal Bt strains is unknown yet. However, the presence
of enzymes like trypsin, alkaline phosphatase, and some ami-
nopeptidases on the digestive system of the studied mites,
suggests that alterations in the intestinal cells of the mites
may be due to activation of Bt protoxins (Dunstand-Guzmán
et al. 2015). Exploring the mechanism of action of Bt in the
mite digestive system is one of the subjects which should be
taken into account for the future studies on Bt. However, to
have high acaricidal activity, high doses of Cry proteins/
spores (mg/ml) are required which make it impractical to use

Table 3 The list of Bt strains with nematicidal activities

Bt strain Gene/protein Nematicidal
activities against

Host Nematicidal efficiency Reference

YBT-021 ND Meloidogyne hapla Vegetables LC50 35.62 μg/ml Zi-Quan et al. (2008)
Pratylenchus scribneri Ramie LC50 75.65 μg/ml

Tylenchorhynchus sp. Ramie LC50 94.31 μg/ml

Ditylenchus destructor Sweet potato LC50 215.21 μg/ml

Aphelenchoides sp. Different plants LC50 128.76 μg/ml

ND Exotoxin Meloidogyne incognita Vegetable 10 mg/kg soil Devidas and Rehberger (1992)
Caenorhabdita elegans Free living 15.6 μg/ml

BMB171-15 cry6Aa2 Caenorhabdita elegans Free living LC50 7.43 μg/ml Luo et al. (2013a)

BMB0224 cry55Aa1 Meloidogyne hapla Vegetables LC50 23.2 μg/ml Guo et al. (2008)
BMB0250 cry6Aa2 LC50 23.9 μg/ml

BMB0215 cry5Ba2 LC50 18.1 μg/ml

DB27 Cry21Fa1 Caenorhabdita elegans Free living LC50 13.6 μg/ml Iatsenko et al. (2014a,b)
Cry21Ha1 LC50 23.9 μg/ml

Bt7 and Bt7N – Meloidogyne incognita Vegetables LC50 34–37 μg/ml Mohammed et al. (2008)

Bt-64 – Meloidogyne javanica Vegetables 51% mortality Khan et al. (2010)

YD5 and KON4 – Meloidogyne incognita Vegetables 81% mortality Salehi Jouzani
et al. (2008a,b,c)Chiloplacus tenuis Free living 77% mortality

Acrobeloides enoplus Free living 71% mortality

BMB171-15 Cry6Aa2 Meloidogyne hapla Vegetables LC50 71.08 μg/ml Yu et al. (2015)

Bt010 Chitinase Caenorhabdita elegans Free living 48.4% mortality (48 h) Zhang et al. (2014)

Bt. osvaldocruzi – 47.5% Sinott et al. (2012)
Bt. kurstak – Haemonchus contortus Sheep 33.2%

Bt. israelensis – 14.1%

Bt WA 3.4.9 Cry5A, Cry5B, and Cry13 Haemonchus contortus Animals LC50 26 ng/ml Kotze et al. (2005)

Trichostrongylus sp. Animals LC50 47 ng/ml

Ostertagia
circumcincta

Animals LC50 81 ng/ml

Bt L366 Cry5A, Cry5B, and Cry13 Haemonchus contortus Animals LC50 41 ng/ml Kotze et al. (2005)
Trichostrongylus sp. Animals LC50 127 ng/ml

Ostertagia
circumcincta

Animals LC50 10 ng/ml

– Cry5B Ascaris suum Animals 100% mortality (25 ng/kg) Urban et al. (2013)

– Metalloproteinase
ColB (collagenase)

Caenorhabdita elegans Free living Significantly improved
toxicity of Cry5 and Cry6

Peng et al. (2016)
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Bt as bioacaricide at commercial level. At the moment, there is
no commercially available Bt products for control of mite and
tick species in the world. Therefore, it will be necessary to
explore new Bt strains with more powerful acaricidal
activity in the future.

Bt as plant growth-promoting bacteria

Commonly, bacterial strainswith beneficial effects on plant growth
and development are referred to as plant growth-promoting
rhizobacteria (Mishra et al. 2009a). Some strains of Bt colonize
plant roots and have plant growth-promoting characteristics. These
Bt strains have potentials to be used solely or inmixture with other
microorganisms as biofertilizer in the agriculture (Armada et al.
2015a,b; Bai et al. 2003; Mishra et al. 2009a,b). Bai et al. (2003)

confirmed that the Bt strain NEB17 significantly enhance soy-
bean nodulation, growth, and yield parameters compared to
Bacillus subtilis strains when they co-inoculated with
Bradyrhizobium japonicum onto soybean plants. Co-
inoculation of an IAA-producing Bt strain KR1 with
Rhizobium leguminosarum-PR1 could significantly promote
the growth of field pea and lentil compared to inoculation of
R. leguminosarum-PR1 solely (Mishra et al. 2009a). The co-
inoculation of Bt-KR1 with B. japonicum-SB1 also promoted
the growth of soybean plants and provided a significant in-
crease in nodule number, shoot weight, root weight, root vol-
ume, and total biomass compared to rhizobial inoculation and
control (Mishra et al. 2009b).

Many Bt strains produce some metabolites which enhance
plant growth at abiotic stress conditions. These compounds
include ACC deaminase, indole-3-acetic acid (IAA), proline,

Fig. 6 Mechanisms of Bt as PGPR and antagonist of plant pathogenic
bacteria and fungi. AHL N-acylhomoserine lactone, ACC ACC
deaminase, Bac bacteriocin, CWD cell wall-degrading enzymes, FG

fengycin, IAA indole-3-acetic acid, PSE phosphate solubilization
enzymes, Sp spore, VOCs volatile compounds
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and phosphate solubilization enzymes (Fig. 6). Armada et al.
(2015a) showed that when Bt was used solely or mixed with
arbuscular mycorrhizal fungi (AMF), it could significantly
result in an increase of shoot growth, biomass (more than
20%), and micronutrient elements in the plant shoots. It also
could substantially reduce the oxidative stress through in-
creasing antioxidant enzyme activities (superoxide dismutase,
catalase, and ascorbate peroxidase) and reduction of the plant
oxidative damage of lipids (malondialdehyde). In another
study, the combined inoculation of Bt and AMF to maize
under drought stress could significantly increase the accumu-
lation of nutrients in the plant and decrease the oxidative dam-
age to lipids and accumulation of proline (Armada et al.
2015b). Also, application of autochthonous microorganisms
(a consortium of Bt and AMF) enhanced a significant increase
in water stress alleviation for Trifolium repens in a natural arid
soil under drought conditions via increasing nutrient contents
and the relative water content and decreasing stomatal con-
ductance, electrolyte leakage, proline, and ascorbate peroxi-
dase activity (Ortiz et al. 2015).

Lee et al. (2009) confirmed that the application of bacteri-
ocin (thuricin-17) purified from Bt strain NEB17 to leaves
(spray) or roots (drench) directly stimulated the growth of both
a C3 dicot (soybean) and a C4 monocot (corn) plants.
Application of thuricin-17 with the N2-fixing B. japonicum
under water stress condition could significantly increase plant
biomass (17%), root biomass (37%), nodule biomass (55%),
root abscisic acid (30%), and total nitrogen amount (17%)
(Prudent et al. 2015). Recently, Cherif-Silini et al. (2016) re-
ported the plant growth-promoting rhizobacteria (PGPR) ac-
tivity for the Bt and B. subtilis strains isolated from the wheat
rhizosphere in different regions of Algeria. These strains
showed the maximum biofertilization (phosphate solubiliza-
tion), biostimulation (IAA production), and biocontrol activi-
ties (cyanhydric acid, siderophores, and 2,3-butanediol pro-
duction and antifungal activity). The possible PGPR mecha-
nisms of Bt are summarized in the Fig. 6.

The results of previous studies on PGPR activity of Bt strains
are very promising. Nevertheless, at the present time, there is no
commercially available Bt-based PGPR formulation in the
biofertilizer market. By finding new Bt strains with powerful
PGPR activities and exploring details of PGPR activity of those
Bt strains, commercial production of PGPR Bt strains will be
available in the near future for different crop systems.

Bt as antagonist of plant and human pathogenic
fungi

Commonly, antifungal effects of biocontrol agents are due to
various antifungal compounds, such as antibiotics, lipopeptides,
siderophores, volatile organic compounds, secondary metabo-
lites, and cell wall-degrading enzymes. The signaling molecules

inducing systemic resistance in plants should be taken into ac-
count (Gao et al. 2014; Pane et al. 2012; Shrestha et al. 2015).
Cry proteins synthesized by Bt do not show any antifungal ac-
tivity. However, some Bt strains produce antifungal compounds,
including cell wall-degrading enzymes, lipopeptide fengycin,
volatile compounds (VOCs), and signaling molecules inducing
systemic resistance (Fig. 6). The antifungal activities of Bt strains
against different plant pathogenic fungi, such as Fusarium,
Sclerotium,Colletotrichum, Rhizoctonia, and Botrytis, have been
previously confirmed (Akram et al. 2013; Reyes-Ramírez et al.
2004; Sadfi et al. 2001; Shrestha et al. 2015; Tang et al. 2012;
Zheng et al. 2013).

Chitinase activity is known as one of the most important
antifungal agents detected in Bt strains. Chitinase-producing
Bt strains have showed high antifungal activities against
Fusarium roseum var. sambucinum, the causal agent of the
dry rot of potato tubers (Sadfi et al. 2001), Sclerotium rolfsii
Sacc (Reyes-Ramírez et al. 2004), Penicillum chrysogenum
(causal agent of human disease), Rhizoctonia sp. and
Fusarium oxysporum (Gomaa 2012), Sclerotinia minor and
Sclerotinia sclerotiorum, the causal agents of lettuce drop
disease (Shrestha et al. 2015), Urocystis tritici, the causal
agent of the wheat flag smut (Tao et al. 2014), Fusarium
verticillioides (maize pathogen) (Rocha et al. 2014), and
Botrytis cinerea, the causing agent of mold disease in fruit
and crop production (Martínez-Absalón et al. 2014).

Moreover, recent studies have confirmed the systemic re-
sistance induction by Bt strains in plants against different fun-
gal pathogens. For instance, when roots of 2-week-old tomato
seedlings were primed with vegetative cells of Bt-199 (CFU
103) by keeping them in inoculum for 30 min and then trans-
ferred into pots, the bacterium could induce systemic resis-
tance in tomato against F. oxysporum lycopersici wilt, by a
significant increase of the quantity of total phenolics (1.7-fold)
and defense-related enzymes, including polyphenol oxidase
(1.3-fold), phenyl ammonia lyase (1.8-fold), and peroxidase
(1.4-fold). Nevertheless, the mechanism for increase of these
metabolites by Bt strains is not clear (Akram et al. 2013). In
another study, chitinase extracted from Bt-H3 could signifi-
cantly inhibit mycelial growth of several pathogenic fungi,
including Pyricularia grisea (72.2%), Thantephorus cucumris
(Rhizoctonia solani) (62.6%), Fusarium vasinfectum (44.6%),
Fusarium gramineum (50.0%), and F. oxysporum (55.8%).
The strain could significantly increase rice seedlings’ defense
enzyme activity, including phenylalanine ammonia lyase
(PAL) and peroxidase (POD) (Tang et al. 2012).

Another antifungal mechanism of Bt is the production of
fengycin-like and volatile compounds (Fig. 6). Kim et al.
(2004) purified a lipopeptide (fengycin) from Bt CMB26 with
potent toxicity against phytopathogenic anthracnose fungus
Colletotrichum gloeosporioides, Escherichia coli, and cabbage
white butterfly (Pieris rapae crucivora). Another study reported
that the Bt-TB72 produces different volatile compounds, such as
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2-nonanone, β-benzeneethanamine, 2-decanone, and thymol.
These compounds could inhibit 80.07 and 87.06% of the myce-
lial growth of C. gloeosporioides in postharvest mangos at
in vitro and in vivo levels, respectively (Zheng et al. 2013).

Many Bt strains also can control some human and animal
pathogenic fungi, such as Candida albicans, Aspergilus niger
(Roy et al. 2013), and P. chrysogenum (Gomaa 2012). For
instance, Bt strain SM1 produces a fengycin-like lipopeptide
with high antifungal activities against C. albicans and A. niger
(Roy et al. 2013). Information about antagonistic effects of Bt
strains against human and animal pathogenic fungi is less, and
accordingly, more detailed research is necessary to be per-
formed in the future to find ways to use these antifungal prop-
erties in the plant protection, medicine, and food industries.

Bt as antagonist of pathogenic bacteria

Some Bt strains may have antibacterial activities against the
plant and human pathogenic bacteria and those bacteria in-
volving in food degradation. The mechanism of antibacterial
activities of Bt includes the production of bacteriocins (Ahern
et al. 2003; Cherif et al. 2001; Paik et al. 1997) and signal
interference by N-acylhomoserine lactone (AHL)-degrading
enzymes (Dong et al. 2004).

Commonly, prokaryotes produce different antimicrobial
peptides to enhance their defense against other microorgan-
isms. Bacteriocins are the small thermotolerant antimicrobial
peptides with molecular masses between 3 and 12 kDa and are
ribosomally synthesized during the stationary phase. They
mostly affect the growth and (or) viability of other bacteria
(de la Fuente-Salcido et al. 2013). Some studies reported bac-
teriocin production during the sporulation and Cry synthesis
in Bt strains (Ahern et al. 2003; Barboza-Corona et al. 2007;
Cherif et al. 2001; de la Fuente-Salcido et al. 2013; Kamoun
et al. 2011). Recently, de la Fuente-Salcido et al. (2013) have
reported a list of different types of bacteriocins synthesized by
Bt strains. Up to now, 18 different types of bacteriocins have
been isolated and purified from Bt subspecies (during vegeta-
tive growth period), including morrisoni, kurstaki, kenyae,
entomocidus, tolworthi, tochigiensis, and thuringiensis. Bt
bacteriocins may show a wide or narrow bactericidal or bac-
teriostatic effects (de la Fuente-Salcido et al. 2013).

Bt as antagonist of plant pathogenic bacteria

Some Bt strains, which produce different types of bacteriocins
and AHL-degrading enzymes, can potentially be used as the
antagonist in the biocontrol of plant pathogenic bacteria
(Fig. 6). The AHL-degrading enzyme (AiiA) produced by
some Bt strains can attenuate the virulence of pathogenic bac-
teria, such as Erwinia carotovora, the causal agent of soft rot
in the root system of the pepper plant. The antibacterial

activity of AiiA is due to the quorum-quenching mechanism
(Park et al. 2008). The antibacterial activities of the Bt-derived
bacteriocins against different plant pathogenic bacteria, such
as Agrobacterium tumefaciens (Bacthuricin F103; Kamoun
et al. 2011), Pseudomonas syringae, Pseudomonas
savastanoi, Paucimonas lemoignei (Thuricin Bn1; Ugras
and Demirbag 2013), and B. cinerea have been reported
(Hong et al. 2015; Jeong et al. 2016). Moreover, the presence
of Bt (vegetative cells) in mixtures with other bacterial
(Citrobacter farmer and Streptomyces avermectinius) and
fungal (Paecilomyces variotii, Trichoderma parareesei TPJ-
S-1, and Trichoderma viride TVJ-S-1) antagonists significant-
ly improved their efficiency to control Ralstonia
solanacearum in Naga chilli (Bora et al. 2015), tomato
(Elsharkawy et al. 2015), and eucalyptus (Santiago et al.
2015). Bora et al. (2015) reported that the combination of
Bt, T. parareesei, and T. viride shows the maximum antago-
nistic effect (91.47%) against R. solanacearum, compared to
other treatments and control. In another study, the treatment of
tomato roots with Bt CR-371 and S. avermectinius suppressed
bacterial wilt diseases (caused by R. solanacearum) and root-
knot nematode diseases (Elsharkawy et al. 2015).

Bt as an agent for control of human and animal
pathogenic bacteria

Some Bt bacteriocins have high potentials to be used as excel-
lent alternatives for the traditional antibiotic treatment against
different human or animal pathogenic bacteria. They also may
be used as biodegradable natural and safe food preservatives
in food packaging to inhibit the growth of enterotoxigenic
bacteria and to extend the shelf life of foods. The combination
of Bt bacteriocins with nisin can improve their antibacterial
activities (Cherif et al. 2008; de la Fuente-Salcido et al. 2008,
2013; Paik et al. 1997).

For instance, a Bt fengycin-like lipopeptide showed anti-
bacterial activity against E. coli and Staphylococcus
epidermidis (Roy et al. 2013). Some bacteriocin-like com-
pounds produced by Mexican Bt subspecies morrisoni,
kurstaki, kenyae, entomocidus, and tolworthi showed high
levels of activity against Bacillus cereus and Vibrio cholerae,
the agents of emetic, diarrheal, and lethal syndromes in
humans (Barboza-Corona et al. 2007). Bacthuricin F103,
Thuricin S, and Thurincin H show high antibacterial activity
against Listeria monocytogenes and B. cereus, and Thuricin 7
prevented spoilage of raw milk and dairy products caused by
Bacillus weihenstephanensis (Cherif et al. 2001). Thuricin S
has antibacterial activity against a broad spectrum of bacteria,
such as L. monocytogenes, B. cereus, S. enterica subsp.
enterica serovar cholerae, and Pseudomonas aeruginosa,
and accordingly, it is feasible to be used as a natural food
preservative in the food industry (Chehimi et al. 2012; de la
Fuente-Salcido et al. 2013). Also, Morricin 269, Kurstacin
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287, Kenyacin 404, Entomocin 420, and Tolworthcin 524 have a
broad effect against foodborne pathogenic bacteria, such as
B. cereus, Listeria innocua, L. monocytogenes, V. cholerae,
Staphylococcus aureus, Staphylococcus xylosus, Shigella
flexneri, Salmonella spp., Streptococcus pyogenes, and E. coli,
and other human pathogens, including Klebsiella pneumoniae,
Proteus vulgaris, Enterobacter cloacae, and Enterococcus
faecium (Barboza-Corona et al. 2007, 2009; de la Fuente-
Salcido et al. 2008, 2013).

Bt bacteriocins also have the potential to be used in apiculture
industry. Entomocin 110 is active against Peanibacillus larvae,
the causal agent of foulbrood disease in honeybee larvae
(A. mellifera) and other Apis spp. (pollinators insect), and there-
fore could be used as a natural and environmentally safe alterna-
tive to antibiotics, such as oxytetracycline, to control P. larvae
(Cherif et al. 2008; de la Fuente-Salcido et al. 2013).

Bt as a source for biosynthesis of metal nanoparticles

Metal nanoparticles (NPs), due to their advanced physico-
chemical properties and their wide applications in different
industries, have attracted attention. Various biological sys-
tems, such as bacteria, fungi, plant extracts, and other
biological-based products, have been used for the green syn-
thesis of different metal NPs (Juibari et al. 2011, 2015; Okafor
et al. 2013). The synthesized NPs using microbes show sig-
nificant advantages, like being clean, non-toxic, and eco-
friendly, and it is also possible at ambient temperature and
pressure. Consequently, several bacterial and fungal strains
have been used to produce NPs (Das et al. 2014a,b; Nayak
et al. 2016).

Some recent studies have proved the ability of Bt strains to
produce metal NPs, such as silver (Banu et al. 2014; Jain et al.
2010; Nayak et al. 2016) and cobalt (Marimuthu et al. 2013).
Jain et al. (2010) for the first time reported the high efficient
silver NP green synthesis using the spore-crystal mixture of
Bt. The average particle size was about 15 nm with mixed
(cubic and hexagonal) structure. The AgNPs were found to
be highly toxic to different multi-drug-resistant human patho-
genic bacteria, including E. coli, P. aeroginosa, and S. aureus.
It has been previously confirmed that some bacteria contain
reducing enzymes which involve in reduction of metal ions to
nanoparticles. Therefore, it may have concluded that some Bt
strains contain reducing enzymes for NP biosynthesis.
Marimuthu et al. (2013) have reported cobalt nanoparticle
biosynthesis (Co-NPs) using a Bt strain and confirmed that
Co-NPs have high larvicidal activities against malaria vector,
Anopheles subpictus, and dengue vector, Aedes aegypti
(Diptera: Culicidae), with LC50 values of 3.59 and 2.87 mg/
l, respectively. In another study, Banu et al. (2014) confirmed
the larvicidal activity of silver nanoparticles (AgNPs) synthe-
sized by Bt against A. aegypti (LC50 0.10 ppm and LC90

0.39 ppm). Moreover, recently, the protocol to fabricate and
purify silver NPs in stable form during Bt cell growth was
optimized (Nayak et al. 2016).

As the biosynthesis of nanoparticles using microorganisms
and plant extracts is costlier than that of mechanical or chem-
ical synthesis, efforts for designing cost-effective process for
biosynthesis of NPs will be continued.

Bt as the agent for bioremediation of heavy metals
and pollutions

Heavy metals, pesticides, herbicides, and petroleum derivate
are known as the principal source of environmental and hu-
man health concerns nowadays. These compounds can accu-
mulate readily in the food chain and, consequently, cause haz-
ards to the higher trophic levels (Chen et al. 2015a,b,c; Dash
et al. 2014; Huang et al. 2014a,b; Thamer et al. 2013). Some
Bt strains efficiently degrade some toxic pollutants. These
strains can accumulate, degrade, or mineralize toxic heavy
metals. Previously, Bt-based bioremediation of arsenic, cad-
mium, lead, copper, nickel, zinc, chromium, mercury, and
uranium has been reported (Table 4). Moreover, some Bt
strains can degrade persistent pesticides and herbicides, such
as phenanthrene, imidacloprid (Ferreira et al. 2016), fipronil
(Mandal et al. 2013), chlorpyrifos (Aceves-Diez et al. 2015;
Wu et al. 2015), cyhalothrin, phenoxybenzoic acid (Chen
et al. 2015a), triphenyltin (an organotin herbicide),
diphenyltin, and monophenyltin (Huang et al. 2014a). Also,
Bt-based efficient degradation of petroleum pollutions (diesel
fuel and crude oil), polycyclic aromatic hydrocarbons (fluo-
ranthene and pyrene (Kebria et al. 2009; Maiti et al. 2012;
Thamer et al. 2013)), dyes (methylene blue (El-Sersy 2007)
and acid red 119 (Dave and Dave 2009)), organic wastes (dis-
tillery effluent (Kumar and Chandra 2004), malachite green
(Olukanni et al. 2013), and melanoidins (Kumar and Chandra
2006)), and also plasticizer materials (dimethyl phthalate
(Brar et al. 2009; Surhio et al. 2014)) has been reported
(Table 4). Accordingly, these findings confirm that Bt strains
will find a significant place in bioremediation projects in the
future. However, there is no Bt-based commercial product for
bioremediation purposes, and therefore, it is neccessary to
perfom more research and development projects to open
way for commercialization of these products.

Anticancer characteristics of Bt

Cry toxins are primarily known as a family of insecticidal
toxins produced by Bt. However, some Bt Cry proteins, such
as Cry31A, Cry41A, Cry45A, Cry46A, Cry63A, and
Cry64A, called as parasporins (PSs), do not show any insec-
ticidal and hemolytic activity, nevertheless, have strong
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cytocidal activity against human cancer cells (without affect-
ing normal ones) when digested with proteases (Ammons
et al. 2016; Ohba et al. 2009). The Committee of Parasporin
Classification and Nomenclature have registered 19 different
parasporins, which are grouped in six subclasses (PS1, PS2,
PS3, PS4, PS5, and PS6) according to their amino acid se-
quence homology (Ammons et al. 2016; Ohba et al. (2009);
Okumura et al. 2011). Anticancer activities of the parasporins
have been confirmed against different cancer cells, such as

human cervical cancer cells (HeLa (Brasseur et al. 2015;
Katayama et al. 2005; Krishnan et al. 2010; Mizuki et al.
1999) and SiHa (Periyasamy et al. 2016)), murine lymphoma
L5178YR cell line (Franco-Molina et al. 2016), human leuke-
mia T cells (MOLT-4 (Hayakawa et al. 2007; Katayama et al.
2005; Mizuki et al. 1999; Okumura et al. 2005)), CEM-SS
(Krishnan et al. 2010), human uterus endometrium adenocar-
cinoma cell lines Hec-1A and KLE (Brasseur et al. 2015),
myeloid leukemia cells (HL60) and liver (hepatocyte) cancer

Table 4 Ability of Bt strains to be used as source of bioremediation of different environmental pollutant materials

Bioremediation
activity

Specific activity Strain Degradation efficiency Reference(s)

Heavy metals Mercury(II), copper,
and chromium

Bt var. thuringiensis, serotype 1 42.7, 18.7, and 8.9%
of metals, respectively

Hassen et al. (1998)

Mercury Bt strain PW05 70–95% Dash et al. (2014)

Zinc and lead Bt strain Simi 54% after 4 days Kumar et al. (2015)

Cadmium, lead, and copper Bt strain L14 76, 80, and 21%, respectively Guo et al. (2010)

Cadmium, chromium,
copper, lead, and nickel

Bt strain OSM29 Ni (94%), Cu (91.8%), and
Cd (87%) of 25 mg/l

Khan and Zaidi (2013)

Arsenic, copper, lead, nickel,
and zinc

Bt strain GDB-1 8–77% Babu et al. (2013)

Uranium(VI) Bt strain BRC-ZYR3 400 mg U/g biomass
(dry weight)

Pan et al. (2015)

Chromium Bt strain Cr-S1 87.04% within 24 h Jahan et al. (2016)

Lead(II) Bt strain 016 Biosorption 164.77 mg/g Chen et al. (2015a,b,c)

Nickel Bt strain KUNi1 82% of 2 mM Ni Das et al. (2014a,b)

Chromium (Cr) Bt strain BRC-ZYR2 25–75 mg/l after 24 Huang et al. (2014a,b)

Pesticides
and herbicides

Phenanthrene
and imidacloprid

Bt from marine sediment – Ferreira et al. (2016)

Fipronil Bt strain from sugarcane fields 100% after 42 days Mandal et al. (2013)

Chlorpyrifos Bt strain Bts More than 83% degradation Aceves-Diez et al. (2015)

Cyhalothrin and
3-phenoxybenzoic acid

Bt strain ZS-19 100% of 100 μg/ml and 80%
of 800 μg/ml within 72 h

Chen et al. (2015a)

Chlorpyrifos Bt strain BRC-HZM2 88.9% after 48 h Wu et al. (2015)

Triphenyltin Bt from contaminated
sediments

70–80% Huang et al. (2014a,b)

Oil pollutions
and plasticizers

Diesel fuel Bt strain R 85.20% of diesel fuel Kebria et al. (2009)

Light crude oil Bt strain Up to 80% Thamer et al. (2013)

PAH (fluoranthene and pyrene) Bt strain NA2 Up to 70% Maiti et al. (2012)

Dimethyl phthalate (DMP) Bt from cotton field soil 99% of 400 mg/l of DMP Surhio et al. (2014)

Dimethyl phthalate Bt var. kurstaki 97–99% of 500 mg/l DMP Brar et al. (2009)

Dyes Acid red 119 and actual azo Bt strain SRDD 50–70% decolorization Dave and Dave (2009)

Methylene blue Bt strain 4G1 98% El-Sersy (2007)

Malachite green Bt strain RUN1 85% Olukanni et al. (2013)

Ethidium bromide Bt strain PSU9 Large portion of EtR
was degraded

Sukhumungoon
et al. (2013)

Organic wastes Chicken feather waste (keratin) Bt israelensis H14 (IPS-82) 100% of 5 g/l keratin Poopathi and Abidha
(2008)

Distillery effluent MTCC 4714 40–50% Kumar and Chandra (2004)

Synthetic molasses
melanoidins

MTCC 4714 6–50% Kumar and Chandra (2006)
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cell (HepG2 (Brasseur et al. 2015; Katayama et al. 2005;
Okumura et al. 2005; Yamashita et al. 2005)), human epithe-
lial colorectal adenocarcinoma cell line (CACO-2 (Brasseur
et al. 2015; Okumura et al. 2005), endometrial adenocarcino-
ma (Sawano (Okumura et al. 2005)), adherent human colon
cancer cells (HT-29 (Krishnan et al. 2010), HCT-250
(Okumura et al. 2005; Poornima et al. 2010), HCT 116 and
SW620 (Periyasamy et al. 2016)), human prostate cancer cell
line (PC-3 (Brasseur et al. 2015; Hayakawa et al. 2007)),
human histiocytic lymphoma (U-937 (Okumura et al. 2005;
Poornima et al. 2010)), and human breast cancer cell lines
(MCF-7 and MDA-MB231 (Brasseur et al. 2015) and Jurkat
cells (Hayakawa et al. 2007)).

Recently, the significant increase in the incidence of cancer
and the limitations of the existing treatment methods have
pushed scientists to perform intensive research projects to find
new efficient therapeutic agents. Since parasporins are known
as potential candidates for targeted anticancer therapy, charac-
terization of their mode of action, which is probably through
receptor mediation, is of importance (Periyasamy et al. 2016;
Poornima et al. 2010). The known parasporins exhibit a dif-
ferent mode of action against various cancer cell lines (Ekino
et al. 2014; Mizuki et al. 1999; Periyasamy et al. 2016;
Yamashita et al. 2005). PS-1 induces cancer cell death by
activating signals of apoptosis and increasing Ca2+ concentra-
tion. The beclin-1 in the HeLa cell line acts as the receptor of
PS-1 (Katayama et al. 2005). PS-2 is a pore-forming toxin and
serves as a cytolysin through targeting on the cancer cell plas-
ma membrane. The structure and function of this parasporin
are similar to insecticidal Cry proteins and therefore requires
glycosylphosphatidylinositol-anchored proteins for its oligo-
merization and pore formation on cancer cells (Aldeewan
et al. 2014). PS-3 and PS-6 have similar three-domain struc-
ture to insecticidal Cry toxins. They may also act as a pore-
forming toxin, which affects the cancer cell plasma membrane
(Aldeewan et al. 2014; Yamashita et al. 2005). PS4 kills can-
cer cells through non-specifically binding to the plasma mem-
brane and forming oligomeric complexes in the target cell
membranes (Aldeewan et al. 2014; Okumura et al. 2011). At
the present time, there is no Bt-based pharmaceuticals as an-
ticancer bioproducts in the market, but by exploring the details
of Bt-parasporin mechanisms of action against different can-
cers, these proteins may practically be used in the future as the
anticancer pharmaceuticals.

Future considerations

Bt has been used for decades as the most successful microbial
insecticide in agriculture and medicine sectors, and it is ex-
pected that this advancing trend will be well continued in the
future. During the last two decades, Bt recombinant toxin
genes have been widely used to enhance resistance to insect

pests in crops. Currently, the share of Bt crops, containing
one or more different cry genes for resistance to lepidop-
teran and/or coleopteran pests, is a striking part of the glob-
al acreage of all transgenic crops, and this adoption trend
expected to be increased in the future. One of the promising
strategies is pyramiding of Bt toxin genes in Bt wild-type
strains or GM plants to expand their pest control efficacy
and range and also to delay pest resistance to bioinsecticide
or Bt transgenic crops. Besides its broad application as
insecticide and gene source for genetic engineering, over
the past several years, different studies have confirmed new
characteristics which make Bt as a suitable candidate for
applications in other avenues. These potential applications
of Bt include biocontrol of plant nematodes and mites, an-
tagonistic effects against plant and animal pathogenic bac-
teria and fungi, plant growth-promoting activities, biore-
mediation of different pollutants, biosynthesis of different
nanoparticles, and anticancer activities. Among these char-
acteristics, one promising field is the potential for Bt pro-
teins to act against cancer cells due to the production of
parasporins, toxins that have a cytotoxic effect on the cells
changed by some cancers. However, except for application
of Bt as biopesticide and as source of genes for plant ge-
netic engineering, it has not been commercially used for
other mentioned applications, such as bioremediation, bio-
control of plant pathogens, NP biosynthesis, or control of
cancer yet.

Knowledge about genome structure, toxin genes, mode of
action, and different features of Bt has critically advanced
during the last decades. Nevertheless, detailed understandings
of biochemical and physiological pathways and mode of ac-
tion of Bt especially in the field of novel characterized features
have been limited due to lack of functional genomics, proteo-
mics, and metabolomic information. Recent advances in next-
generation sequencing, genomics, transcriptomics, proteo-
mics, metabolomics, and genetic engineering technologies
profoundly open insights into Bt biochemical and physiolog-
ical pathways at the molecular level, genome structure and
function, and their novel characteristics. Such innovations will
undoubtedly lead to explore novel Bt strains with more potent
insecticide activities or novel features which will enhance the
implementation of these strains in other medical, agronomical,
and industrial avenues. The most promising area of investiga-
tion on Bt will be the discovery, identification, and validation
of novel molecular targets, such as Cry, Cyt, and Vip proteins,
cell wall-degrading enzymes, plant growth-promoting com-
pounds, and parasporins to develop new efficient insecticides,
nematicides, bactericides, fungicides, biofertilizers, and anti-
cancer pharmaceuticals.
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