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Abstract We previously engineered Escherichia coli YL104
to efficiently produce succinate from glucose. In this study, we
investigated the relationships between the NADH/NAD+ ra-
tio, ATP level, and overall yield of succinate production by
using glucose as the carbon source in YL104. First, the use of
sole NADH dehydrogenases increased the overall yield of
succinate by 7% and substantial ly decreased the
NADH/NAD+ ratio. Second, the soluble fumarate reductase
from Saccharomyces cerevisiae was overexpressed to manip-
ulate the anaerobic NADH/NAD+ ratio and ATP level. Third,
another strategy for reducing the ATP level was applied by
introducing ATP futile cycling for improving succinate pro-
duction. Finally, a combination of these methods exerted a
synergistic effect on improving the overall yield of succinate,
which was 39% higher than that of the previously engineered
strain YL104. The study results indicated that regulation of the
NADH/NAD+ ratio and ATP level is an efficient strategy for
succinate production.

Keywords Succinate yield . NADH/NAD+ ratio . ATP
generation . NADHdehydrogenases . Soluble fumarate
reductases . ATP futile cycling

Introduction

Succinic acid, a C4-dicarboxylic acid, is a precursor of many
important chemicals in the food, chemical, and pharmaceuti-
cal industries (Ahn et al. 2016; Olajuyin et al. 2016; Wang
et al. 2014). Certainly, the widespread importance of succinate
has secured its listing among the top 12 chemical building
blocks by the US Department of Energy (Werpy and
Petersen 2004). To improve succinate production by using
Escherichia coli, researchers have explored various metabolic
engineering strategies (Ahn et al. 2016; Forster and Gescher
2014; Kang et al. 2010; Liang et al. 2015) such as activating
the glycolytic pathway, overexpressing pyruvate-
metabolizing enzymes, eliminating competing pathways, and
providing reducing equivalents and energy (Li et al. 2016;
Liang and Qi 2014; Meng et al. 2016; Vemuri et al. 2002;
Vuoristo et al. 2016).

We previously constructed succinate-producing strains by
using a series of genetic modifications, and a high overall
volumetric productivity and concentration of succinate were
achieved (Li et al. 2013). Awhole-phase succinate production
strategy was developed in this study. In this method, the
engineered strain produced succinate under aerobic,
microaerobic, and anaerobic conditions. Compared with this
whole-phase fermentation, strain growth uncouples product
formation in the typical dual-phase fermentation. However,
the overall yield from our constructed engineered strain
should be increased further. Recently, we explored the rela-
tionships between ATP generation, substrate ratio of xylose to
glucose, and succinate production (Zhang et al. 2016). We
observed that excess energy exerted a negative effect on suc-
cinate production in the engineered E. coli that could not grow
anaerobically. Therefore, regulating ATP generation for im-
proving the overall yield of succinate by using glucose as
the carbon source in this engineered E. coli is essential.
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The NADH/NAD+ ratio is also crucial for succinate pro-
duction (Singh et al. 2009). Under aerobic growth conditions,
NAD+ is regenerated through oxidative phosphorylation.
Under anaerobic conditions, NAD+ serves as an electron ac-
ceptor during substrate degradation, and NADH provides the
reducing power for reductive product formation. A balance of
NAD+ reduction and NADH oxidation is a prerequisite for
anaerobic fermentation (de Graef et al. 1999). In the
engineered E. coli, NADH-dependent lactate dehydrogenase
and ethanol dehydrogenase were inactivated. Inactivation
limits the means by which NAD+ may be regenerated from
NADH formed from aerobic to anaerobic growth conditions,
thus affecting the redox balance to increase the NADH/NAD+

ratio (Fig. 1a; Li et al. 2013). Therefore, we assumed that the
low yield of succinate production was because of the limited
NAD+ regeneration rate, which resulted in the increase in the
NADH/NAD+ ratio from the aerobic to anaerobic phase; how-
ever, NAD+ could be regenerated in the reductive tricarbox-
ylic acid (TCA) cycle.

Another possible cause of the increased NADH/NAD+ ra-
tio at the initial anaerobic condition is the change in NADH
dehydrogenases during the aerobic–anaerobic fermentation
process. The aerobic respiratory chain of E. coli involves three
membrane-bound NADH dehydrogenases (NDH-I, NDH-II,
and WrbA) and three ubiquinol oxidases (cytochromes bd-I,
bd-II, and bo; Fig. 1b). These enzymes have different efficien-
cies in coupling electron transfer for the generation of an elec-
trochemical proton gradient (Bekker et al. 2009; Borisov et al.
2011). Under aerobic conditions, E. coli mainly uses NADH
dehydrogenases II (ndh), and under anaerobic conditions, it
mainly uses NADH dehydrogenases I (nuo). The change in
main NADH dehydrogenase in E. coli from the aerobic to
anaerobic condition may be time-consuming, and this change
also resulted in an elevated NADH/NAD+ ratio. Therefore, we
speculated that using one type of NADH dehydrogenase dur-
ing aerobic and anaerobic conditions could reduce the
NADH/NAD+ ratio to increase the overall yield of succinate
(Singh et al. 2009; Vemuri et al. 2006).

Fig. 1 Central carbon metabolism and electron transport chain in our
engineered E. coli. a Gene deletions in strain YL104 are represented by
black stars, and gene overexpression is depicted in red. ATP futile cycling
reactions are denoted by purple circles.PEP phosphoenolpyruvate. b Red

and blue lines represent the aerobic respiratory chain and anaerobic
respiratory chain, respectively. Black stars represent the gene mutation
in YL104. FRDS1 is soluble fumarate reductase from S. cerevisiae (color
figure online)
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In this study, by regulating the NADH/NAD+ ratio and
ATP generation through various strategies, we explored the
relationships between the NADH/NAD+ ratio, ATP level,
and overall yield of succinate production with glucose as the
carbon source.

Materials and methods

Strains and plasmids

All strains, plasmids, and oligonucleotides used in this study
are listed in Table 1 and Table S1. All genetic modifications
were made in E. coli MG1655.

The one-step inactivation of the chromosomal genemethod
was used for single gene mutants (Datsenko and Wanner
2000). The primers ndh-pKD4-F and ndh-pKD4-R and the
template plasmids pKD4 for ndh knockouts were used to ob-
tain linear DNA fragments with antibiotic-resistant gene cas-
settes flanked by FLP recognition target sites and 39-bp ho-
mologous arms for the construction of the single gene mu-
tants. The purified DNA was electroporated into E. coli
K-12 MG1655 cells harboring the helper plasmid pTKRed
expressing Red recombinase enzymes (Kuhlman and Cox
2010). Positive clones were selected using appropriate antibi-
otics. Subsequently, the helper plasmid and resistance gene
were eliminated.

For gene overexpression, pCL1920 was used and digested
using HindIII–KpnI to obtain the plasmid skeleton and resistant
gene. A DNA fragment with frd sequence (GenBank,

KX505965) from Saccharomyces cerevisiae S288c was synthe-
sized with codon optimization by Generay Biotechnology
(Shanghai, China). This fragment was also digested using
HindIII–KpnI, and the sequence was ligated into the vector
pCL1920, thus generating the plasmid pCLfrd. Furthermore,
nuoC was amplified from wild-type E. coli MG1655 by using
the primers nuoC PF and nuoC PR. The vector skeleton and
ppsA were amplified from the pCL1920 plasmid and E. coli
MG1655 genome by using the primers pCL1920-F and
pCL1920-R and trc-ppsA-F and trc-ppsA-R, respectively. The
plasmid pCLnuoC was obtained through Gibson assembly with
the pCL1920 skeleton and nuoC fragment. The primers trc-
RBS-F and trc-RBS-R from the pTrc99a plasmid were annealed
to obtain the trc promoter with RBS. Subsequently, the three
fragments, plasmid skeleton, trcRBS, and ppsA, were assembled
together through Gibson assembly. In addition, pCLppsA/frd
was constructed using Gibson assembly with the pCLppsA
skeleton and frd fragment.

Culture medium and growth conditions

Luria–Bertani (LB) medium (10 g/L tryptone, 5 g/L yeast
extract, and 10 g/L NaCl; pH 7.2) was used for all DNA
manipulations. During the construction of the single-gene-
deficient mutants, cultures were grown aerobically at 30, 37,
or 42 °C in Super Optimal Broth medium (20 g/L tryptone,
5 g/L yeast extract, 0.5 g/L NaCl, 2.5 mM KCl, and 10 mM
MgCl2). All cultures were incubated at 37 °C, and the pH was
measured using a glass electrode and controlled at 6.4–6.8 by
using 5 M K2CO3 and 0.5 M NaOH.

Table 1 Bacterial strains and plasmids used in this study

Relevant description Reference

E. coli strains

MG1655 Strain K-12, F−λ− rph-1 ATCC

YL104 MG1655(ΔptsG ΔpoxB Δpta ΔiclR ΔsdhA ΔarcAΔadhE ldhA::trc-rbs-glfZm) (Li et al. 2013)

YL104N YL104(Δndh::FRT) This study

YL104N/nuoC YL104N harboring pCLnuoC This study

YL104NF YL104N harboring pCLfrd This study

YL104NP YL104N harboring pCLppsA This study

YL104NPF YL104N harboring pCLppsA/frd This study

Plasmids

pTKRed Helper plasmid, pSC101ori, αβ exo (red recombinase), spc (Kuhlman and Cox 2010)

pKD4 R6K γ ori, FRT-kan-FRT, bla (Datsenko and Wanner 2000)

pTrc99a Cloning vector, trc promoter, amp Lab stock

pCL1920 Cloning vector, pSC101ori, spc (Kuhlman and Cox 2010)

pCLnuoC pSC101ori, expression of nuoC under the lac promoter, spc This study

pCLfrd pSC101ori, frd cloned from S. cerevisiae EBY100 under the lac promoter, spc This study

pCLppsA pSC101ori, expression of ppsA under the trc promoter of pTrc99a, spc This study

pCLppsA/frd pSC101ori, co-expression of ppsA and frd under the trc promoter of pTrc99a, spc This study
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For succinate production, a single clone of each single gene
mutant and the parent strain were cultured in a 300-mL
Erlenmeyer flask containing 50 mL of LB medium at 37 °C
and 250 rpm for 12 h. Subsequently, 4 mL (5% v/v) of the
overnight culture was transferred to a 500-mL Erlenmeyer
flask containing 80 mL AM1 [2.63 g/L (NH4)2HPO4,
0.87 g/L NH4H2PO4, 0.15 g/L KCl, and 20.9 g/L 3-(N-
morpholino)propanesulfonic acid (MOPS)] with an additional
1 g/L yeast extract and 30 g/L glucose and shaken at 250 rpm
for 21 h. Antibiotics were added to provide the selective pres-
sure during the cultivation, if necessary (ampicillin 100 μg/
mL, kanamycin 25 μg/mL, spectinomycin 25 μg/mL, and
chloromycetin 17 μg/mL).

During the succinate fermentation in a multiple mini-
fermenter system (INFORS HT, Switzerland), the aforemen-
tioned seed culture (10% v/v) was transferred into 800 mL
AM1 medium (without MOPS) supplemented with 40 g/L
glucose in a 1-L fermenter for batch fermentation. The total
fermentation time (70 h) included a 28-h aerobic phase (pass
into O2) and a 42-h anaerobic phase (pass into CO2). The air
flow rate and agitation were maintained at 1 vvm and 350 rpm,
respectively. During the fermentation, 0.05 mM isopropyl-be-
ta-D-thiogalactopyranoside (IPTG) was added at the begin-
ning of anaerobic fermentation with strains harboring plas-
mids during the batch fermentation. Samples were taken at
intervals of 6 or 12 h.

Analytical methods

Biomass was detected by measuring the density at 600 nm [1
OD600 ≈ 0.34 g cell dry weight (CDW) L−1] by using a spec-
trophotometer (Shimadzu, Japan). The organic acid concen-
trations and the residual glucose concentration were measured
using high-performance liquid chromatography (HPLC;
Shimadzu, Japan) and an Aminex HPX-87H ion exclusion
column (Bio-Rad, USA). H2SO4 solution (5 mM) was applied
as a mobile phase at a flow rate of 0.6 mL/min to the column at
65 °C.

The intracellular ATP concentrations were measured using
the BacTiter-Glo™ Microbial Cell Viability Assay Kit

(Promega, USA), and the intracellular concentrations of
NADH and NAD+ were assayed using a cycling method
(Leonardo et al. 1996).

Results

Use of sole anaerobic NADH dehydrogenases to increase
succinate yield

First, we inactivated the NADH dehydrogenase II encoded
by ndh in the previously constructed YL104 (Fig. 1a; Li
et al. 2013), thus generating YL104N. In response to this
modification, succinate production was similar but the
overall yield of succinate in YL104N increased by 7%,
reaching 1.05 mol/mol (Table 2). The biomass of
YL104N exhibited no substantial change (Table 2), which
suggested that the inactivation of NDH-II dehydrogenase
did not have a negative effect on the growth of the
engineered strains. In addition, we regulated NADH dehy-
drogenase I by overexpressing an important subunit
(encoded by nuoCD) of this enzyme (Singh et al. 2009).
However, the titer of succinate decreased, and the overall
yield only slightly improved (Table 2). We speculated that
excess energy was generated by overexpression of the im-
portant subunit of NDH-1 that generates proton gradients
across cell membranes (Verkhovskaya et al. 2008). In ad-
dition, metabolic burdens resulting from overexpression
of enzymes may influence the growth of the engineered
strain, leading to decreased succinate production. The aer-
obic NADH/NAD+ ratio increased in YL104N compared
with YL104 (Fig. 2). Moreover, the NADH/NAD+ ratio in
YL104N increased less from the aerobic to anaerobic con-
dition compared with that in YL104 (94 and 29% in-
creases in YL104 and YL104N, respectively). These re-
sults indicated that the inactivation of main aerobic
NADH dehydrogenase (ndh) in YL104 could alleviate
the change in the NADH/NAD+ ratio, resulting in a more
stable physiological state, which may be beneficial for
anaerobic succinate production (Liang et al. 2012).

Table 2 Growth and succinate
production of various strains
constructed in the study

Strains Biomass
(g/CDW/L)

Glucose consumption
(g/L)

Succinate production
(g/L)

Overall yield (mol/
mol)

YL104 2.70 ± 0.02 43.2 ± 0.5 27.86 ± 0.2 0.98 ± 0.03

YL104N 2.66 ± 0.04 40.53 ± 0.3 27.92 ± 0.2 1.05 ± 0.01

YL104N/nuoC 2.62 ± 0.04 32.90 ± 0.2 22.82 ± 0.4 1.06 ± 0.05

The strains were cultivated at 37 °C in the mineral medium AM1 with an initial glucose concentration of
approximately 40 g/L for 70 h in a multiple mini-fermenter system. The agitation rate was maintained at
350 rpm, and the air flow was initially 1 vvm for 30 h and then dropped to 0 vvm for 40 h. When cells with
plasmids were transferred into the fermenter, 0.05 mM IPTG was added into the medium at the transition time.
Each value is the mean of three parallel replicates ± standard deviation
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Modulating the NADH/NAD+ ratio and ATP level
through overexpression of soluble fumarate reductases
FRDS1 from S. cerevisiae

Fumarate reductases (FRDs), which catalyze the reduction of
endogenous or exogenous fumarate into succinate, are key fac-
tors in the anaerobic metabolism of many organisms (Camarasa
et al. 2007). The E. coli FRD is a respiratory enzyme, covalently
linked to flavin cofactors (FAD) and membrane-bound enzyme
(located in the inner membrane) structurally similar to succinate
dehydrogenases. Being associated with the respiratory chain,
they are directly involved in the production of ATP through
oxidative phosphorylation (Tielens and Van Hellemond 1998).
NADH-dependent FRD in E. coli can catalyze the metabolic
flux flow to succinate and lower the NADH/NAD+ ratio.
However, this type of FRD may generate more energy in the
interface (a particular period in which the fermentation is

switched from the aerobic to the anaerobic condition) from the
aerobic to the anaerobic phase because of the connection of the
electron transfer chain in YL104N (Fig. 1b), which has a nega-
tive effect on succinate production (Zhang et al. 2016).
However, inactivating the main aerobic NADH dehydrogenase
in YL104 can increase the ATP level at the initial anaerobic
phase (Calhoun et al. 1993). The FRDS1 encoded by frd from
S. cerevisiae is a soluble enzyme that noncovalently binds
FADH2 (cytoplasmic isozyme) and irreversibly catalyzes the
reduction of fumarate independently of the electron transfer
chain (Camarasa et al. 2007; Enomoto et al. 1996;
Muratsubaki and Enomoto 1998). Thus, we speculated that
overexpressing frd from S. cerevisiae in E. coli may change
the anaerobic ATP level and NADH/NAD+ ratio of YL104N
at the beginning of the anaerobic phase.

We placed frd under the tac promoter and introduced it into
YL104N. The resulting strain YL104NF produced more suc-
cinate (28.0 g/L), with a 19% higher yield than that of
YL104N (24.4 g/L; Fig. 3a). The overall yield of succinate
was also improved inYL104NF (an increase of approximately
13%). The biomass and aerobic glucose consumption of these
two strains were similar; however, the anaerobic glucose con-
sumption of YL104NF (9.27 g/L) was faster than that of
YL104 (8.71 g/L). This may have been the key factor for the
increased succinate production. In addition, after 63 h,
YL104NF generated less ATP and a lower NADH/NAD+ ra-
tio during anaerobic fermentation (Fig. 3b). The intracellular
ATP level of YL104NF decreased by 10%, and the
NADH/NAD+ ratio decreased by 24%. The results indicated
that overexpression of soluble FRDS1 could certainly reduce
the anaerobic ATP level and NADH/NAD+ ratio.
Consequently, both anaerobic succinate production and the
total succinate production were improved.

Fig. 2 NADH/NAD+ ratio during aerobic and anaerobic fermentation.
Standard deviations were calculated from the results of four independent
experiments

Fig. 3 Growth, succinate production, NADH/NAD+ ratio, and ATP
level. a Growth, glucose consumption, and succinate production of
strains YL104N and YL104NF. Glucose consumption (dark blue lines),
succinate production (red lines), and OD600 (dark cyan lines). b

Measurements of ATP level and NADH/NAD+ ratio of strains YL104N
and YL104NF at 63 h. Standard deviations were calculated from the
results of four independent experiments (color figure online)
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ATP futile cycling to reduce the ATP level under anaerobic
conditions

In the glycolytic pathway, pyruvate kinase catalyzes the formation
of pyruvate fromphosphoenolpyruvate (PEP)with the production
of oneATPmolecule. The reverse reaction catalyzed by PEP syn-
thase (encoded by ppsA) from pyruvate to PEP requires ATP as a
cofactor; it is converted intoAMP.Thus, a cycle inwhichoneATP
molecule is consumed in net is formed (ATP futile cycling; Fig 1a;
Hadicke et al. 2015). We introduced this ATP futile cycling into
YL104N to improve the overall yield of succinate by reducing the
anaerobicATPlevel.TheresultingstrainYL104NPproducedmore
succinate, with a 7% higher yield than that of YL104N (Fig. 4a),
and the overall yield of succinate in YL104NP also increased by
17%. Compared with YL104N, biomass, aerobic succinate pro-
duction, and glucose consumption decreased, but anaerobic succi-
nate production and glucose consumption were faster than that of
YL104N.Moreover, theanaerobicsuccinatetiterofYL104NPwas
47%higher than thatofYL104N(Fig.4a).These results suggested
that a decreasedATP level resulted in increased succinate produc-
tion and glucose consumption under anaerobic conditions. The
decline in biomass and aerobic succinate of YL104NPmay result
from the leaky expression of ppsA from the trc promoter under
aerobic conditions,whichconsumed theavailableATPforgrowth.
Regarding the by-products ofYL104NP, formate, acetate, and lac-
tate, the quantities produced were nearly half of those produced
withYL104N (Fig. 4b).

The anaerobic ATP level of YL104NP decreased by 33%
compared with that of YL104N at the end of fermentation
(Fig. 5a). In addition, the aerobic ATP level in YL104NP de-
creased compared with YL104N because of the leaky expres-
sion of ppsA. Moreover, the anaerobic ATP level in YL104NP
decreased more rapidly. The tendency of the regression line (the

slope k), which was calculated using the ATP levels throughout
the entire fermentation process, is crucial (Stouthamer 1979). In
the present study, the slope k1 of the anaerobic trend line of the
ATP curve in YL104N was clearly higher than the slope k2 of
YL104NP (−32.3 and −55.6, respectively), indicating that under
the anaerobic condition, YL104NP generated less ATP than
YL104N (Fig. 5b; Liu et al. 2013; Zhang et al. 2016).

Coexpression of frd and ppsA to increase succinate yield

Overexpression of frd and ppsA could individually reduce the
anaerobic intracellular ATP level and increase the overall suc-
cinate yield, respectively. Thus, we examined whether
coexpression of frd and ppsA had a synergistic effect on im-
proving the succinate yield and titer. The data illustrated that
overexpression of frd and ppsA individually produced succi-
nate with titers 28.19 and 29.05 g/L, 12 and 9% lower than
that produced by YL104NPF (titer 31.87 g/L), respectively
(Table 3). Compared with strains YL104NF and YL104NP,
the biomass and glucose consumption of YL104NPF were
slightly decreased, whereas the overall yield of succinate in
YL104NPF was 1.36 mol/mol, which was 13 and 9% higher
than those of strains YL104NF and YL104NP, respectively.
The final yield of strain YL104NPF was 39% higher than that
of the initial strain YL104. Our results suggested that
coexpression of frd and ppsA exhibited a synergistic effect
on improving succinate production and yield.

Discussion

Manipulating redox equivalent and energy balance is crucial
for the efficient synthesis of target products, particularly for

Fig. 4 Growth, succinate production, and by-products. a Growth,
glucose consumption, and succinate production of strains YL104N and
YL104NF. Glucose consumption (dark blue lines), succinate production

(red lines), and OD600 (dark cyan lines). b By-products of strains
YL104N and YL104NP were measured at the end of fermentation
(color figure online)
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succinate biosynthesis (Singh et al. 2011; Zhu et al. 2014). In
the present study, we applied the soluble FRDs from
S. cerevisiae for the first time to modulate the ATP level and
NADH/NAD+ ratio to enhance biochemical production.

Most FRDs belong to a multimeric complex associated
with the respiratory chain and transfer electrons from quinol
to fumarate (Van Hellemond and Tielens 1994). However,
soluble monomeric FRDswith FADH2/FMNH2 as an electron
donor, not linked to the electron transfer chain, have been
identified in several Shewanella species, S. cerevisiae, and
the protozoan Trypanosoma brucei (Besteiro et al. 2002;
Gordon et al. 1998; Muratsubaki and Enomoto 1998).
Overexpression of NADH-dependent FRDs from T. brucei
were employed to maintain the cellular redox balance and
enhance the cytosolic NAD+ and NADPH pools (Besteiro
et al. 2002; Coustou et al. 2005; Salusjarvi et al. 2013).
Soluble frds1 from S. cerevisiae were inserted into
Aspergillus for reoxidizing NADH to NAD+ under anaerobic
conditions, thereby increasing the productivity and yield of
citrate on glucose (de Jongh and Nielsen 2008; Enomoto
et al. 2002). In the present study, the results revealed that
expressing soluble FRDS1 from S. cerevisiae in E. coli
could modulate not only the NADH/NAD+ ratio but
also the ATP level under anaerobic conditions for in-
creasing succinate production (Cabrera et al. 2011;
Hadicke et al. 2015; Liang et al. 2012; Singh et al.
2009; Vemuri et al. 2006; Zhang et al. 2016).

In this study, sole anaerobic NADH dehydrogenase and
ATP futile cycling were employed to regulate the
NADH/NAD+ ratio and ATP level in the interface from the
aerobic to anaerobic phase, respectively.

In previous studies, through respiratory chain engineer-
ing, combining various NADH dehydrogenases and termi-
nal oxidases with different efficiencies of proton translo-
cation enabled E. coli flexibility to provide diverse growth
conditions to produce fermentation products (Becker et al.
1997; Portnoy et al. 2008). Yokota et al. observed the
highest rate of glucose metabolism in the double mutant
(NAD-1 and cytochrome bo3; Kihira et al. 2012). In a
glucose-limited chemostat, a branched electron transport
chain was adopted rather than a linear one, and the growth
behavior and acetate formation were analyzed under this
condition (Steinsiek et al. 2014). The quinone synthesis
pathway (Wu et al. 2015) and NDH-II dehydrogenase
(Liu et al. 2014) were manipulated for enhancing lactate
and polyhydroxybutyrate production, respectively.
Furthermore, in succinate production, various strategies
for reducing the NADH/NAD+ ratio have been employed.
These strategies include regeneration of NAD+ in the re-
ductive TCA cycle (Goldberg et al. 1983; Liang et al.
2011; Millard et al. 1996; Stols and Donnelly 1997) and
provision of additional reducing power (Van der Werf
et al. 1997). In the present study, only one type of
NADH dehydrogenase of the respiratory chain was

Fig. 5 ATP level and generation in strains YL104N and YL104NP. a
Measurements of ATP level of strains YL104N and YL104NP at 70 h. b
Trend line of ATP during the anaerobic fermentation of strains YL104N

and YL104NP. Standard deviations were calculated from the results of
four independent experiments

Table 3 Growth and succinate
production of overexpression
strains

Strains Biomass
(g/CDW/L)

Glucose consumption
(g/L)

Succinate production
(g/L)

Overall yield
(mol/mol)

YL104NF 2.64 ± 0.04 36.11 ± 0.1 28.19 ± 0.2 1.19 ± 0.02

YL104NP 2.30 ± 0.03 35.92 ± 0.3 29.05 ± 0.1 1.23 ± 0.01

YL104NPF 2.37 ± 0.03 35.71 ± 0.4 31.87 ± 0.1 1.36 ± 0.02

Each value is the mean of three parallel replicates ± standard deviation
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adopted, thus increasing the overall yield of succinate and
alleviating the change in the NADH/NAD+ ratio during
the entire fermentation process.

High ATP levels have been proven to inhibit the activities
of key enzymes involved in the central metabolism, thus
downregulating the glycolytic pathway and TCA cycle
(Kihira et al. 2012; Kim et al. 2008; Weitzman 1981). By
using enhanced futile cycling to decrease the ATP supply,
production rates and yields of fermentation products were in-
creased, and glucose consumption was elevated under aerobic
conditions (Chao and Liao 1994; Patnaik et al. 1992).
Recently, the same strategy was also applied for improving
the production of lactate under anaerobic conditions (Hadicke
et al. 2015). In the present study, we proved that ATP futile
cycling is an effective strategy for improving succinate yield.

Finally, our results demonstrated that a combination of
these methods exerted a synergistic effect on improving the
overall yield of succinate, which was 39% higher than that of
the strain constructed in our previous study. Moreover, the
results indicate that the regulation of the NADH/NAD+ ratio
and ATP level, which is not involved in the succinate biosyn-
thetic pathway, is an efficient strategy for succinate
production.
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