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Abstract The demand for compounds of therapeutic value is
increasing mainly because of new applications of bioactive
compounds in medicine, pharmaceutical, agricultural, and
food industries. This has necessitated the search for cost-
effective methods for producing bioactive compounds and
therefore the intensification of the search for enzymatic ap-
proaches in organic synthesis. Laccase is one of the enzymes
that have shown encouraging potential as biocatalysts in the
synthesis of bioactive compounds. Laccases are multicopper
oxidases with a diverse range of catalytic activities revolving
around synthesis and degradative reactions. They have
attracted much attention as potential industrial catalysts in
organic synthesis mainly because they are essentially green
catalysts with a diverse substrate range. Their reaction only
requires molecular oxygen and releases water as the only by-
product. Laccase catalysis involves the abstraction of a single
electron from their substrates to produce reactive radicals. The
free radicals subsequently undergo homo- and hetero-
coupling to form dimeric, oligomeric, polymeric, or cross-
coupling products which have practical implications in organ-
ic synthesis. Consequently, there is a growing body of re-
search focused on the synthetic applications of laccases such
as organic synthesis, hair and textile dyeing, polymer synthe-
sis, and grafting processes. This paper reviews the major

advances in laccase-mediated synthesis of bioactive com-
pounds, the mechanisms of enzymatic coupling, structure-
activity relationships of synthesized compounds, and the chal-
lenges that might guide future research directions.

Keywords Laccase . Bioactive compounds . Oxidative
coupling . Structure-activity relationship

Introduction

The search for cost-effective methods for producing bioactive
compounds is a rapidly widening research niche with their
market value predicted to rise by 4.71% between 2013 and
2018 (Infiniti Research Limited 2014). Bioactive compounds
are compounds with nutritional benefits and are usually found
in small quantities in plants (Kris-Etherton et al. 2002),
sponges (Muller et al. 2004), bacteria, and fungi (Debbab
et al. 2010). They are mainly secondary metabolites and can
be broadly categorized into phenolic compounds, antibiotics,
alkaloids, mycotoxins, food grade pigments, and growth fac-
tors (Martins et al. 2011). Industrial applications of these bio-
active compounds are increasing. Apart from their application
in pharmaceutical industries, bioactive compounds are now
being employed in the food industry for the production of
functional foods (nutraceuticals) (Gil-Chávez et al. 2013), in
agrochemicals, cosmetics, geo-medicine, nano-bioscience,
and in chemical industries (Guaadaoui et al. 2014).

Some of the presently used methods for extraction and
production of bioactive compounds include the heat reflux
extraction method, accelerated solvent method, supercritical
fluid extraction, employing high-pressure protocols, use of
microwave and ultrasound extraction processes, and chemical
synthesis (Martins et al. 2011). Conventional physico-
chemical processes employed in the production of bioactive
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compounds are generally long, energy intensive, low yielding,
and associated with excessive amounts of wastes which have a
negative impact on the environment. Metrics such as the E
factor have highlighted the inefficiencies of chemical synthe-
sis; the amount of waste generated per kilogram of any fine
chemical or pharmaceutical product manufactured was 5–100
times higher than the product (Li and Trost 2008). Such con-
cerns have prompted the formation of bodies such as the
American Chemical Society Green Chemistry Institute
Pharmaceutical Roundtable (ACS GCIPR) to promote the
adoption of green technologies in pharmaceutical industries
(Constable et al. 2007). Thus, newer, economically feasible,
and environmentally benign processes have become a priority
in a bid to meet the rising demand for bioactive compounds.

Biocatalysis is gaining notable attention in organic synthe-
sis. This is because biocatalysts are environmentally benign
and involve less process steps for the synthesis of valuable
compounds. Unlike conventional means, enzymes are charac-
teristically selective, a trait which is of importance when pro-
ducing compounds of therapeutic value (Maugh 1984).
However, laccases are an exception in this respect. Their cata-
lytic mechanism leads to the formation of organic radicals as
primary products, which frequently pose a challenge for bio-
synthesis purposes. While the highest possible yield of just one
enantiomerically pure product would ideally be desired, radical
processes typically lead to a range of different (and sometimes
many) products appearing at rather low concentrations and as
racemic mixtures. Laccases are one group of enzymes that have
shown encouraging potential as biocatalysts in organic synthe-
sis. Laccases (benzenediol:oxygen oxidoreductase, EC
1.10.3.2) belong to the multicopper oxidase family of enzymes,
and their role in nature involves both synthetic and degradative
reactions (Riva 2006). Laccases are generally regarded as
Bgreen catalysts^ because of their ability to oxidize a diverse
range of compounds (including phenols, diphenols, methoxy-
substituted phenols, phenolic, and alkyl amines) to correspond-
ing radicals in the presence of molecular oxygen, concomitant-
ly producing water as the only by-product (Kudanga et al.
2011a). Their catalytic mechanism generally involves the ab-
straction of a single electron from substrates to produce reactive
free radicals (Kudanga and Le Roes-Hill 2014). These free
radicals are vital intermediates which undergo coupling reac-
tions to produce dimeric, oligomeric, polymeric, or cross-
coupling products (Fig. 1). Therefore, the ability of laccases
to catalyze oxidative coupling reactions makes them relevant
in organic synthesis. Coupling of naturally existing bioactive
compounds can result in novel products with enhanced
bioefficacy. As a result, in the past two decades, there has been
an increase in research activity exploiting laccases in the syn-
thesis of bioactive compounds. Although extensive reviews on
the enzymology of laccases (Claus 2004; Madhavi and Lele
2009; Mayer and Staples 2002; Morozova et al. 2007a) and
their industrial application potential (Cañas and Camarero

2010; Jeon et al. 2012; Kudanga and Le Roes-Hill 2014;
Kudanga et al. 2011a,b; Mikolasch and Schauer 2009; Riva
2006; Rodríguez Couto and Toca Herrera 2006; Witayakran
and Ragauskas 2009) have already been published, their appli-
cation in the synthesis of compounds of therapeutic value has
not been comprehensively reviewed in recent articles. This pa-
per provides a consolidated review of the work that has been
covered so far in the laccase-catalyzed production of bioactive
compounds mainly in the synthesis or modification of phenolic
anti-oxidants, antibiotics, and alkaloids. In addition, the reac-
tion mechanisms, structure-activity relationships, and direc-
tions for future research are also provided.

Laccase-catalyzed production of bioactive compounds

Laccase applications in organic synthesis have been increasing
in recent years mainly because the enzyme has a broad sub-
strate specificity. Phenolic compounds, amino-phenols, poly-
amines, anilines, aromatic and alkyl amines, and benzenethiols
all fall under the laccase substrate range (Kunamneni et al.
2008a; Madhavi and Lele 2009). Compounds carrying these
functional groups have therefore become targets for biocatalyt-
ic reactions using laccases. The product range is further wid-
ened by coupling reactions involving a laccase substrate and a
non-laccase substrate (variable reaction partner) to create new
heteromolecular hybrid molecules (Mikolasch and Schauer
2009). The most frequently investigated compounds are phe-
nolic anti-oxidants, alkaloids, and antibiotics.

Phenolic compounds

Phenolic compounds are widely distributed in the plant king-
dom as secondarymetabolites. They have been described as the
Bfirst line in plant defense against infection^ (Matern and
Kneusel 1988) because of their physiological role in the pro-
tection of plants from infections, harsh environments, and as a
response to stress (Bhattacharya et al. 2010). Because of their
bioactivity, phenolic compounds present a wide range of nutri-
tional and therapeutic benefits ranging from anti-inflammatory,
anti-allergenic, anti-artherogenic, anti-microbial, anti-oxidant,
and anti-thrombotic activities and protection against several
cardiovascular diseases (Balasundram et al. 2006; Pasha et al.
2013). Therefore, they have been obvious targets for re-
searchers interested in bioactive compounds. Consequently,
extensive research has focused on the application of laccase
in the synthesis of phenolic compounds.

Laccase oxidation of substrates to their respective radicals
is a pre-requisite for the production of dimeric, oligomeric, or
polymeric compounds (through homomolecular coupling re-
actions) or cross-coupling products (through heteromolecular
coupling of the radicals) (Kudanga et al. 2011b). Phenolic
compounds have been modif ied mainly through
homomolecular coupling (Table 1). Several studies have
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focused on producing novel anti-oxidant compounds through
laccase-mediated dimerization of phenolic compounds.
Adelakun et al. (2012a,b) used monomeric natural phenolic
compounds as laccase substrates for the production of new
anti-oxidants. Using ferulic acid as starting material, two de-
rivatives, β-5 and β-β dimers, were successfully produced
(Adelakun et al. 2012a). The β-5 dimers showed enhanced
anti-oxidant activity, while β-β dimers had lower activity
compared to ferulic acid. The enhanced activity of the β-5
dimer was attributed to the increase in electron-donating
groups on the compound and the carboxylic acid group with
an adjacent unsaturated C–C double bond, which can provide
additional sites of attack for free radicals (Srinivasan et al.
2007). In related studies, 2,6-dimethoxyphenol (2,6-DMP)
was also used in a laccase-oxidized reaction that resulted in
the formation of a symmetrical C–C-linked 2,6-DMP dimer,
3,3′,5,5′-tetramethoxy biphenyl-4,4-diol, with approximately
twice the anti-oxidant activity of 2,6-DMP (Adelakun et al.
2012b). During laccase catalysis, 2,6-DMP is oxidized to
phenoxy radical species which form para-radical species
through resonance stabilization; the dimer is subsequently
formed through radical coupling of two para-radical species
(Fig. 2). The superior anti-oxidant activity of the dimer was
attributed to the increased functional groups with electron-
donating capacity (Matsuura and Ohkatsu 2000), the reduc-
tion in the O-H bond dissociation energy, and increased sta-
bility of radical due to resonance delocalization (Sánchez-
Moreno et al. 1998).

Laccase has been successfully used as catalyst for improv-
ing the properties of natural phenolic compound rutin. Rutin is
naturally a hardly water-soluble flavonoid glycoside.
Myceliophthora laccase was used as the catalyst to synthesize
polymerized rutin (poly(rutin)), which showed significantly
improved solubility and radical scavenging properties
(Kurisawa et al. 2003a). Rutin is commonly found on the
market as a dietary supplement with remarkable anti-oxidant
activity. Recent research has revealed rutin as an effective anti-
thrombotic agent (Jasuja et al. 2012). Rutin act as an excellent
inhibitor of protein disulfide isomerase (PDI), the enzyme
which, when secreted rapidly from platelets and endothelial
cells, is responsible for thrombosis (blood clotting). The pro-
duction of poly(rutin), which has already proved to have en-
hanced properties such as improved solubility, may potentially
enhance its biological properties.

Lignans are dimeric forms of phenylpropanoid units that
have been identified as one of the primary active groups of
Eucommia ulmoides, a Chinese traditional medicine that is
recognized for its anti-cancer activities (Li and Zhang 2008),
anti-oxidant activity (Zhang et al. 2013), antibiotic properties
(JI and SU 2008), blood pressure reduction (Greenway et al.
2011), and anti-hypertensive activity (Luo et al. 2004). Wan
et al. (2007) used crude Rhus laccases (CRL) and purified
Rhus laccases (PRL) derived from the Rhus vernicifera plant
in a domino oxidation of phenylpropanoids to produce bioac-
tive compounds. Even though Rhus laccases are often margin-
alized for their low activity, the investigation resulted in the

Fig. 1 Laccase synthetic mechanism of action which involves a laccase-
catalyzed oxidation of substrate to form radicals, b radicals undergo
oxidative coupling to produce dimers, c further coupling results in the
formation of polymers through polymerization, and d coupling with a

non-laccase substrate to form cross-coupling products. Adapted from
Abdel-Mohsen et al. (2014) and De Regil and Sandoval (2013), with
permission from Royal Society of Chemistry and MDPI

Appl Microbiol Biotechnol (2017) 101:13–33 15



T
ab

le
1

L
ac
ca
se
-c
at
al
yz
ed

pr
od
uc
tio

n
of

bi
oa
ct
iv
e
co
m
po
un
ds

th
ro
ug
h
ho
m
om

ol
ec
ul
ar

co
up
lin

g
re
ac
tio

ns

Su
bs
tr
at
e

S
ub
st
ra
te
ca
te
go
ry

S
ou
rc
e
of

la
cc
as
e

P
os
iti
ve

ef
fe
ct
s
ob
se
rv
ed

Po
te
nt
ia
la
pp
lic
at
io
ns

R
ef
er
en
ce
s

17
β
-e
st
ra
di
ol

H
or
m
on
e

T.
pu
be
sc
en
s
an
d

M
yc
el
io
ph
th
or
a
sp
.

C
–O

an
d
C
–C

di
m
er
s
pr
od
uc
ed

w
er
e
m
or
e

po
la
r
th
an

17
β
-e
st
ra
di
ol
a

Ph
ar
m
ac
eu
tic
al
dr
ug
s

N
ic
ot
ra

et
al
.(
20
04
b)

2,
6-
D
im

et
ho
xy
ph
en
ol

(2
,6
-D

M
P)

Ph
en
ol
ic
co
m
po
un
d

T.
pu
be
sc
en
s

A
2,
6-
D
M
P
di
m
er

pr
od
uc
ed

(2
0.
91
%

yi
el
d)

sh
ow

ed
10
0%

in
cr
ea
se

in
an
ti-
ox
id
an
t

ac
tiv

ity
co
m
pa
re
d
to

2,
6-
D
M
P

Po
te
nt
ia
lu

se
in

th
e
de
ve
lo
pm

en
to

f
nu
tr
ac
eu
tic
al
s
an
d
as

co
m
po
ne
nt
s
fo
r

co
sm

et
ic
pr
od
uc
ts

A
de
la
ku
n
et
al
.(
20
12
b)

3-
H
yd
ro
xy
an
th
ra
ni
lic

ac
id

(3
-H

A
A
)

Ph
en
ol
ic
co
m
po
un
d

(a
m
in
op
he
no
l)

P
yc
no
po
ru
s
ci
nn
ab
ar
in
us

an
d
C
yt
is
us

lir
su
tu
s

C
in
na
ba
ri
ni
c
ac
id

w
as

pr
od
uc
ed

an
d

ex
pr
es
se
d
an
ti-
ba
ct
er
ia
la
ct
iv
ity

ag
ai
ns
t

al
lb

ac
te
ri
al
st
ra
in
s
it
w
as

te
st
ed

ag
ai
ns
t

A
nt
i-
ba
ct
er
ia
lc
om

po
un
ds

E
gg
er
t(
19
97
)
an
d
E
gg
er
t

et
al
.(
19
95
)

4-
M
et
hy
l-
3-
hy
dr
ox
ya
nt
hr
an
ili
c

ac
id

Ph
en
ol
ic
co
m
po
un
d

(a
m
in
op
he
no
l)

T.
ve
rs
ic
ol
or

A
ct
in
oc
in

w
as

pr
od
uc
ed

(7
4%

yi
el
d)
.

A
ct
in
oc
in

ha
s
an
ti-
m
ic
ro
bi
al
pr
op
er
tie
s

A
nt
ib
io
tic
s

O
si
ad
ac
z
et
al
.(
19
99
)

C
at
ec
hi
n

Ph
en
ol
ic
co
m
po
un
d

T.
ve
rs
ic
ol
or

H
yd
ro
ph
ili
c
lin

ea
r
ol
ig
om

er
s
w
ith

hi
gh

an
ti-
ox
id
an
ta
ct
iv
ity

w
er
e
pr
od
uc
ed

U
se
fu
la
s
ph
ar
m
ac
eu
tic
al
dr
ug
s
w
ith

an
ti-
ox
id
an
t,
an
ti-
m
ut
ag
en
ic
,

an
ti-
ca
rc
in
og
en
ic
,a
nt
i-
vi
ra
l,
an
d

an
ti-
in
fl
am

m
at
or
y
pr
op
er
tie
s

Ja
dh
av

an
d
Si
ng
ha
l(
20
14
)

(+
)-
ca
te
ch
in

Ph
en
ol
ic
co
m
po
un
d

M
yc
el
io
ph
th
or
a
sp
.

P
ol
y(
ca
te
ch
in
)
w
as

pr
od
uc
ed
,w

hi
ch

sh
ow

ed
im

pr
ov
ed

ra
di
ca
ls
ca
ve
ng
in
g
ab
ili
ty

an
d

no
pr
o-
ox
id
an
tp

ro
pe
rt
ie
s.
It
al
so

sh
ow

ed
xa
nt
hi
ne

ox
id
as
e
in
hi
bi
to
ry

ac
tiv

ity
,

w
hi
ch

w
as

ha
rd
ly

m
ea
su
ra
bl
e
in

ca
te
ch
in

T
he
ra
pe
ut
ic
ag
en
ta
ga
in
st
ox
id
at
iv
e
st
re
ss

K
ur
is
aw

a
et
al
.(
20
03
b)

E
sc
ul
in

P
he
no
lic

co
m
po
un
d

T.
ve
rs
ic
ol
or

O
lig

om
er
ic
es
cu
lin

co
m
po
un
ds

w
hi
ch

re
gi
st
er
ed

a
18
9-
tim

es
in
cr
ea
se

in
so
lu
bi
lit
y
co
m
pa
re
d
to

th
e
na
tu
ra
le
sc
ul
in

A
nt
i-
ox
id
an
ta
dd
iti
ve
s
fo
r
co
sm

et
ic
s,

fo
od
,a
nd

be
ve
ra
ge
s

A
nt
ho
ni

et
al
.(
20
10
)

Fe
ru
lic

ac
id

P
he
no
lic

co
m
po
un
ds

T.
pu
be
sc
en
s

β
-5

di
m
er

pr
od
uc
ed

di
sp
la
ye
d
hi
gh
er

an
ti-
ox
id
an
ta
ct
iv
ity

th
an

fe
ru
lic

ac
id

A
nt
i-
ox
id
an
ta
dd
iti
ve
s
fo
r
co
sm

et
ic
an
d

ph
ar
m
ac
eu
tic
al
in
du
st
ri
es

A
de
la
ku
n
et
al
.(
20
12
a)

Fe
ru
lic

ac
id

P
he
no
lic

co
m
po
un
d

T.
ve
rs
ic
ol
or

F
er
ul
ic
ac
id

di
la
ct
on
es

w
er
e
pr
od
uc
ed
.

H
ow

ev
er
,A

de
la
ku
n
et
al
.(
20
12
a)

re
po
rt
ed

lo
w
er

ac
tiv

iti
es

co
m
pa
re
d
to

su
bs
tr
at
e

A
nt
i-
ox
id
an
ta
dd
iti
ve
s
fo
r
fo
od

an
d

ph
ar
m
ac
eu
tic
al
pr
od
uc
ts

C
on
st
an
tin

et
al
.(
20
12
a)

H
yd
ro
xy
ty
ro
so
l

Ph
en
ol
ic
co
m
po
un
d

T.
pu
be
sc
en
s

D
im

er
,o
lig

om
er
s,
an
d
po
ly
m
er
s
of

hy
dr
ox
yt
yr
os
ol

w
ith

su
pe
ri
or

an
ti-
ox
id
an
t

pr
op
er
tie
s.
D
im

er
ha
d
87
.6
%

ra
di
ca
l

sc
av
en
gi
ng

ab
ili
ty

co
m
pa
re
d
to

hy
dr
ox
yt
yr
os
ol

w
ith

33
%

A
nt
i-
ox
id
an
ta
dd
iti
ve
s,
al
so

a
po
te
nt
ia
l

in
gr
ed
ie
nt

in
sk
in

ca
re

pr
od
uc
ts

an
d
nu
tr
ac
eu
tic
al
s

B
ur
to
n
an
d
D
av
id
s
(2
01
2)

an
d
Z
w
an
e
et
al
.(
20
12
)

L
ys
er
go
l/t
ra
ns
-d
ih
yd
ro
ly
se
rg
ol

A
lk
al
oi
ds

T.
ve
rs
ic
ol
or

C
-4

hy
dr
ox
yl
at
ed

de
ri
va
tiv

e
of

tr
an
s-
di
hy
dr
ol
ys
er
go
la
nd

ot
he
r
eg
or
t

al
ka
lo
id
s
w
er
e
pr
od
uc
ed
.T

hi
s
is
th
e
fi
rs
t

sy
nt
he
tic

fu
nc
tio

na
liz
at
io
n
of

eg
or
t

al
ka
lo
id
s
at
th
e
C
-4

po
si
tio

n
to

be
re
po
rt
ed

a

T
he
ra
pe
ut
ic
dr
ug
s

C
hi
ri
vì

et
al
.(
20
12
)

Ph
en
yl
pr
op
an
oi
ds

Ph
en
ol
ic
co
m
po
un
d

R
.v
er
ni
ci
fe
ra

D
eh
yd
ro
di
is
oe
ug
en
ol

an
d
pi
no
re
si
no
lw

er
e

pr
od
uc
ed

(y
ie
ld

8–
25
%
)a

A
nt
i-
ca
nc
er

an
d
an
ti-
ox
id
an
td

ru
gs

W
an

et
al
.(
20
07
)

P
en
ic
ill
in

X
A
nt
ib
io
tic
s

T.
ve
rs
ic
ol
or

N
o
po
si
tiv

e
ef
fe
ct
.D

im
er
s
of

pe
ni
ci
lli
n
X

pr
od
uc
ed

ha
d
lo
w
er

ac
tiv

ity
th
an

pe
ni
ci
lli
n
X

A
nt
ib
io
tic
s

A
ge
m
at
u
et
al
.(
19
93
)

16 Appl Microbiol Biotechnol (2017) 101:13–33



formation of several compounds of therapeutic importance.
Two compounds that were identifiable include pinoresinol (8
and 23.5% yield using CRL and PRL, respectively) and
dehydrodiisoeugenol (24.5 and 25% yield using CRL and
PRL, respectively) (Wan et al. 2007). Pinoresinol has proven
to be an effective anti-inflammatory drug (During et al. 2012;
Jung et al. 2010). Research also showed that pinoresinol-rich
olive oil had chemopreventive properties (Fini et al. 2008).
Dehydrodiisoeugenol is popularly used in treating gastrointes-
tinal disorders (Li and Yang 2012) and can be applied as an
anti-oxidant or anti-inflammatory agent (Murakami et al.
2005b).

Myceliophthora thermophila laccasewas used as an oxidant
in the synthesis of aminonaphthoquinones (Wellington and
Kolesnikova 2012). The enzyme catalyzed the amination of
1,4-dihydroxy-2-naphthoic acid with primary aromatic amines
by facilitating C–N bond formation. Aminonaphthoquinones
are a class of phenolic compounds that are known to have
anti-cancer activity. The process resulted in the synthesis of
11 compounds with varying physiological properties. Some of
the compounds exhibited high potency when tested against
TK10 (renal), UACC62 (melanoma), and MCF7 (breast) can-
cer cell lines. The compounds also recorded aweak cytotoxicity
on HeLa cell lines, highlighting their importance as potential
anti-cancer drugs (Wellington and Kolesnikova 2012).

Catechol thioethers have been produced by reacting
laccase-oxidized catechol with thiols. Laccase oxidation of
catechol produces o-benzoquinone, which subsequently reacts
with a thiol by nucleophilic conjugate addition to produce a
catechol thioether (Fig. 3) (Abdel-Mohsen et al. 2014). Using
2-mercaptobenzoxazole and 2-mercaptobenzothiazole as
thiols, thioester yields in the range of 74–96% were produced
at room temperature, atmospheric pressure, and a pH of 6.0
(Abdel-Mohsen et al. 2014). Catechol thioethers have poten-
tial application as anti-microbial and anti-oxidant agents
(Adibi et al. 2011).

Laccase has also been used in the synthesis of 2,3-
ethylenedithio-1,4-quinones by cross-coupling 1,2-
ethanedithiol with substituted hydroquinones (Cannatelli and
Ragauskas 2015a). The reaction proceeds via sequential oxi-
dation and addition reactions initiated by laccase-catalyzed
oxidation of a hydroquinone into the corresponding 1,4-qui-
none derivative. The highly reactive 1,4-quinones then under-
go nucleophilic addition by 1,2-ethanedithiol followed by fur-
ther oxidation and addition steps to produce the respective
2,3-ethylenedithio-1,4-quinone products (Fig. 4). It was ar-
gued that the products are similar to several quinone-
containing derivatives of natural compounds which have ex-
hibited anti-tumor and anti-microbial activities (Abraham
et al. 2011; Bozic et al. 2010). In related studies, Trametes
villosa laccase was employed in the α-arylation of
benzoylacetonitrile by hydroquinones to produce benzylic ni-
triles (Cannatelli and Ragauskas 2015b). Benzylic nitriles areT
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primary ingredients in the production of several pharmaceuti-
cal products such as anti-helmintic drugs and analgesics
(Kermanshai et al. 2001; Vardanyan and Hruby 2006).

The synthetic reactions of phenolic bioactive compounds
as with the ones described below for alkaloids and antibiotics
are carried out in appropriate buffers usually in combination
withmiscible or immiscible organic cosolvents inmonophasic
or biphasic systems, respectively. Solvents are required to
keep the substrates in solution (most are insoluble in aqueous
environments), as well as minimize formation of polymeric
products which are difficult to characterize. Ethyl acetate is
frequently used in biphasic systems (Adelakun et al. 2012a,b;
Gažák et al. 2008), while chloroform has also been used in a
few studies (Agematu et al. 1993). In monophasic systems,
methanol appears to be the most frequently used solvent
(Abdel-Mohsen et al. 2014; Mikolasch et al. 2008a;
Kurisawa et al. 2003a,b; Burton and Davids 2012; Zwane
et al. 2012; Anthoni et al. 2010), while other miscible solvents
such as acetone, methanol, dioxane, ethanol, 2-propanol, and
n-butanol have also been used in some synthetic reactions

(Nicotra et al. 2004a; Kurisawa et al. 2003b). Dimethyl form-
amide (DMF) can also be used for substrates that are difficult
to dissolve but usually at low concentration (due to its high
boiling point) in combination with other solvents (Gavezzotti
et al. 2014).

Alkaloids

Although laccases have mostly been employed in the devel-
opment of bioactive compounds of phenolic origin, inroads
are being made in other areas such as in alkaloid synthesis.
Alkaloids are organic compounds consisting of a nitrogenous
moiety and are usually heteocyclic in nature (Pelletier 1983).
They are naturally found in organisms as secondary metabo-
lites and are essential for diverse physiological functions such
as analgesic, anti-hypertensive, and anti-cancer activities
(Roberts and Wink 1998). The ability of laccase to oxidize
amines has been exploited in the modification of alkaloids to
products with high bioactivities. A Trametes pubescens
laccase has been used in the coupling of catharanthine and

Fig. 2 Proposed reactionmechanism for the homomolecular coupling of 2,6-DMP to produce the C–C dimer (3,3′,5,5′-tetramethoxy biphenyl-4,4′-diol)
(Adelakun et al. 2012b). Reprinted with permission from Elsevier

Fig. 3 Proposed reaction mechanism for the heteromolecular coupling of catechol and 2-mercaptobenzoxazole to produce catechol thioethers. Adapted
from Abdel-Mohsen et al. (2014), with permission from Royal Society of Chemistry
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vindoline to produce anhydrovinblastine (Sagui et al. 2009),
an anti-neoplastic bisindole alkaloid which is reportedly use-
ful in production of anti-tumor and anti-cancer drugs (van der
Heijden et al. 2004). To date, the 56% yield obtained is the
highest, compared to chemical synthesis methods and enzyme
cocktail biocatalysis protocols previously employed. The low
yields and costly production of bisindole alkaloids have hin-
dered their commercial production, which has resulted in their
replacement by semisynthetic analogs. The utilization of
laccase thus comes as a welcome alternative that could pro-
vide a cost-efficient process that can potentially be scaled-up
for industrial production.

Ergot alkaloid (EA) is a class of bioactive alkaloids of
therapeutic value and find application as anti-Parkinson drugs,
anti-hypertensive agents, cerebral dysfunction therapy, mi-
graine treatment, and anti-prolactin drugs, among other uses
(Gerhards et al. 2014). At the turn of the millennium, it was
considered rather impossible to engineer a biocatalytic means
of producing natural EA derivatives. However, recently,
Chirivì et al. (2012) have, for the first time, reported the addi-
tion of a hydroxyl group at the C-4 position of the tetracyclic
ergoline ring using a laccase obtained from Trametes
versicolor. Because of the relatively low redox potential of
the laccase, a mediator compound would be required for the
oxidation of clavine EAwith hydroxyl moieties. Surprisingly,
the reaction also proceeded in the absence of the 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO) mediator. This is be-
cause instead of oxidation to occur at the expected terminal
CH2OH site of trans-dihydrolysergol, a mild hydroxylation
reaction occurred at the C-4 site, resulting in a 34% yield of
the monohydroxylated derivative. The functionalization of
EA at this position has not been achieved before even by
chemical means (Chirivì et al. 2012). This is of particular
importance, considering that many researchers developing
EA-derived drugs have been striving to produce EA

derivatives with narrowed biospecificity and therefore predict-
able bioactivity (Mantegani et al. 1999).

Antibiotics

Although there was already a general awareness of the pres-
ence of anti-microbial compounds among the scientific com-
munity, much interest emanated from the success of penicillin
in treating various infectious diseases such as gangrene during
the Second World War (Jones and Ricke 2003). Massive
bioprospecting for new anti-microbials then led to the discov-
ery of many antibiotics that helped treat diseases that were
deemed incurable at the time. One challenge faced in the use
of antibiotics is the development of resistance mechanisms by
microorganisms, which results in the antibiotic losing its po-
tency. This has become a global concern, with strains such as
Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter spp. (commonly referred to as
the ESKAPE pathogens) notorious for devising mechanisms
to Bescape^ the potency of antibiotics (Lewis 2013). Cases
involving multidrug-resistant tuberculosis (MDR-TB) have
become increasingly recurrent, and according to the World
Health Organization, 480,000 cases were reported in the year
2013. Such cases of resistance, coupled with a decrease in
discovery of new antibiotics, have caused scientists to consid-
er the option of modifying existing antibiotics to their bioac-
tive derivatives (Aminov 2010; France et al. 2004).
Apparently, antibiotic modification dates as far back as the
1970s (Aminov 2010).

Laccase-catalyzed modification of antibiotics was first re-
ported by Agematu et al. (1993). They reported the laccase-
catalyzed dimerization of penicillin X. Penicillin X is gener-
ally oxidizable by laccase because of a hydroxyl group it
possesses. An initial attempt to dimerize penicillin X was

Fig. 4 Proposed reaction
mechanism for the laccase-
catalyzed reaction of 1,2-
ethanedithiol (1) with substituted
hydroquinones (2) to produce 2,3-
ethylenedithio-1,4-quinones (3)
(Cannatelli and Ragauskas
2015a). Reprinted with permis-
sion from Elsevier
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unsuccessful because the products were not stable.
Subsequently, the acetylation of the antibiotic resulted in the
formation of stable dimers. Although the resulting dimers had
no significant improvement in anti-microbial activity and sta-
bility, the work opened new avenues of antibiotic research
(Agematu et al. 1993).

Subsequent work on laccase-mediated modification of an-
tibiotics has focused mainly on heterocoupling as a way of
improving efficacy of antibiotics (Table 2). Mikolasch and
coworkers have carried out extensive work on the application
of laccase in the production of novel antibiotics (Hahn et al.
2009a,b; Manda et al. 2006; Mikolasch et al. 2012, 2008a,b,
2007, 2006). Unlike the conventional modifications which
generally explore the reactivity of moieties to form antibiotic
derivatives with improved activity and lower cytotoxicity,
they adopted the approach of coupling the existing antibiotics
with other bioactive compounds to produce novel compounds
with potentially improved therapeutic properties. Using deriv-
atives of gentisic acid to cross-couple amoxicillin or ampicil-
lin, eight novel penicillins were synthesized (Mikolasch et al.
2006). This approach appeared to be highly efficient, with
yields of around 98% achieved within 3 h. The produced
derivatives showed interesting bioactivity, particularly
in vivo efficacy; they were able to protect mice infected with
S. aureus (ATCC 6538 and 3841) without any signs of intox-
ication. Although the derivatives did not show a significant
improvement in activity compared to amoxicillin or ampicil-
lin, some coupling products were stable against β-lactamases
that reduce activity of amoxicillin and ampicillin.

The presence of catechol groups on β-lactam-based antibi-
otics has been demonstrated to improve antibiotic activity by
enhancing antibiotic penetration through the bacterial cell wall
(Erwin et al. 1991). Using a laccase-catalyzed amination pro-
cess, novel antibiotics were obtained by cross-coupling cate-
chols and amino β-lactams such as cefadroxil, amoxicillin,
and ampicillin (Mikolasch et al. 2008b). Several novel deriv-
atives of N-analogous corollosporine (Mikolasch et al.
2008a), morpholines (Hahn et al. 2009b), and cephalosporins
(Mikolasch et al. 2007) have also been reported (Table 2).

Synthesis of bioactive polymers

Laccase has been used for the functionalization of polymers
through grafting reactions. For example, extensive work has
been performed on the functionalization of lignocellulose ma-
terial (Kudanga et al. 2011b, 2010a,b, 2009, 2008; Widsten
et al. 2010). Recently, research activities have also focused on
functionalization of polymers for the production of bioactive
polymers (Table 3). Natural polymers, mainly chitosan, have
been extensively investigated for possible grafting with sev-
eral phenolics as bioactive compounds.

Chitosan is a readily available biopolymer that is usually
produced from the deacetylation of crustacean shells such as

shrimp and crab shells. It has recently received much attention
as a potentially useful bioactive polymer. Although chitosan
has been applied in food industry (Shahidi et al. 1999), med-
ical industries (as antibiotics) (Raafat et al. 2008), and in wine
industries (to prevent spoilage) (Bagder Elmaci et al. 2015), its
application has been limited because of its poor solubility and
poor anti-oxidant capacity (Aljawish et al. 2014b; Božič et al.
2013). The poor anti-oxidant property of chitosan is a result of
limited number of hydroxyl groups on the biopolymer (Božič
et al. 2012b). Grafting of phenolic compounds has been used
to enhance the bioactive properties of chitosan. For example,
grafting of laccase-oxidized ferulic acid (FA) and ethyl
ferulate (EF) onto a chitosan backbone resulted in chitosan
derivatives with superior anti-oxidant activity compared to
natural chitosan (Aljawish et al. 2014b). Bozic and coworkers
a l so per formed a ser ies o f s tud ies on chi tosan
functionalization, using several phenolic compounds such as
tannic acid and quercetin (Božič et al. 2012a), gallic acid, and
caffeic acid (Božič et al. 2013, 2012b). The resulting chitosan
derivatives exhibited enhanced anti-oxidant activity. The de-
rivatives also showed improved anti-microbial activity against
Escherichia coli and Listeria monocytogenes (in the case of
gallic and caffeic acid-functionalized chitosan derivatives)
compared to the natural biopolymer.

Structure-activity relationships of enzymatically
synthesized bioactive compounds

In laccase-catalyzed synthesis of bioactive compounds, the
main aim is to produce coupling products exhibiting improved
bioactive properties compared to the starting materials.
Depending on the intended purpose of the bioactive com-
pound, several structural factors determine the efficacy of
the coupling products. In this section, some of these factors
are discussed, with reference to the type of bioactive com-
pounds produced.

Anti-oxidants

The bioefficacy of anti-oxidants is usually determined by the
structure and stability of the synthesized compound
(Table 4). Several researchers have analyzed the structure-
activity relationship (SAR) of anti-oxidants (Bendary et al.
2013; Rice-Evans et al. 1996). Firstly, the anti-oxidant must
have active groups (e.g., hydroxyl, alkyl, or aniline)
(Bendary et al. 2013) attached to the aromatic ring, and
the more active groups are present, the more bioactive the
anti-oxidant can be (Bendary et al. 2013; Lien et al. 1999).
For example, hydroxytyrosol consists of two hydroxyl
groups attached to its aromatic ring; however, after a
laccase-catalyzed oxidation process, a hydroxytyrosol dimer
with four hydroxyl groups is produced (Zwane et al. 2012)
(Table 4). This dimer showed a threefold increase in anti-
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oxidant activity when tested using the ferric-reducing anti-
oxidant power (FRAP) assay (Zwane et al. 2012). Adelakun
et al. (2012a) attributed the enhanced activity of the dimeric
form of ferulic acid (β-5) to increased electron-donating
groups. Functional groups such as alkyl, aniline, or hydroxyl
groups enhance anti-oxidant activity (Bendary et al. 2013),
while bulky alkyl groups contribute towards the stability of
phenoxyl radicals (Decker 2008; Eskin and Przybylski
2000). On the other hand, compounds containing moieties
such as nitro group or halogens, which are electron with-
drawing groups, have poor anti-oxidant activity (Rakesh
et al. 2015). The position of the active groups on the aro-
matic ring also determines the activity of the product.
Enhanced activity of a phenolic anti-oxidant can be achieved
when active groups occupy the ortho or para position to the
hydroxyl group (Decker 2008). Recently, Najafi (2014) in-
vestigated the relationship between the position of active
substituents on the daidzein aromatic ring and the com-
pound’s anti-oxidant activity. It was concluded that the ortho
position can result in production of useful bioactive com-
pounds (Najafi 2014).

The bond dissociation enthalpies (BDEs) of the active
groups will also determine the inertia of the anti-oxidant in
releasing the electron. The anti-oxidants containing active
groups with lower BDE are better anti-oxidants because they
readily release electrons to radical species (Szymusiak and
Zielinski 2003). Adelakun et al. (2012a) showed that the
β-β dimers of ferulic acid had a lower anti-oxidant activity
than the monomeric ferulic acid. This is consistent with earlier
findings, which showed that bis-ferulic acid (β-β dimers) had
a higher BDE (85.76 kcal/mol) than ferulic acid (84.70 kcal/
mol) (Murakami et al. 2005a). The determination of BDE
varies with compounds and also experimental conditions;
thus, many researchers focusing on the BDE of phenolic com-
pounds have published contrasting results (Chandra and
Uchimaru 2002; dos Santos and Simoes 1998; Klein and
Lukeš 2006; Szymusiak and Zielinski 2003). However, in
general, hydroxyl moieties have lower BDE than other active
groups such as alkyl and aniline groups (Bendary et al. 2013),
which probably explains why phenolics are frequently used as
anti-oxidants.

An ideal anti-oxidant must also produce a stable radical,
which will not facilitate the propagation of the oxidation chain
bubble (Alov et al. 2015). The stability results from the reso-
nance delocalization of lone electrons into the aromatic ring
and absence of groups prone to attack by oxygen (Flora 2009;
Shahidi and Naczk 2004). Although bulky groups on the
ortho positions of the aromatic ring help stabilize anti-
oxidant radicals (Shahidi and Naczk 2004), the bulky groups
may also reduce anti-oxidant activity by steric masking of the
phenolic hydroxyl group (Murakami et al. 2005a).

Hydrophobicity is also another attribute which affects anti-
oxidant activity especially in a multicellular environment.T
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Hydrophobicity increases the bioavailability of the anti-oxidant
at sites where free radicals are generated (Ishige et al. 2001).
For instance, hydrophobic anti-oxidants would be effective
scavengers of free radicals generated from lipid peroxidation
on the lipid bilayer because of their lipophilic properties (Lu
et al. 2006). An ideal anti-oxidant would thus consist of a
balance of electron-donating groups such as hydroxyl groups,
which will ensure the free radical scavenging ability of the anti-
oxidant, and also hydrophobic moieties which will enable the
bioavailability of the anti-oxidant in multicellular systems.
Research that focused on improving the hydrophilicity of
silybin resulted in its compromised anti-oxidant activity in li-
pophilic environments (Gažák et al. 2010; Gažák et al. 2004),
highlighting hydrophobicity as an important factor in the func-
tion of anti-oxidants in cell medium.

Antibiotics

Generally, microbial resistance to antibiotics is through three
mechanisms: (i) enzymatic inactivation of the antibiotic, for
example, hydrolysis of β-lactam-based antibiotics by β-
lactamase enzymes; (ii) alteration of the targets; and (iii) re-
duced penetration of the antibiotic into the microorganism
(Watanabe et al. 1987). Laccases have been used in developing
antibiotics with enhanced penetration into host cell. These an-
tibiotics have been produced by coupling catechols and β-
lactam-based antibiotics (Mikolasch et al. 2008b). The

produced β-lactam derivatives expressed significant activity
against gram-positive bacteria, including drug-resistant
S. aureus and enterococci. It has been demonstrated that the
availability of a catechol moiety on the antibiotic improves its
penetration into the bacterial cell through the iron transport
system (Fung-Tomc et al. 1997; Silley et al. 1990). The incor-
poration of catechol groups onto antibiotic compounds thus
enhances antibiotic activity of the antibiotic through effective
drug delivery towards the targeted site. The coupling of mono-
meric antibiotic units to dimeric forms can result in enhanced
efficacy. Some reports have highlighted the efficacy of dimeric
vancomycin in inhibiting bacteria resistant to monomeric van-
comycin units (Yoshida et al. 2011). Dimerization of monomer-
ic antibiotics can also prevent enzymatic hydrolysis of the an-
tibiotic since the dimerization alters the compound in such a
way that hydrolyzing enzymes fail to recognize it.

Directions for future research

The use of laccases as biocatalysts offer economically viable
domino processes for the synthesis of bioactive compounds.
However, the translation of this green technology into a feasible
industrial process requires several factors to be considered. For
example, there is a need to develop a robust enzyme with prop-
erties that are ideal for industrial application. Specific research
areas could include heterologous expression so as to produce
enough enzyme with improved activity, thermostability, and

Table 3 Laccase-catalyzed production of bioactive natural polymers

Substrate Source of laccase Positive effects observed Potential applications References

Catechin + gelatin Not provided Catechin-gelatin conjugates produced exhibited
improved water solubility as well as enhanced
inhibition of low-density lipoprotein (LDL)
oxidation

Soluble therapeutic drugs with
anti-oxidant, anti-cancer,
and anti-inflammatory
properties

Chung et al.
(2003)

Chitosan + caffeic acid T. versicolor Caffeic acid-functionalized chitosan with
improved ABTS radical scavenging capacity

Pharmaceutical and cosmetic
products

Božič et al.
(2013, 2012b)

Chitosan + ethyl ferulate
or ferulic acid

M. thermophila Ethyl ferulate-functionalized chitosan produced
preserved chitosan’s initial anti-bacterial
activity and improved ABTS radical
scavenging activity

Anti-oxidant additives Aljawish et al.
(2014a,b)

Chitosan + ferulic acid M. thermophila Ferulic acid-functionalized chitosan derivatives
produced had improved anti-oxidant activity

Anti-oxidant additives Aljawish et al.
(2014a,b)

Chitosan + gallic acid T. versicolor Gallic acid-functionalized chitosan produced had
improved ABTS radical scavenging capacity

Pharmaceutical and cosmetic
products

Božič et al.
(2013, 2012b)

Chitosan/gelatin hydrogel
+ plant phenolic extracts

Trametes sp. Chitosan/gelatin hydrogels cross-linked with
phenolic compounds were stable under
physiological conditions and resistant to
degradation by wound enzymes such as
lysozyme. The hydrogels also inhibited
bacterial growth, thus promoting wound healing

Bioactive hydrogels for
chronic wound healing

Rocasalbas et al.
(2013)

Chitosan + quercetin T. versicolor Quercetin-chitosan derivatives had ABTS
scavenging ability twofold higher than native
chitosan

Bioactive materials for use in
food and medical industries

Božič et al.
(2012a)

Chitosan + tannic acid T. versicolor Improved anti-oxidant activity; more than double
the activity of native chitosan

Bioactive materials for use in
food and medical industries

Božič et al.
(2012a)

Appl Microbiol Biotechnol (2017) 101:13–33 23



Table 4 Structure-activity relationships of laccase-catalyzed phenolic coupling products
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ability to withstand organic solvents and inhibitors which are
frequently encountered in industrial applications (Mate and
Alcalde 2015; Kudanga and Le Roes-Hill 2014; Kunamneni
et al. 2008b). Laccase-catalyzed reactions generally result in
low product yield (see for example, Adelakun et al. 2012b;
Wan et al. 2007). While the creation of radicals is a pre-
requisite for laccase synthesis, there are also some negative
implications for biosynthesis. With radical processes, there is
a possibility of many different radical forms of the oxidized
molecule mainly due to resonance stabilization and non-
specific radical-mediated reactions. Therefore, such processes
usually result in a wide range of different racemic mixtures of
products appearing at rather low concentrations. Frequently
high concentrations of organic solvents are used to minimize
radical proliferation, reduce polymerization reactions, and
therefore increase yield, but the same solvents also inactivate
enzymes. Therefore, reaction engineering to increase product
yield remains a major challenge in laccase-mediated synthesis
of bioactive compounds. However, other key research areas
that need particular attention could include (i) the search for
cheap substrate sources coupled with the bioprospection of
natural laccase mediator systems (LMSs) and (ii) production
of enantiomericaly pure products.

Biopolymers as substrate sources

The potential of laccases can be extended beyond the oxida-
tion of its natural substrates through the LMS (Riva 2006).
This involves the generation of radicals from small com-
pounds within laccase’s redox potential range (viz. 0.5–
0.8 mV against a standard hydrogen electrode) (Witayakran
and Ragauskas 2009). The generated radicals can then act as
redox shuttles, oxidizing substrates with higher redox poten-
tials and those too large to fit the enzyme active site (Zhu et al.

2014). The LMS technology has been extensively used in the
textile industry, pulp and paper industry, alcohol oxidation,
and lignin degradation (D’Alfonso et al. 2014; Morozova
et al. 2007b; Fabbrini et al. 2002). Some researchers are of
the opinion that the use of LMS presents an opportunity to
mine the plethora of low-molecular-weight phenolics and oth-
er bioactive compounds entrapped within biopolymers such as
lignin (Christopher et al. 2014; Rich et al. 2016). The degra-
dation of lignin, which is the second most abundant biopoly-
mer, and is laden with bioactive functional groups such as
phenolic hydroxyls, benzyl alcohols, carbonyls, and
methoxyls (Boeriu et al. 2004; El Mansouri and Salvadó
2007), can present a wealthy source of substrates for the syn-
thesis of valuable bioactive compounds (Barclay et al. 1997;
Božič et al. 2012a). The widely available artificial LMSs such
as ABTS and 1-hydroxybenzotriazole (HBT) remain expen-
sive and are potential contaminants when applied in the syn-
thesis of compounds of therapeutic value (Cañas and
Camarero 2010). Therefore, bioprospecting for more efficient
natural mediator systems for the degradation of biopolymers
also remains a key research area.

Towards the production of enantiomerically pure compounds

To date, much of the research on the exploitation of laccase for
organic synthesis has only produced racemic mixtures of olig-
omeric and cross-coupling products. This is a limitation espe-
cially in the synthesis of therapeutic drugs, which in most
cases requires enantiomerically pure compounds. It has also
been observed that enantiomers can have significantly differ-
ent bioactivities (Davis-Searles et al. 2005; Plíšková et al.
2005). Therefore, research is now also focusing on synthesiz-
ing enantiomerically pure compounds (Girol et al. 2012; Kim
et al. 2012). Strikingly, in vivo laccase-catalyzed coupling

Table 4 (continued)
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reactions are highly stereospecific, leading to the formation of
compounds such as lignans, lignins, and suberins (Orlandi
et al. 2001; Zoia et al. 2008). Development of a protocol that
can mimic the same specificity in vitro will be valuable in
industrial processes. Research towards production of pure fi-
nal products thus represents a primary focus area for future
research. A number of studies have laid a foundation for future
studies in this respect as explained below.

Davin and colleagues demonstrated the role played by a 78-
kDa protein (dubbed Bdirigent^ protein) isolated from
Forsythia intermedia in the in vivo synthesis of stereospecific
dimers of E-coniferyl alcohol, which are building units for lig-
nin polymers in plants (Davin et al. 1997). Coupling reactions
carried out in the absence of the dirigent protein resulted in the
racemic dimers (±)-dehydrodiconiferyl alcohols, (±)-
pinoresinols, and (±)-guaiacylglycerol 8-O-4-(coniferyl alco-
hol) ethers (Davin and Lewis 2005). However, in the presence
of the dirigent protein, stereospecific coupling reaction oc-
curred, resulting in (+)-pinoresinol as the only product
(Fig. 5) (Davin et al. 1997; Davin and Lewis 2000; Halls
et al. 2004). This trend was reproducible when either laccase,
flavin mononucleotide (FMN), flavin adenine dinucleotide
(FDN), ammonium peroxydisulfate, or an oxidase native to

F. intermediawas used as oxidant, proving that stereoselectivity
in the reaction was not promoted by the oxidant employed. The
substrate specificity of the dirigent protein from F. intermedia
restricts it only to the production of (+)-pinoresinol. This
knowledge has already opened fresh avenues of enquiry,
allowing scientists to bioprospect for their homologous proteins
in nature (Präg et al. 2014; Pickel and Schaller 2013; Girol et al.
2012; Umezawa 2003) as well as taking advantage of the mod-
ern day tools such as molecular technology (Kazenwadel et al.
2013; Kim et al. 2012) to design modified proteins of such ilk
that can control directed coupling to produce desired bioactive
products.

In related studies, stereospecific bioactive lignans were syn-
thesized by attaching chiral auxiliary compounds to the sub-
strates (Orlandi et al. 2001). Riva and coworkers have also
carried out extensive research on protecting functional groups
of laccase substrates as a strategy for reducing the diversity of
products formed in the oxidation reactions. A benzyl groupwas
added to protect the OH group on the C′7 of silybin A, resulting
in the 87% yield of its symmetric dimer (Gavezzotti et al. 2014)
(Fig. 6). As shown by earlier studies, benzylation of functional
groups seemed to be better than adding methyl groups, which
made deprotection impossible (Gažák et al. 2008).

Fig. 5 The proposed in vivo stereoselective synthesis of (+)-pinoresinol
in Forsythia intermedia involving dirigent protein-facilitated binding and
orientation of coniferyl alcohol radicals. Adapted from Davin et al.

(1997), with permission from the American Association for the
Advancement of Science
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It has also been reported that regioselectivity can be influ-
enced by the reaction conditions such as pH and solvents
(Chioccara et al. 1993; Orlandi et al. 2001). Horseradish
peroxidase-catalyzed coupling of lignans (isoeugenol, methyl
ferulate, or coniferyl alcohol) under acidic pH resulted in di-
mer formation; neutral pH promoted the formation of oligo-
mers, while a racemic β-O-4 product was formed in the pres-
ence of methanol solvent (Chioccara et al. 1993).

The emergence and subsequent advances in the field of mo-
lecular biology have opened a host of opportunities in develop-
ing biocatalysts better equipped for industrial application.
Besides the improved expression of proteins in heterologous
hosts, molecular techniques also allow bioprospecting in
unculturable microorganisms as well as database mining. Using
bioinformatic databases, it is nowpossible to profile the sequence
of the polypeptide chain. With this information, predictions can
be made on how alteration of the amino acid sequence can affect
the characteristics of the enzyme. Usually, these alterations are
performed at or near the enzyme’s catalytic core (Mate and
Alcalde 2015; Prins et al. 2015; Turner 2009). However, in ad-
dition to carrying out these modifications with the goal of im-
proving enzyme activity and/or robustness, genetic manipulation
could also focus on improving stereoselectivity and facilitating
the production of pure compounds (Robert et al. 2011).

Concluding remarks

The potential of laccase as a green biocatalyst in the synthesis
of bioactive compounds is vast. Many studies have increased
our understanding of reaction mechanisms involved, desired
reaction conditions, and structure-activity relationships.
Future research should highlight not only synthetic properties
of the enzyme but also reaction engineering to optimize syn-
thesis of specifically desired products of economic value. This
could possibly facilitate transfer of the technology from bench
scale to industrial application processes.
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