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Abstract Biosurfactants are natural compounds with surface
activity and emulsifying properties produced by several types
of microorganisms and have been considered an interesting al-
ternative to synthetic surfactants. Glycolipids are promising
biosurfactants, due to low toxicity, biodegradability, and chemi-
cal stability in different conditions and also because they have
many biological activities, allowingwide applications in different
fields. In this review, we addressed general information about
families of glycolipids, rhamnolipids, sophorolipids,
mannosylerythritol lipids, and trehalose lipids, describing their
chemical and surface characteristics, recent studies using alterna-
tive substrates, and new strategies to improve of production,
beyond their specificities. We focus in providing recent develop-
ments and trends in biotechnological process and medical and
industrial applications.
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Introduction

Synthetic surfactants are an important group of chemical com-
pounds widely used in different fields, althoughmany of these

compounds have been associated with environmental and tox-
icological problems and still considered expensive (Gudiña
et al. 2015; Liu et al. 2013; Lechuga et al. 2016). Therefore,
in recent years, it has increased the interest in compounds with
tensoactive properties, biodegradability, and low toxicity char-
acteristics, such as natural surfactants. These compounds are
surface-active agents that can be produced by plants (sapo-
nins), animals (pulmonary surfactant), and microorganisms
(biosurfactants) (Lang et al. 1989; Luna et al. 2011).

The biosurfactants are a diverse group of amphiphilic com-
pounds produced by bacteria, fungi, and yeast strains that
have the ability to reduce surface and interfacial tension in
liquids or biphasic systems (e.g., liquid/gas, liquid/liquid,
and solid/liquid) and may display emulsifying activity and
interesting biological properties (Cameotra and Makkar
2010; Banat et al. 2014a). In addition, biosurfactants have
clear advantages when compared to synthetic surfactants such
as lower critical micelle concentration (CMC), lower toxicity,
higher biodegradability, thermostability, and tolerance in sev-
eral pH and ionic strength conditions (Varvaresou and
Iakovou 2015; Soberón-Chávez and Maier 2011). Other ad-
vantage of the biological surfactant production is the possibil-
ity of using low-cost substrates. Most of reported process have
been using agro-industrial wastes in the culture medium, in
order to reduce costs and make the process more attractive in
large scale (Nitschke and Pastore 2006; Barros et al. 2008;
Andrade et al. 2016).

Biosurfactants can be classified according to their molecu-
lar weight in two groups: low and high molecular weight
biosurfactants (Gudiña et al. 2013). The low molecular weight
biosurfactants are the most studied group and comprises two
important subgroups: glycolipids and lipopeptides. These can
be subdivided into several biosurfactant families such as
rhamnolipids, sophorolipids, trehalolipids, mannosylerythritol
lipids (glycolipids), surfactins, fengycins, and iturins
(lipopeptides), among others. In addition, each family is
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composed of different types of structurally related com-
pounds. For example, the family of mannosylerythritol lipids
(MELs) is divided into four types of major structures (called
MEL-A to MEL-D). Also, the surfactin family comprises dif-
ferent compounds including bamylocin A, esperin, lichenysin,
pumilacidin, and surfactin isoforms (Jacques 2011).

Considering the need to develop sustainable surfactant,
glycolipid biosurfactants are promising due to possibility of
their production from natural renewable resources by biotech-
nological means (Varvaresou and Iakovou 2015; Kuyukina
et al. 2015). Nowadays, a main question in the biosurfactant
field is how the knowledge constructed in these last years in
terms of production process and applications has contributed
to the insertion of these compounds in market, particularly in
the production in industrial scale and product development.
Thus, it is important that new studies in this field focus beyond
the cost reduction of the biotechnological process and also
perform the evaluation of the biosurfactant applicability in
bioremediation or as a surfactant in products and also which
biological properties these compounds exhibit.

In this present review, we provide the recent advances in
the biotechnological production of the four main glycolipids,
the most advantageous biosurfactants known considering its
characteristics and production yields, describing the essential
information about its structures, as well the latest studies on its
biological properties. Moreover, in the scope of this work, we
will focus in the major applications of biosurfactants, showing
process conditions, optimization strategies, and use of alterna-
tive substrates to reduce production costs that has been per-
formed in the recent years.

Glycolipid Biosurfactants

Glycolipid biosurfactants are most common subgroup of low
molecular weight biosurfactants. Structurally, they are com-
posed of a hydrophobic moiety that consists in a long-chain
fatty acid (which can be aliphatic, hydroxylated, or unsaturat-
ed) in combination with a hydrophilic carbohydrate-based
component (glucose, trehalose, mannose, galactose,
sophorose, and rhamnose) (Muller and Hausamann 2011;
Mukherjee and Das 2010). The most studied families of gly-
colipid biosurfactants are rhamnolipids, sophorolipids, treha-
lose lipids, and mannosylerythritol lipids. Table 1 comprises
studies performed with these glycolipids, most of them using
microorganisms isolated from oil-contaminated samples,
demonstrating their potential in terms of surface activity,
yield, use of renewable sources as substrate, and proposed
applications.

Rhamnolipids

Rhamnolipids are glycolipids that consist in a hydrophilic
group, one or two rhamnose molecules in L-form, linked to

a hydrophobic group represented by saturated or unsaturated
β-hydroxy fatty acids (Desai and Banat 1997; Řezanka et al.
2011; Gudiña et al. 2015). These compounds are generally
produced by pathogenicPseudomonas species, but some stud-
ies have shown the production of rhamnolipids by other mi-
croorganisms such as Burkholderia sp., Myxococcus sp.,
Enterobacter sp., Pseudoxanthomonas sp., Acinetobacter
sp., and recently Streptomyces strains (Andrä et al. 2006;
Ohlendorf et al. 2009; Rooney et al. 2009; Nayak et al.
2009; Čejková et al. 2014; Chen et al. 2012; Yan et al.
2014). The production of rhamnolipids by nonpathogenic
strains has become an attractive possibility, and more studies
have described biotechnological processes using
Pseudomonas putida, Acinetobacter calcoaceticus,
Enterobacter asburiae, and Burkholderia thailandensis
(Wittgens et al. 2011; Hošková et al. 2013; Díaz De Rienzo
et al. 2016a; Funston et al. 2016).

In fermentative processes, a variety of rhamnolipid ana-
logues can be obtained, predominantly rhamnosyl-β-
h y d r o x y d e c a n o a t e (Rh a -C1 0 ) , r h amno s y l -β -
hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10),
mono-rhamnolipids and rhamnosyl-rhamnosyl-β-
hydroxydecanoate (Rha-Rha-C10), and rhamnosyl-
rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-
Rha-C10-C-10)-di-rhamnolipids (Fig. 1) (Chayabutra et al.
2001; Soberón-Chavez et al. 2005; Pinzon et al. 2009;
Abdel-Mawgoud et al. 2010; Hošková et al. 2013). The pro-
portion of these analogues and global yield of production de-
pend on several parameters such as medium composition, mi-
croorganism producer, and fermentation conditions, and the
ratio of the isoforms determines variation in physicochemical
properties of the biosurfactant mixture (Mata-Sandoval et al.
2001; Clarke et al. 2010; Onwosi and Odibo 2012; Kumar
et al. 2012; Rikalovic et al. 2013). In addition, it is suggested
to keep the production process in controlled conditions in
order to maintain the well-defined and consistent properties
of rhamnolipids (Bai andMcClements 2016). Therefore, stud-
ies that perform the scale-up and use fermenters to carry the
rhamnolipid production are more interesting since it allows
greater repeatability in the type of analogues that are obtained
when compared with experiments in laboratory scale.

Rhamnolipids are considered one of the most potent
biosurfactants, mainly due the reduction of water surface ten-
sion from 72 to 31 or <30 mN/m and that the critical micellar
concentration (CMC) values can vary between 20 and
225 mg/L in water (Syldatk et al. 1985; Nitschke et al. 2005;
Dubeau et al. 2009). The surface properties of rhamnolipids
described in literature can vary because of the production pro-
cess type conducted, generally in laboratorial scale, or the
utilization of purification steps. Nitschke et al. (2005) reported
low critical micelle tension for different rhamnolipids: the di-
rhamnolipid Rha-Rha-C10-C10 showed 5 mg/L of CMC,
while the mono-rhamnolipid Rha-C10-C10 reached 40 mg/
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L. Another example, rhamnolipids obtained by Gudiña et al.
(2015), showed low CMC values (10–200 mg/L) and great
ability to reduce surface tension (28–30 mN/m) and also ex-
hibited high values of emulsification index in the order of 60–
70 %. In addition, Ma et al. (2016) found that a mixture of six
rhamnolipid homologs, obtained from Pseudomonas
aeruginosa DN1, was able to reduce the surface tension of
water to 25.88 mN/m with CMC of 50 mg/L and showed
excellent emulsification activity in the order of 100 % to sev-
eral hydrocarbons. Most studies do not describe the properties
for each rhamnolipid analogues obtained in fermentation pro-
cess due to difficulty in purification processes. However, the
purification and individual evaluation would be extremely im-
portant when it comes of therapeutic applications because
each compound alone could act differently.

Many rhamnolipid derivatives have been described,
and different analytical techniques are necessary to char-
acterize and quantify these glycolipids in culture medi-
um after fermentation and purification steps. The use of
ultra-performance liquid chromatography tandem mass
spectrometry (HPLC-MS) is considered a powerful and
appropriate tool for analysis of several rhamnolipid an-
alogues (Zgoła-Grześkowiak and Kaczorek 2011; Ma
et al. 2016). Another point is that the development of
new methods such as the use of high-performance liquid
chromatography coupled to charged aerosol detection
for quantification analysis also allows achieving good
results (linearity, limits of quantification, and detection
and accuracy) and together with rapid validated methods
of individual rhamnolipid congeners has been recom-
mended to several processes using different carbon

sources (Zgoła-Grześkowiak and Kaczorek 2011;
Rudden et al. 2015; Behrens et al. 2016).

Beyond the powerful surface activity and interesting emul-
sification capacity, the rhamnolipids also present low toxicity
and biodegradability, relevant properties that can make them
applicable in diverse industrial process, such as bioremedia-
tion, cosmetic and detergent formulations, enhancement of oil
recovery, agriculture, food control, and drug delivery. For
these reasons, several reviews show future perspectives for
its use and strategies for production (Nitschke and Costa
2007; Lourith and Kanlayavattanakul 2009; Nguyen et al.
2010; Bafghi and Fazaelipoor 2012; Sachdev and Cameotra
2013; Amani et al. 2013; Magalhães and Nitschke 2013;
Irfan-Maqsood and Seddiq-Shams 2014; Gudiña et al. 2016;
Lovaglio et al. 2015; Kiran et al. 2016).

The effect of the rhamnolipid incorporation in washing
powder was performed by Bafghi and Fazaelipoor (2012),
where the formulation with this biosurfactant was comparable
to commercial detergents in terms of the stain removal and
conferred a sustainable characteristic to the final product due
the biodegradability of the compound added. In addition, the
oil removal capacity of commercial detergent supplemented
with 10 % of rhamnolipid was enhanced (Bafghi and
Fazaelipoor 2012). In this context, detergent formulations
have been developed by companies in order to increase
cleaning performance of their products. In the detergent for-
mulations for textile industry, patented by Evonik Ind., mix-
tures of rhamnolipids, predominantly di-rhamnolipids, were
used, while the detergent composition from Unilever Co.
comprises mono-rhamnolipids in combination with lipase en-
zyme (Kuppert et al. 2014; Parry et al. 2012).

Fig. 1 Structures of rhamnolipids
that are predominantly found in
fermentative processes by
Pseudomonas species
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Significant attention has been given to the application
of rhamnolipids in bioremediation of polluted environ-
ments and the enhancement of oil recovery (in this case,
the process is called microbial enhanced oil recovery—
MEOR) (Nikolopoulou et al. 2013; Yan et al. 2012;
Kryachko et al. 2013; Long et al. 2013). Toxic com-
pounds such as metals, polycyclic aromatic hydrocar-
bons (PAHs), petroleum hydrocarbons, and pesticides
can be removed from the contaminated environment by
using diverse techniques that employ rhamnolipids
(Salmani Abyaneh and Fazaelipoor 2016; Sponza and
Gök 2010). Bioremediation studies carried out with her-
bicide atrazine in mineral salt medium and soil spiked
with atrazine demonstrated that rhamnolipids at 2.5
CMC value are most efficient than the synthetic surfac-
tant Triton X-100 at 2.5 CMC in enhancing microbial
degradation by Acinetobacter sp. A6 strain (Singh and
Cameotra 2014). In this case, the biosurfactants cause
an increase in the bioavailability of toxic compounds,
resulting in a larger fraction that can be assimilated
and degraded by microorganisms. Moreover, interactions
of the toxic compounds with micellar structures formed
by biosurfactants may occur and recent study showed
that the solubility of hydrophobic PAH compounds
(naphthalene, phenanthrene, and pyrene) was enhanced
with the increase of rhamnolipid concentration above
CMC value in aqueous phase (Li et al. 2015). In these
concentrations, rhamnolipids form micelles and the sol-
ubilization of PAHs can be due to the diffusion of these
hydrophobic compounds into the center of the micelles
that are dispersed in the solution. Furthermore, solubili-
zation of hydrophobic compounds depends of the ma-
jority rhamnolipid type in solution, being that di-
rhamnolipids are most efficient in this process (Guo
and Hu 2014).

MEOR comprises methods that apply microorganisms or
microbial products to enhance petroleum recovery. MEOR
process can be done in two different ways: the ex situ
MEOR is the mainly applied method and consists in the
laboratorial production of biosurfactants and injection into
oil reservoirs, while in the in situ MEOR, the production of
biosurfactant occurs directly in oil reservoirs (Kosaric 1992;
Zhao et al. 2015). In situ MEOR can be considered the most
advantageous since it would not be necessary to use culture
media, fermenters, or other processes for the biosurfactant
production and also would not need purification steps which
make the global process expensive. However, this technique
depends on anaerobic biosurfactant-producing microorganism
and, generally, rhamnolipids are produced with better yields
by aerobic microorganisms, which may limit the application
of in situ MEOR (Amani et al. 2013). Considering this appli-
cation, in a study performed by Yan et al. (2012), a
rhamnolipid-producing Pseudomonas aeruginosa (F-2) was

used to recover oil from refinery oil sludge in experiments
carried out in laboratory and pilot scale (similar to in situ
MEOR) demonstrating the importance of the screening and
prospection of new rhamnolipid producers.

In agriculture, surfactant compounds can be used to en-
hance the pesticide and agrochemical solubility, acting as
emulsifiers, spreaders, and dispersing agents, and also may
be in direct contact with the plant surface and be found in food
produced. Hence, biosafety characteristics of these com-
pounds such as biodegradability and low toxicity have be-
come a trend as they are associated with environmental and
health concerns. In this context, studies showed that
rhamnolipids are potentially applied in agriculture field to
enhance soil quality through bioremediation, increasing the
nutrient bioavailability, and elimination of plant pathogen
(Sha et al. 2011; Kim et al. 2011; Nalini and Parthasarathi
2014). Moreover, the use of rhamnolipids to control plant
pathogens is an important perspective as an alternative to the
use of harmful agrochemicals and it was described in their
antifungal potential against Fusarium oxysporum wilt disease
in tomato plants with the application of 200 μg/L of purified
rhamnolipid (Deepika et al. 2015). More recently, it was
proved that a di-rhamnolipid and mono-rhamnolipid mixture
enhances the foliar penetration of soluble molecules in isolat-
ed cuticular membrane and greenhouse plants and also
showed better wettability and surface properties when com-
pared to an alkyl polyglucoside chemical surfactant (Liu et al.
2016).

Regarding the employment of rhamnolipids in food indus-
try, the use of these compounds as antimicrobial and emulsi-
fying agents and to disrupt or prevent biofilm formation of
some foodborne pathogens was proposed (Do Valle Gomes
and Nitschke 2012; Haba et al. 2014; Magalhães and Nitschke
2013; Banat et al. 2014b; Phillips 2016). The possible anti-
adhesive effect demonstrated by rhamnolipids preventing the
formation of bacterial biofilms consists in the modification of
surface hydrophobicity and interference into adhesive proper-
ties of microorganisms (Dusane et al. 2010; De Araujo et al.
2011). On the other hand, in cases in which the biofilm has
been formed, the biofilm removal effect of rhamnolipids could
be due to interactions into microcolonies and alteration of
biofilm environment and also in the removal of extracellular
polymeric substances (EPS) causing the biofilm disruption
(Davey et al. 2003; Díaz De Rienzo and Martin 2016). This
feature makes these biosurfactants extremely attractive not
only for use in the sanitization in the food industry but also
in medical field due to their potential in biofilm control of
opportunistic pathogens that cause medical device-related
infections.

In addition, the combination of rhamnolipids with different
compounds as organic acids and comparative studies with
other biosurfactants to enhance biofilm removal activity are
an interesting approach and good results were obtained
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against Gram-positive and Gram-negative strains (Díaz De
Rienzo et al. 2016b). Among the most recent results from this
perspective, it was demonstrated that there is susceptibility of
P. aeruginosa ATCC 15442 and Staphylococcus aureus
ATCC 9144 biofilms when 0.04 % of rhamnolipids and
0.01 % of caprylic acid was applied (Díaz De Rienzo et al.
2016c). Furthermore, different effects on Bacillus subtilis
BBK006 biofilm were observed for mono-rhamnolipids pro-
duced by P. aeruginosa ATCC 9027 and di-rhamnolipids by
B. thailandensis at same concentration (0.4 g/L), and this re-
sult is related to the structure type of biosurfactant produced,
being that the most efficient was a di-rhamnolipid (Díaz De
Rienzo and Martin 2016).

Some studies with rhamnolipid biosurfactants have dem-
onstrated important biological properties such as antitumor
and antiproliferative. Lotfabad et al. (2010) related the inhib-
itory effect of rhamnolipids from P. aeruginosa MR01 and
gamma ray-induced mutant strain (MR01-C) against human
cancer Hela cells. In addition, this study demonstrates the
enhancement of the di-rhamnolipid production using gamma
irradiation and that the predominant components in
rhamnolipid mixture with anticancer activity were Rha-Rha-
C10-C10, Rha-Rha-C10-C12:1, and Rha-Rha-C10-C12.
Christova et al. (2013) showed the inhibitory activity of
rhamnolipids Rha-C10-C10 and Rha-Rha-C10-C10 produced
by Pseudomonas BN10 on the growth of the human cancer
cell lines HI-60 (acute myeloid leukemia), BV-173 (chronic
myeloid leukemia in blast crisis), SKW-3 (T cell lymphocytic
leukemia), and JMSU-1 (urinary bladder carcinoma). These
researchers demonstrated for the first time that a mono-
rhamnolipid had better and significant inhibitory activity
against growth of the human cancer cell lines compared to
the di-rhamnolipid. The inhibitory effect in vitro of mono-
rhamnolipids into cancer cells is correlated with their cytotox-
icity, possibly caused by surface tension reduction of the cul-
ture medium used in test, as a demonstrated in a recent study
that cytotoxicity against cancer cells such as HepG2, Caco-2,
Hela, and MCF-7 was directly dependent on the decrease of
surface tension of culture medium in that cells were cultivated
(Jiang et al. 2014). However, it is suggested that further stud-
ies, preferably in vivo, should be conducted to establish the
extent of the effects on complex models so that anticancer
activity can be established respecting the biosafety concerns.

The use of low-cost substrates such as glycerol, sugar- and
glycerol-containing wastes, oils, fats and fatty acids, molasses,
and other agro-industrial wastes for production of
rhamnolipids is an advantageous approach in environmental
terms and has attracted the attention of researchers in recent
years (Benicasa et al. 2010; Henkel et al. 2012; Ebadipour
et al. 2016). Deepika et al. (2015) showed that the production
of rhamnolipid was 5.26 g/L using mineral salt medium sup-
plemented with 2 % molasses by P. aeruginosa strain KVD-
HM52. In this study, the biosurfactant produced consists in a

mixture of mono- and di-rhamnolipids (Rha-C10-C10 and
Rha-Rha-C10-C10) and were able to reduce the surface ten-
sion of water from 74 to 33 mN/m at a CMC value of 120 mg/
mL. Recently, Gudiña et al. (2016) evaluated the potential
application of low-cost medium based in corn steep liquor
(10 %) with sugarcane molasses (10 %) (CSLM) and CSLM
supplemented with 25 % of oil mill wastewater (OMW), a
residue from olive oil extraction, to rhamnolipid production
by P. aeruginosa no. 112 in flasks and reactor experiments.
The best results in terms of rhamnolipid production and CMC
values were obtained using CSLM/25 % OMW:4.5 g/L and
14 mg/L in flask experiments; 5.1 g/L and 14 mg/L in reactor
experiments in 168 h of the process, when compared with
CSLM:3.2 g/L and 50 mg/L in flask experiments in 144 h of
the process; and 2.2 g/L and 30mg/L in reactor experiments in
96 h of the process. It is necessary that the works using low-
cost medium provide more information on the pretreatment of
these substrates or economic analysis compared with conven-
tional culture media should be performed to attract the interest
of large companies from various sectors for large-scale
rhamnolipid production.

New strategies to enhance the production of rhamnolipids
in fermentative process have been studied using statistical
methods, engineered microorganisms, co-culturing/mixed
culture of microorganisms, or associating these approaches
with use of low-cost substrates (Jamal et al. 2014; Tavares
et al. 2013; Hošková et al. 2015). Pereira et al. (2013) per-
formed the optimization study of rhamnolipid production by
P. aeruginosa PA1 using crude glycerol as sole carbon source.
Through response surface methodology (RSM), highest prod-
uct concentrations in simple batch (2.75 g/L) and fed batch
(3.88 g/L) were achieved after 120 h of process. Using this
same approach, a previous study performed by De Sousa et al.
(2011) achieved a rhamnolipid concentration of 1.2 g/L, with
hydrolyzed glycerin as carbon source. Using a 24 full factorial
design to evaluate the effects of several variables in
rhamnolipid production by P. aeruginosa MSIC02, it was
possible to select the most significant parameters in the pro-
cess, using cashew apple juice as substrate (Rocha et al. 2014).
In an optimization study applying RSM, P. aeruginosa isolate
P6 was able to produce 7.54 g/L of rhamnolipids using 2% (v/
v) of glycerol as a carbon source in mineral medium at 30 °C,
250 rpm, an inoculum size of 5 % v/v, and pH of 7.5 (El-
Housseiny et al. 2016). Recently, Hassan et al. (2016) showed
that it is advantageous to use a sequential Placktt-Burman
design to investigate the effects of several variables (carbon
and nitrogen source, metal concentration in media, pH, tem-
perature, and others) in order to optimize rhamnolipid produc-
tion byPseudomonas spp. strains. The screening of significant
variables using the same approach and RSM performed with a
Box–Behnken design was described in a bioprocess for
rhamnolipid production by P. aeruginosa strain KVD-HR42,
which resulted in a biosurfactant concentration of 5.9 g/L
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using karanja oil as a carbon source and sodium nitrate as a
nitrogen source at 37 °C after 48 h of process (Deepika et al.
2016). Therefore, the development of studies with the use of
statistical methods aiming at the optimization of process con-
ditions and evaluation of their effects in fermentation process,
associated with use of low-cost substrates, constitutes a pow-
erful tool to improve the biosurfactant production (Zhao et al.
2016; Ebadipour et al. 2016).

In addition to parameter optimization, studies have shown
the potential application of engineered microorganisms and
the importance of the metabolic engineering for rhamnolipid
production (Wittgens et al. 2011; Kryachko et al. 2013;
Tavares et al. 2013; Dobler et al. 2016).Metabolic engineering
tools can provide information about genes andmetabolic path-
ways involved in rhamnolipid production, enabling the adop-
tion of strategies for modifying microorganisms or develop-
ment of nonpathogenic producers with better amounts and
physicochemical of rhamnolipids produced (Toribio et al.
2010; Lovaglio et al. 2015). Considering this approach,
Zhao et al. (2015) developed an anaerobic rhamnolipid pro-
duction by engineering a Pseudomonas stutzeri strain, with
rhlABRI genes for rhamnolipid biosynthesis and the
biosurfactant produced reduced water surface tension from
73.3 to 30.3 mN/m, oil–water interfacial tension from 26.1
to 0.169 mN/m, and also the cell-free broth showed emulsify-
ing index (E24) of 74 %. Previously, Colak and Kahraman
(2013) performed a study to evaluate the feasibility of the
use of whey and olive oil mill wastewater as a substrate to
rhamnolipid production by P. aeruginosa and its recombinant
strain (PaJC) expressing Vitreoscilla hemoglobin gene (vgb).
High yields of rhamnolipids were obtained from whey in the
biotechnological process and also were demonstrated that the
recombinant strain exhibited better production capacity
(13.3 g/L) when compared with wild-type strain (9.6 g/L).

Sophorolipids

Sophorolipids are biosurfactants that can be produced by sev-
eral yeasts species, such as Candida bombicola, Candida
alb icans , Candida f lor ico la , Cryptococcus sp . ,
Wickerhamiella domercqiae, Pichia anomala, Rhodotorula
bogoriensis, and others. Structurally, they consist of a dimeric
carbohydrate sophorose, a diglucose with β-1,2 bond also
called 2-O-β-D-glucopyranosyl-D-glucopyranose, attached
with a long chain of hydroxyl fatty acid, linked by a β-
glycosidic bond (Hirata et al. 2009; Yang et al. 2012; Hu
and Ju 2001; Ma et al. 2012; Konishi et al. 2015; Imura
et al. 2010; Basak et al. 2014). These compounds are capable
to reduce the surface tension of water to 40–24 mN/m and
showed CMC values of 0.68–100 mg/L (Van Bogaert et al.
2011a; Dengle-Pulate et al. 2013).

In contrast to rhamnolipids, sophorolipids are generally
produced by nonpathogenic strains and this feature can assist

in the development of large-scale production considering safe-
ty aspects. These biosurfactants are synthesized as a mixture
of different molecules and can be divided into two major
forms, acidic or lactonic sophorolipids, and may have acetyl
groups in their sophorose moiety, with variation in physico-
chemical and biological properties (Asmer et al. 1988;
Despande and Daniels 1995; Van Bogaert et al. 2011a).
Furthermore, the fatty acid chain structure (carbon number,
unsaturation, and hydroxylation) present in sophorolipids
may vary according to the substrate used as a hydrophobic
carbon source in the fermentation process (Shin et al. 2010;
Díaz De Rienzo et al. 2015). Figure 2 presents the structures of
sophorolipid types produced by Candida species.

In a comparison between the two types of sophorolipids,
the acidic forms have shown better foaming capacity and sol-
ubility, while the lactonic forms have a superior surface and
antimicrobial activities and better properties in many applica-
tions, for example, in cosmetic preparations for skin (Van
Bogaert et al. 2011a; Yang et al. 2012; Maingault 1999;
Concaix 2003). Structurally, lactonic sophorolipids showed
low capacity of rotation between its atoms due to lactonization
and this characteristic results in the formation of crystals dur-
ing fermentation process, making their isolation easier (Van
Bogaert et al. 2011a). Typically, C. bombicola is able to pro-
duce mostly a di-O-acetyl lactone form of sophorolipid while
other species such as Candida stellata and Candida
riodocensis produce a di-O-acetyl free acid form and some
amounts of mono-O-acetyl and non-acetyl forms (Price et al.
2012). Kurtzman et al. (2010) demonstrated this variety and
that major heterogeneity of sophorolipid forms is obtained by
Candida apicola, which produce di-O-acetyl, mono-O-acetyl,
and non-acetyl sophorolipids in the free acid and lactone
forms in fermentative medium. Thus, the structural diversity
that can be obtained using different substrates or Candida
species has expanded the number of sophorolipid analogues
described in recent years. Seventeen polymeric sophorolipids
were described in a process conduced with newly identified
yeast Candida sp. NRRLY-27208 and consist in dimeric and
trimeric structures that can be mono-acyl- and di-acyl-
disophorose and di-acyl- and tri-acyl-trisophorose analogues
with different degrees of acetylation (Price et al. 2012). In
addition, it was observed that two mono-acyl-disophorose an-
alogues (named of mono-O-acetyl dimer B and tri-O-acetyl
dimer D) are predominantly produced by Candida sp. NRRL
Y-27208.

Despite the great variety of sophorolipid analogues, few
studies have focused on the development and validation of
analytical methods for their characterization and quantifica-
tion. Most of the methodologies found in sophorolipid studies
use carbohydrate and lipid analysis by chromatographic
methods, mass spectrometry, and NMR spectroscopy to struc-
tural elucidation (Price et al. 2012; Ribeiro et al. 2012).
However, there is no standardization of these methods and
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the data are not clear, in terms of composition and contents of
different analogous, being limited to only classification of the
types produced in the biotechnological process, as lactonic or
acid.

The applications of different hydrophobic and hydrophilic
low-cost substrates as a carbon source to sophorolipid produc-
tion have been performed to enhance yields and types of the
analogues obtained. Hence, many studies showed the use of
diversified low-cost substrates (preferably hydrophobic), var-
iation of medium composition, modification of process, and
development of assisted methods (e.g., ultrasound) for
sophorolipid production (Daverey and Pakshirajan 2009;
Van Bogaert et al. 2011a; Morya et al. 2013; Maddikeri
et al. 2015). Previous studies using alternative raw materials,
such as animal fat, restaurant waste oil, soy molasses, and
deproteinized whey, achieved good yields and demonstrated
the possibility of overall process cost reduction (Despande and
Daniels 1995; Shah et al. 2007; Solaiman et al. 2007; Daniel
et al. 1999). Using animal fat as a hydrophobic carbon source
in a production medium containing (g/L): glucose, 100; fat,
100; urea, 1.5; K2HPO4, 1.0; corn steep liquor (CSL), 4; NaCl,
0.1, it was achieved 97–120 g/L of sophorolipids in 60–
68 hours of process (Despande and Daniels 1995).

Regarding the importance of the carbon source effects,
some studies have evaluated the influence of different fatty
acid types. In a work conducted by Shin et al. (2010), various

fatty acids (oleic acid, 18; erucic acid, 22:1; 22 carbon-
enriched rapeseed oil 54 % of docosanoic acid, 22:0; or
docosadienoic acid, 22:2) with and without methyl esterifica-
tion were used as hydrophobic carbon sources in the
sophorolipid production by Candida bomicola ATCC 2214.
This study concluded that methyl esterification of 22 carbon
fatty acid chain does not affect its production, since methyl
ester C22-enriched rapeseed oil and unmodified C22-enriched
rapeseed oil showed the same concentration, about 105 g/L.
Furthermore, the concentration obtained with the use of meth-
yl erucic acid (22:1) was in order of 47 g/L, while the concen-
tration using methyl ester oleic acid was 71 g/L. Therefore,
these results obtained by Shin et al. (2010) agree with a pre-
vious study that also demonstrated the influence of substrates
in production and characteristics of sophorolipids (Shin et al.
2008).

Other studies have reported the use of hydroxylated fatty
acids, arachidonic acid, linoleic acid, and linolenic acid for
sophorolipid production and the evaluation of their properties
(Prabhune et al. 2002; Shah and Prabhune 2007; Van Bogaert
et al. 2009; Kasture et al. 2008; Van Bogaert et al. 2011b;
Gupta and Prabhune 2012). Delbeke et al. (2016a) describe
the innovative use of petroselinic acid, a positional isomer of
oleic acid, obtained from the vegetable oil of Coriandrum
sativum fruits. The microbial production of petroselinic acid-
based sophorolipids was performed using C. bombicola

Lactonic sophorolipid Acid sophorolipid

R1 R2 Sophorolipid sub-type
R1’ = OH R2’ = OH Non-acetylated lactonic sophorolipid

R1’ = OH R2’ = OCOCH3 Mono-acetylated lactonic sophorolipid
R1’ = OCOCH3 R2’ = OH
R1’ = OCOCH3 R2’ = OCOCH3 Di-acetylated lactonic sophorolipid

R1’’ = OH R2’’ = OH Non-acetylated acid sophorolipid

R1’’ = OH R2’’ = OCOCH3 Mono-acetylated acid sophorolipid
R1’’ = OCOCH3 R2’’ = OH
R1’’ = OCOCH3 R2’’ = OCOCH3 Di-acetylated acid sophorolipid

Fig. 2 Structures of
sophorolipids types produced by
Candida species
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ATCC 22214 and aC. bombicola lactone esterase overexpres-
sion for the selective synthesis in high concentration of
diacetylated sophorolipid lactone (Roelants et al. 2016). The
petroselinic acid-derived sophorolipid lactone (PA-SLL) was
modified by alkaline hydrolysis to production of based
sophorolipid acid (PA-SLA), and the surface properties of
these novel analogues were compared with their correspon-
dent oleic acid sophorolipid lactone and acid analogues (OA-
SLL and OA-SLA). In terms of efficiency, the PA-SLL and
PA-SLA showed low CMC values (4.2 and 154 mg/L) when
compared with respective OA-SLL and OA-SLA analogues
(45.1 and 245 mg/L) in reduce of surface tension to around 34
mN/m and 42 mN/m approximately (Delbeke et al. 2016a;
Roelants et al. 2016).

Previously, Wadekar et al. (2012) describes the use of the
Jatropha oil, karanja oil, and neem oil, three nonedible oils
traditionally produced in India, as a low-cost carbon sources to
sophorolipids production by C. bombicola ATCC 22214 at
30 °C, 210 rpm after 200 h in shake flask experiments. The
effect of these oils in sophorolipid concentration and biomass
production were evaluated in comparison with sunflower oil,
obtaining 12 g/L in sunflower oil, 7.66 g/L in karanja oil, 6 g/
L with Jatropha oil and 2.63 g/L in neem oil. The reduction in
the biomass formation and concentration of sophorolipids ob-
served when using the nonedible oils is probably because of
the fatty acid composition and presence of inhibitory com-
pounds found in these nonconventional oils. Thus, for the
development of novel processes is important to consider the
influence of fatty acid type in the substrate, making possible to
customize the properties of sophorolipids for specific indus-
trial applications using specific hydrophobic carbon sources
(Wadekar et al. 2012; Delbeke et al. 2016a; Ahn et al. 2016).

Using different fractions of mango kernel fat as lipid
source, Parekh et al. (2012) showed that different yields can
be obtained when submerged fermentation (SmF) and solid-
state fermentation (SSF) are used to production of
sophorolipids by C. bombicola NRRL Y-17069. The SmF
process was carried in a medium composed of 40 g/L of glu-
cose, 5 g/L of yeast extract, and 20 g/L of various lipid sources
(mango kernel fat, mango kernel olein, mango stearin, oleic
acid, and stearic acid) at pH 3, 30 °C, and 180 rpm in shake
flask experiments, while the SSF process was performed using
a sterilized medium with 4 g of substrate containing 2 g of
glucose and 2 g of lipid substrate blended with 6 g of wheat
bran powder, used as a solid support, in a 250-ml Erlenmeyer
flask at pH 4 and 30 °C. In both cases, it used 2 ml of inocu-
lum and the process was monitored for 240 h. The highest
yields (g/100 g of substrate) were obtained using SSF with
mango kernel fat (7.48), mango kernel olein (17.48), mango
stearin (8.1), and stearic acid (8.5), while using SmF, the best
result was with oleic acid (30.0).

In biotechnological process using C. bombicola ATCC
22214 and a fermentation medium based in 15 % coconut

oil and 10 % glucose as hydrophobic and hydrophilic carbon
sources, Morya et al. (2013) achieved 54 g/L of lowmolecular
weight sophorolipids (C12–C14). The same perspective was
used by using lauryl alcohol (C12–14) as a hydrophobic
source, leading to the production of an efficient sophorolipid
with antimicrobial activity against Gram-negative and Gram-
positive bacteria strains (Dengle-Pulate et al. 2014). The
sophorolipids obtained using lauryl alcohol (SLLA) showed
also better performance (surface tension reduction (STR) of
24 mN/m and CMC value of 0.68 mg/L) when compared with
commercial surfactants such as sodium dodecyl sulfate (SDS;
anionic surfactant; STR = 35 mN/m; CMC = 6.73 mg/L),
dodecyl tetraethylene glycol ether (laureth 4; nonionic surfac-
tant; STR = 32; CMC = 3.03 mg/L), and sophorolipid obtain-
ed using oleic acid (SLOA; natural surfactant; STR = 34 mN/
m; CMC = 0.12 mg/L) (Dengle-Pulate et al. 2013).

In a two-stage fed-batch process, Daniel et al. (1998) ob-
tained a high concentration of sophorolipids (422 g/L). In the
first step, a strain of Cryptococcus curvatusATCC 20509 was
cultivated in deproteinized whey concentrate containing
100 g/L lactose, in order to obtain a crude cell extract (single
cell oil—SCO) since this microorganism is able to accumulate
intracellular lipids. The SCO was used in the second step with
rapeseed oil as hydrophobic carbon source using
C. bombicola ATCC 22214 as biocatalyst. Similarly, a recent
study was performed using delignined corncob residue
(DCCR), hydrolysate (DCCRH), and detoxified DCCRH
(DCCRHmixed with activated carbon) to SCO and single cell
protein (SCP or cell homogenate containing both SCO and
cell debris) production by C. curvatus ATCC 96219 and to
sophorolipid production by W. domercqiae var. sophorolipid
CGMCC 1576 (Ma et al. 2014). First, the feasibility of DCCR
and DCCRH in the process of production of SCO and SCP
was tested, and then, these products were mixed with DCCRH
and used for growth and sophorolipid production by the yeast
W. domercqiae. Total sophorolipid production obtained was
39.0 g/L using DCCRH + SCO, 42.0 g/L with detoxified
DCCRH + SCO, 37.2 g/L with DCCRH + oleic acid + cell
homogenate of C. curvatus, and 49 g/L using detoxified
DCCRH + oleic acid + cell homogenate of C. curvatus. In
addition, the pretreatment of corncob residues (heat treatment
and acid saccharification) to obtain a corncob hydrolysate to
be used as a hydrophilic carbon source has been showed as an
efficient alternative to develop an eco-friendly substrate for
sophorolipid production (Konishi et al. 2015).

Few studies have explored the use of statistical methods to
improve yields and evaluate the effects of variables in biotech-
nological process to sophorolipid production (Rispoli and
Badia 2009; Rispoli et al. 2010). Rispoli et al. (2010) per-
formed a study to optimize the sophorolipid production using
a centroid screening mixture design to evaluate the most im-
portant variables in the process. The variables carbohydrates
(glucose, glycerol, sucrose, lactose, and fructose), lipid (oleic
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acid and mineral oil), nitrogen sources (urea, soytone, peptone
extract, malt extract, and yeast extract), phosphorus sources
(K2HPO4 and KH2PO4), and metal salts (MgSO4 and CaCl2)
were employed to construct a matrix with 33 different exper-
iments associating diverse conditions and five of these vari-
ables (sucrose, oleic acid, CaCl2, and K2HPO4) proved to be
crucial to achieve an optimized process. In an optimization
stage, an augmented simplex centroid design for these five
variables allowed to find better concentrations, reaching
177 g/L of sophorolipids.

Jiménez-Peñalver et al. (2016) performed the optimization
of sophorolipid production by C. bombicola ATCC 22214
using solid-state fermentation (SSF). In this study, the appli-
cability of winterization oil cake (WOC), a residual oil cake
from the oil refining industry, and sugar beet molasses (MOL)
in different ratios as hydrophilic and hydrophobic substrates,
respectively, was evaluated. The SSF was carried using 45 g
of substrates (WOC and MOL), 14 g of wheat straw, used as
an inert support, and 10 mL of yeast inoculum at 30 °C. The
sophorolipid production was optimized in terms of the ratio of
substrates and the aeration rate using response surface meth-
odology and the effects of these variables were assessed by a
full experimental design consisting in a total of 12 experi-
ments with three replicates in central point for statistical val-
idation. The optimal condition in 10 days of process was 1:4
WOC/MOL ratio and an aeration rate of 0.30 L kg−1 min−1

enabling sophorolipid yield of 19.1 g/100 g of wet substrates,
which increased to 25.1 g/100 g of wet substrates when inter-
mittent mixing was applied (Jiménez-Peñalver et al. 2016).
Besides the better conditions to enhance of sophorolipid pro-
duction achieved through the application of surface response
methodology, these authors point out the advantages of the
use of SSF for sophorolipid production: use of inexpensive
solid substrates, such as oil cakes from the food industry and
avoids potential problems associated with foaming, a limiting
parameter to enhance of yields of sophorolipids and others
glycolipids in submerged fermentation.

Among diverse factors that affect the glycolipid
production, it was proved that the cell density/biomass used
is very important in the biotechnological process and that the
use of high cell density fermentation is a good strategy in
order to improve the productivity of sophorolipids (Gao
et al. 2013). In this case, firstly the optimization of glucose
concentration and other nutrients (vitamins, nitrogen source,
and trace elements) to increase cell growth in absence of
lipophilic substrate was necessary and only then the control
of optimal parameters was started (pH, temperature, rate of
glucose, and rapeseed oil) through computer monitoring in a
10-L fermenter which allowed to reach levels greater than
200 g/L in 54 h of process.

Nowadays, sophorolipids are the most applied biosurfactant
in industry (cosmetic and cleaner industries) and with products
available in market. Some companies (Soliance, Saraya,

Ecover, and MG Intobio Co. Ltd) use sophorolipids in the
commercial products such as ecological detergents and
cleaning agents, dish washers, and cosmetics (Van Bogaert
and Soetaert 2011). In addition, exploring its biodegradability
and physicochemical characteristics, application in MEOR
process was recently described, similarly to the method pro-
posed for the rhamnolipids (Elshafie et al. 2015). In this con-
text, a novel method to enhance the fluid recovery from sub-
terranean environments was patented by Baker Hughes
Company and consists in the injection of a sophorolipid mix-
ture in well treatment operations in petroleum industry
(Amstrong et al. 2015). In other patent, the same company
used sophorolipids and mannosylerythritol lipids, isolated or
in a combination, as component in a method to inhibit corro-
sion in alloy surface in well treatment operation (Gunawan
et al. 2015). Considering these industrial applications com-
bined with development of biotechnological processes with
high yields, sophorolipids can be considered the most promis-
ing glycolipids and highly attractive in economic terms.

Moreover, the application of chemical methods to obtain
sophorolipid analogues and evaluation of their applications
are a new potential approach in recent years (Peng et al.
2014; Peng et al. 2015; Delbeke et al. 2015). Short-chain
water-soluble sophorolipid analogues can be obtained using
ring-opening cross-metathesis method that consists in chemi-
cal modification of lactonic forms breaking the double bond
present in the lactone by reaction with variety olefin substrates
(acrylate esters, trans-3-hexene, 1-hexene, and ethylene) and a
Grubbs catalyst (first or second generation) to generate novel
compounds with different physicochemical characteristics
(Peng et al. 2015). Other study describes the synthesis of
quaternary ammonium sophorolipids derivatives with better
antimicrobial activities compared with gentamicin sulfate
against Gram-positive strains (S. aureus LMG 8064,
Enterococcus faecium LMG 11397, B. subtilis LMG 13579,
and Streptococcus pneumoniae LMG 16738) using chemical
modification of diacetylated sophorolipid lactone in six steps
(Delbeke et al. 2015). Some of these derivatives were
evaluated for their ability to form supramolecular aggregates
in aqueous solution by using hydration of a lipid film and as
possible vectors for gene delivery (Delbeke et al. 2016b).
Only the quaternary ammonium sophorolipid methyl ester
and peracetylated analogues showed high transfection
efficacy with a low cell toxicity when assessed on A559,
16HBE, and SKMEL28 cell lines. In this perspective, Koh
and Gross (2016a) proposed the application of the term
Bmolecular editing^ that refers to systematic chemical
modification of natural products, in a study where novel
sophorolipids (SL) derivatives (SL-ethyl ester, SL-hexyl ester,
and SL-decyl ester) were prepared by esterification of the lipid
chain and these modified sophorolipids exhibited interesting
emulsifying properties and different effects in oil–water
interfaces (Koh and Gross 2016b). These studies demonstrate
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the importance of use new strategies for chemical and struc-
tural modification of sophorolipids with improved biological
activity profile enabling its application in various fields.

The correlation between different biological properties and
chemical structure of sophorolipids has been proven, and pre-
vious studies showed that acetylated lactonic forms possess
better biological and physicochemical properties such as anti-
bacterial activity and lower CMC value when compared to
non-acetylated lactonic, non-acetylated acid, and acid mole-
cules (Lang et al. 1989; Lang et al. 2000). Another example
was described by Shah et al. (2005), which demonstrated that
sophorolipid diacetate ethyl ester derivative has better anti-
HIV and spermicidal activities followed by monoacetylated
and nonacetylated ethyl esters. The application of lactonic
and acidic forms of sophorolipids for this purpose was previ-
ously claimed in a patent developed by researchers from the
Polytechnic Institute of New York University and
Synthezyme Company, showing the importance of the glyco-
lipid chemical diversity investigation and their potential in
medical field (Gross et al. 2004). Other patent from this col-
laboration was deposited claiming applications of
sophorolipids and several analogues as biopesticides and an-
tifungal and anti-inflammatory agents, in different composi-
tions (Gross and Schofield 2011).

More recently, synergistic action of sophorolipids with tra-
ditional antibiotics was observed against pathogenic microor-
ganisms (Joshi-Navare and Prabhune 2013). In this study, the
sophorolipids were produced by C. bombicola ATCC 22214
and its characterization made by liquid chromatography anal-
ysis showed that the sophorolipid sample consists in 75 % of
lactone form and the remaining 25 % of acidic form, while
diacetylated lactonic sophorolipid of oleic acid (17-L-(oxy)-
octadecanoic acid 1,4"-lactone 6',6"-diacetate) was detected
by mass spectrometry analysis. This sophorolipid mixture
was tested in association with cefaclor to study the
conjugative effect against Escherichia coli ATCC 8739 and
with tetracycline to conjugative effect against S. aureusATCC
29737. Results suggested that the action of antibiotics was
enhanced due to the ability of sophorolipids to form self-
assembly systems to improve efficiency (Joshi-Navare and
Prabhune 2013).

The antimicrobial activity of sophorolipids acetyl esters
derivatives produced from glucose and lauryl alcohol as a
substrates was tested against pathogenic Gram-negative
(E. coli ATCC 8739 and P. aeruginosa ATCC 9027) and
Gram-positive (S. aureus ATCC 6358 and B. subtilis ATCC
6633) bacteria strains and also pathogenic yeast C. albicans
ATCC 2091 (Dengle-Pulate et al. 2014). Results revealed that
the sophorolipids obtained using lauryl alcohol (called SLLA)
showed complete inhibition against pathogenic strains in low-
er concentrations compared to reported values of sophorolipid
derivatives from oleic acid and linolenic acid: E. coli 30 μg/
mL; P. aeruginosa 1 μg/mL at a contact time of 2 and 4 h

respectively; S. aureus 6 μg/mL; B. subtilis 1 μg/mL; and
C. albicans 50 μg/mL after 4 h of contact time. In a study
performed by Zhang et al. (2016), it was evaluated the anti-
microbial potential of diacetylated lactone form of
sophorolipid derived from glucose and oleic acid against
E. coliO157:H7 in vitro and on spinach leaves during storage.
After 2 h of treatment with sophorolipids at 1.0 %, E. coli
population with an initial 7.1 log CFU/mL was reduced to a
non-detectable level in bacterial suspension. However, in test
with spinach leaves, sophorolipids at 1 % did not significantly
affect E. coli when compared to a water wash after 7 days
posttreatment and storage at 4 °C. The results suggested that
sophorolipids could be used as sanitizers in wash water for
control of foodborne pathogens, although more studies are
needed to assess the real effectiveness in storage conditions
of fresh fruits and vegetables.

Considering the importance of the development of new
strategies and agents for microbial biofilms control,
sophorolipids can be seen as the most advantageous
biosurfactants in this perspective. Using a mixture of acidic
and lactonic sophorolipids at different concentrations obtained
from fed-batch cultivation ofC. bombicolaATCC 22214 with
glucose and rapeseed oil as substrate, Díaz De Rienzo et al.
(2015) demonstrated antimicrobial properties and biofilm dis-
ruption capacity of these biosurfactants against Gram-positive
and Gram-negative bacteria strains. Inhibitory and bactericid-
al effects against growth ofCupriavidus necatorATCC 17699
and B. subtilis BBK006 was observed when sophorolipids at
5 % were applied. Furthermore, using the same concentration
of sophorolipids, the disruption biofilm capacity was observed
by scanning electron microscopy for single and mixed cul-
tures of B. subtilis BBK006 and S. aureus ATCC 9144 under
static and flow conditions.

Other study showed that the combination between
rhamnolipids (0.04 %) and sophorolipids (0.01 %) might be
used as a specific strategy for the disruption or killing of
preformed biofilms of P. aeruginosa ATCC 15442 and
S. aureus ATCC 9144 or a mixed culture of both (Díaz De
Rienzo et al. 2016c). The biofilms of the S. aureus and mixed
culture with P. aeruginosa were efficiently removed by the
glycolipid combination, while against the biofilm formed only
by P. aeruginosa, it was observed that there is death of bacte-
rial cells without removal of the preformed biofilm after treat-
ment. However, the mechanism of bactericidal and biofilm
removal effects presented by sophorolipids and rhamnolipids
is unclear and requires further studies to elucidate the
biochemical interactions involved in this process, making
possible to use biosurfactants effectively to this application.

Recen t ly, the an t i funga l e f fec t o f l ac ton i c
sophorolipids against pathogenic Candida species was
investigated in a study performed by Haque et al.
(2016) and the susceptibility of these strains, expressed
by minimum inhibitory concentration (MIC), was
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30 μg/mL to C. lusitaniae CL618, 60 μg/mL to
C. albicans SC531418 and C. tropicalis MYA340450,
and 120 μg/mL to C. glabrata CG46218. In addition,
it was evaluated the sophorolipid capacity in inhibition
of biofilm formation and in the eradication of the
preformed biofilms, quantified by biofilm inhibiting
concentration (BIC) and the biofilm-eradicating concen-
tration (BEC), respectively. The similar results in terms
of BIC were founded against C. albicans, C. tropicalis,
and C. lusitaniae at 120 μg/mL of sophorolipids. The
C. glabrata was the most resistant strain, requiring a
concentration of around 480 μg/mL to inhibit its biofilm
formation, and highly resistant to sophorolipids in a test
to obtain the BEC value, followed by C. lusitaniae,
where this parameter was not determined in both cases.
For eradication, the preformed biofilms of C. albicans
and C. tropicalis were found to have a BEC value of
480 μg/mL. Moreover, synergistic interaction of the
sophorolipids when used along with amphotericin B
and fluconazole was proved, showing an enhancement
in the efficacy of these antifungals, against biofilm for-
mation and preformed biofilms of C. albicans, suggest-
ing a potent combination for the treatment of candidia-
sis (Haque et al. 2016). These results show the great
potential of this glycolipid family as alternative antimi-
crobial and anti-adhesive agents for the treatment of
infectious diseases caused by opportunistic pathogens.

Another sophorolipid biological activity of medical interest
and related to the structural properties (lactonic or acid form
and acetylation degree) is the anticancer activity (Van Bogaert
et al. 2011a). In the researches performed by Chen et al.
(2006) and Shao et al. (2012), it was observed that
sophorolipid produced by W. domercqiae, a diacetylated lac-
tonic compound with a C18 monounsaturated fatty acid, pos-
sessed the ability to induce apoptosis in H7402 human liver
cancer cells with inhibition of cell proliferation by blocking
cell cycle at G1 and partly S phase. Shao et al. (2012) also
reported the anticancer effects of sophorolipid derivatives on
human esophageal cancer cell lines and proved that different
structural forms (lactonic or acid), unsaturation degree in fatty
acid part, and acetylation degree of sophorose are associated
with variation in cytotoxic effect.

Anticancer activity screening of sophorolipids from
C. bombicola NRRLY-17069 was studied with different hu-
man tumor cell lines including breast adenocarcinoma MCF-
7; hepatocellular carcinoma HepG2, lung cancer A549, and
colon cancer HCT116 and the results showed that some
sophorolipids inhibit urokinase and histone deacetylase activ-
ities, being promising anticancer agents in HepG2 and A549
(Rashad et al. 2014). In a recent study, Ribeiro et al. (2015)
describe the higher cytotoxic effects of the C18:0, C18:1,
C18:2, and C18:3 diacetylated lactonic sophorolipid ana-
logues towardMDA-MB-231 breast cancer cells and different

effects could be observed depending of the concentration
used, being that in lower concentrations there was reduction
in the cancer cell migration while in high concentrations
proved the death of MBA-MB-231 cells.

Trehalose lipids

Trehalose lipids (also known as trehalolipids) are a group of
glycolipids produced by several bacteria, members of
Actinomycetales order, such as Mycobacterium sp.,
Micrococcus sp., Nocardia sp., Gordonia sp., Dietzia sp.,
Tsukamurella sp., Skermania sp., Williamsia sp.,
Corynebacterium sp., Brevibacteria sp., Arthrobacter sp.,
Rhodococcus sp., and also by yeasts and fungus (Shao 2011;
Lang and Philp 1998). The trehalolipids were described for
the first time in 1933 in a study about chemical composition of
the lipids of tubercle bacilli (Anderson and Newman 1933).
Due to the structural diversity, these glycolipids have different
surfactant properties: generally, they are capable to reduce the
surface tension of water to 43–24.1 mN/m and show CMC
values of 0.7–37 mg/L (Yakimov et al. 1999; Tuleva et al.
2009; Marqués et al. 2009).

Structurally, trehalolipids consist in a hydrophilic moiety
(trehalose) formed by two glucose units linked through the
α,α-1, 1-glycosidic linkage and a hydrophobic moiety repre-
sented by chains of fatty acids, such as succinic, octanoic,
decanoic, and mycolic acids (Fig. 3) (Asselineau and
Asselineau 1978; Petrikov et al. 2013; Franzetti et al. 2010).
Trehalose is a nonreducing disaccharide with high thermosta-
bility, very resistant to acid hydrolysis, nonreactive toMaillard
reaction, and, due to its properties, has been considered an
attractive compound for industrial applications (Higashima
2002; Shao 2011). Moreover, this molecule is associated with
biological properties like cryoprotection, growth regulation in
plants, osmoregulation, suppression of Bsenior^ body odor,
and protection of the cornea against oxidative damage caused
by UVB rays and acts in suppression of the proinflammatory
cytokines (Duong et al. 2006; Rolland et al. 2002; Kempf and
Bremer 1998; Higashima 2002; Cejková et al. 2011).
Recently, it was described that trehalose exhibits preventive
effects against hepatic steatosis, by inhibiting solute carrier 2A
(also called as GLUT), member of a glucose transporter fam-
ily (DeBosch et al. 2016). Thus, this sugar can contribute to
the biological activities attributed to trehalose lipids. The hy-
drophobic portion can vary in length and type of chains, be-
sides the position and number of glycosidic bonds at the sugar
(Kügler et al. 2014).

The trehalose lipids have a wide variety of types and can be
found in several forms: trehalose monomycolates,
dimycolates, trimycolates, nonionic acylated trehalose deriv-
atives, anionic trehalose tetraesters, and succinoyl
trehalolipids (Kuyukina and Ivshina 2010; Kügler et al.
2014). Among all trehalose lipids, the most well-known is
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the 6,6′-trehalose lipid dimycolate, also called Bcord factor,^
composed by two mycolic acids of variable number of car-
bons esterified to the 6-hydroxyl group of each glucose, being
found in various mycobacteria species (Ishikawa et al. 2009;
Shao 2011). Mycolic acids are 2-alkyl-3-hydroxy fatty acids
of high molecular mass, present exclusively in the cell enve-
lope of bacteria of the mycolata taxa, include Rhodococcus
species, and have been proposed that this mycobacterial gly-
colipid plays a key role in the immunopathogenesis of tuber-
culosis (Sutcliffe 1998; Ryll et al. 2001; Welsh et al. 2013).

Just like the other families of glycolipids, the microbial
production of trehalose lipids can be affected by several fac-
tors such as carbon and nitrogen sources, salt composition,
and use of yeast extract in culture broth (Franzetti et al.
2009; Pacheco et al. 2010; Kügler et al. 2014). Based on the
published works, the yields of trehalose lipids production are
very low when compared to sophorolipids, rhamnolipids, and
mannosylerythritol lipids. Among all tested trehalose lipid
producers, only a study describes high trehalose lipid yield,
in this case using a Rhodococcus sp. SD-74 strain and achiev-
ing 40 g/L of the glycolipid using n-hexadecane under highly
osmotic conditions (Uchida et al. 1989).

For this reason, the large-scale production of trehalolipids
is very challenging. Other problem that limits the effective use
of biosurfactants is the high cost of production and complex
downstream processing (Franzetti et al. 2010). In addition,

when Rhodococcus strains are used for this purpose, the major
problem is the fact that trehalose lipids are often associated
with the cell walls leading to an increase in the costs of down-
stream processing and recovery (Espuny et al. 1996; White
et al. 2013).

Some works show the feasibility in using different carbon
sources (glycerol, diesel oil, and vegetable oil), being the best
results achieved with the use of n-alkanes and these results
also correlate the possibility of using trehalose lipid
bioproducers as potential agents in bioremediation process
(Bajaj et al. 2014). Kügler et al. (2014) performed a study
using nonpathogenic actinomycetes Tsukamurella spumae
and Tsukamurella pseudospumae using sunflower oil and
glycerytrioleate as a carbon source in fermentation medium.
It was found that there are unconventional trehalose lipids
with C4–C6 and C16–C18 short acyl chains in hydrophobic
moiety, with a low concentration of product (about 1.3 g/L). In
comparison, Kuyukina et al. (2005) used n-dodecane and n-
hexadecane as carbon source and obtained 6.5 and 9.4 g/L of
trehalolipids, showing that the best method consists in the use
of hydrocarbons in bioprocess. In this context, Rhodococcus
wratislaviensis BN38 cultivated in n-hexadecane was able to
produce 3.1 g/L of 2,3,4,2′-trehalose tetraesters containing
succinic acid that showed high surface activity reducing the
surface tension to 28.6 mN/m in mixture and 24.4 mN/m
when purified at a CMC value of 5 mg/L (Tuleva et al.

Fig. 3 Structures of trehalose and trehalose lipids (monomycolate and dimycolate) produced by Mycobacteria species
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2008). In other study carried out with Rhodococcus
erythropolis 51T7 in a medium containing 2 % of tetradecane,
the trehalose tetraester concentration varied 0.48–1.12 g/L and
reduced the surface tension to 27.9 mN/m at a CMC value of
37 mg/L (Marqués et al. 2009).

In a study performed by Kundu et al. (2013), a trehalose
lipid-producing Rhodococcus pyridinivorans NT2 strain was
isolated from pesticides contaminated with effluent-sediment
and evaluated for biodegradation of 4-nitrotoluene. The
biosurfactant produced exhibited potent surface activity and
reduced the surface tension of the media from 71 to 29 mN/m
and with CMC value of the 30 mg/L. The results suggested
that the cited strain can be able to produce trehalose-succinic
acids and 2,3,4,2′-trehalose tetraester analogues as the most
abundant trehalose lipid derivatives. In addition, higher emul-
sification index, 90–95 %, was obtained with long-chain hy-
drocarbons (diesel, liquid paraffin, motor oil, groundnut oil,
and soybean oil) while shorter-chain alkanes resulted in less
emulsification (50–80 %). Despite the low concentration in
the production of trehalose lipids (45 mg/L), the microbial
characteristics contributed to use this strain in new studies
and suggest their potential for bioremediation field (Kundu
et al. 2016a; Kundu et al. 2016b). The isolation of
Rhodococcus strains of different environments can be consid-
ered an interesting way to obtain trehalose lipid producers. In
this context, White et al. (2013) evaluated the trehalose lipid
production by a novel marine bacterium Rhodococcus sp.
PML026 using sunflower oil as a hydrophobic substrate.
The purified glycolipid was able to reduce the surface tension
of water to 29 mN/m with a CMC value of 250 mg/L.

In order to avoid the problem of low concentration of tre-
halose lipids in biotechnological process, the use of statistical
methods is an alternative approach to increase yields and to
reduce process costs. Through surface response methodology
(SRM), Mutalik et al. (2008) achieve an increase of 3.2 to
10.9 g/L in the concentration of trehalose lipids, using n-
hexadecane as a substrate and Rhodococcus spp.
MTCC2574 as a biocatalyst (Mutalik et al. 2008). The feasi-
bility of statistical tools has been proven to improve the yields
of other glycolipids, mainly rhamnolipids, and their applica-
tion in trehalose lipid production could be a new field for
further research.

The biological activities of trehalose lipids include antiviral
properties, inhibitory activity on calcium-dependent protein
kinase C of human promyelocytic leukemia HL60 cells, in-
hibitory effects in growth and differentiation-induced against
human leukemia cells, and immunomodulation activity (Lang
and Philp 1998; Azuma et al. 1987; Hoq et al. 1997; Isoda
et al. 1997a; b; Sudo et al. 2000; Kuyukina et al. 2007; Baeva
et al. 2014). It is also known that free trehalose disaccharides
act in the protection of biomolecules and cells against envi-
ronmental stresses (heat, cold, oxidation, and others). Based
on this, it was proved that trehalose lipids are determining

factors in the protection of membranes, since its interaction
with surrounding molecules can be considered essential to the
development of resistance against desiccation by pathogenic
Mycobacterium tuberculosis (Jain and Roy 2009; Harland
et al. 2009).

Many studies showed the influence of trehalose lipid inter-
action with membranes, proteic models, and enzymes, dem-
onstrating the role and hypothetical action site of these
biosurfactants (Ortiz et al. 2011; Teruel et al. 2014; Zaragoza
et al. 2012; 2013). These glycolipids are able to incorporate
into dimyristoylphosphatidylglycerol (DMPG) membranes
and affect their structural properties with increases in the flu-
idity of the acyl chains and dehydrates the interfacial region of
this bilayer model but did not affect the macroscopic bilayer
organization (Teruel et al. 2014; Ortiz et al. 2011).

As well as sophorolipids, for trehalose lipids, there is the
possibility of further chemical modifications to obtain novel
analogues with diverse properties, and also, it has been report-
ed the production of trehalose surfactants that can be applied
in medical field (Peng et al. 2015; Delbeke et al. 2015;
Matsumoto et al. 2013a). The cited trehalose surfactants can
be prepared by using sonication of a mixture containing -α-
dimyristoylphosphatidylcoline (DMPC) and α-D-
glycopyranosyl-α-D-glycopyranoside monomyristate for pro-
duction of the 14 carbon derivative or α-D-glycopyranosyl-α-
D-glycopyranoside monopalmitate for production of 16C de-
rivative, in a 5% glucose solution at 45 °C and 300W, follow-
ed by filtration. This new approach has been used for the
production of hybrid liposomes in association with DMPC
for application in antiproliferative studies (Matsumoto et al.
2013b; Matsumoto et al. 2016). Inhibitory effects of trehalose
liposomes (DMTre) on the growth of lymphoblastic leukemia
(MOLT-4) cells in vitro and therapeutic effects in xenograft
mice model of carcinoma in vivo were examined by
Mastumoto et al. (2016). It was proved that DMTre is able
to inhibit the growth of MOLT-4 cells in a dose-dependent
manner and that a remarkable reduction of tumor weight
was obtained in xenograft mice models treated with DMTre
after inoculating MOLT-4 cells, demonstrating the great po-
tential of trehalose lipids or their derivatives obtained by
sonication.

Previously, it was showed that trehalose lipids, found in
mono-acyl trehalose and di-acyl trehalose forms, produced
by Rhodococcus ruber IEGM 23 cultivated in medium con-
taining n-dodecane, prevented the adhesion of human mono-
cytes to polystyrene surfaces and inhibited their cytokine pro-
duction without any cytotoxic effects in vitro, assessed by
measuring the inhibition of proliferative activity of cultured
human peripheral blood lymphocytes (Gein et al. 2011). In
addition, ultrasonic emulsions containing various concentra-
tions of this glycolipid exhibited cytokine-stimulating activity
and increasing the tumor necrosis factor-α (TNF-α), interleu-
kin (IL)-1β, and IL-6 production when applied to the adherent
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human peripheral blood monocyte culture suggests the poten-
tial of trehalose lipids from R. ruber IEGM 23 as an immuno-
modulatory and antitumor agent.

The application of biosurfactants in environmental
field, as in enhanced oil recovery and bioremediation,
has been proposed mainly using rhamnolipids, but the
use of trehalose lipids in this perspective also is a
promising alternative (Christofi and Ivshina 2002;
Franzetti et al. 2010). Polycyclic aromatic hydrocarbons
consist in an important concern due to their toxic, mu-
tagenic, tumorigenic, and ecological effects, and today,
the use of eco-friendly methods for enhance their remo-
tion from contaminated soils is a strong trend in bio-
technology, especially in biosurfactant area (Haritash
and Kaushik 2009; Cameotra and Bollag 2003).
Considering that glycolipids are more suitable for soil
remediation when compared to synthetic surfactants due
to their low toxicity and biodegradability properties, the
use of trehalose may be considered for this purpose.
Thus, some studies have explored these concepts and
developed new strategies using this glycolipid for simul-
taneous removal of PAHs and sulfur heterocycles
(PASHs) (Ivshina et al. 2016).

Kuyukina et al. (2016) describe the production of
trehalose lipid from Rhodococcus ruber IEGM 231
using 3 % (v/v) n-hexadecane at 160 rpm, 28 °C for
48 h, and the anti-adhesive and biofilm-preventing ef-
fects against Gram-positive and Gram-negative bacteria
strains. Interesting results were obtained from anti-
adhesive effects of this biosurfactant at 10 mg/L against
a c t i v e l y g r ow i n g B . s u b t i l i s ATCC 6 6 1 3 ,
Corynebacterium glutamicum IEGM 1861, E. coli
K- 1 2 , Mi c ro c o c c u s l u t e u s I EGM 401 , a n d
Pseudomonas fluorescence NCIMB 9046 cells with dif-
ferent percentages of inhibition (30–76 %). Moreover,
these authors suggested that trehalose lipid anti-
adhesive properties are not strongly dependent upon
the concentration in this case and also is dependent of
hydrophobicity/surface characteristics of the strains test-
ed and their physiological stage.

The use of genetic manipulation to improve production of
biosurfactants has been highlighted recently. The first reported
use of genetic engineering was the insertion and expression of
the Vitreoscilla hemoglobin gene (vgb) in Gordonia amarae,
resulting in enhancement of trehalose lipid production in a
medium supplemented with 1 % hexadecane (Dogan et al.
2006). The elucidation of biosynthetic pathways through the
identification of putative acyl coenzyme A (acyl-CoA) trans-
ferase (tlsA), fructose-biphosphate aldolase (fda), and alkane
monooxygenase (alkB) genes and genetic manipulation
allowed an increase in succinoyl trehalolipid production by
Rhodococcus sp. strain SD-74 (Inaba et al. 2013). Despite
the potential of the use of this tool, the works mentioned above

did not show results considering reduction of surface tension,
characterization of the product obtained, and data about pro-
duction process.

Mannosylerythritol lipids

MELs are a family of nonionic glycolipid biosurfactants that
contains 4-O-β-D-mannopyranosyl-meso-erythritol or 1-O-β-
D-mannopyranosylerythritol as the hydrophilic moiety and a
fatty acid and acetyl groups in the hydrophobic unit that are
produced mainly by Pseudozyma spp.,Ustilago spp., and relat-
ed yeasts and also by filamentous fungi (Arutchelvi et al. 2008;
Faria et al. 2014). These compounds usually have one or two
acetyl groups at C-4′ and/or C-6′ of themannose moiety and are
classified asMEL-A (diacetylated),MEL-B (monoacetylated at
C-6′), MEL-C (monoacetylated at C-4′), and MEL-D
(deacetylated) (Kitamoto et al. 2001; Sajna et al. 2013) (Fig. 4).

The mannosylerythritol lipids are considered promising
biosurfactants due to excellent surface-active properties, low
toxicity, biodegradability, and versatile biochemical actions
(Kitamoto et al. 2002; Lang 2002; Morita et al. 2015).
Moreover, these biosurfactants are economically attractive
due to the high quantity produced in biotechnological process,
as well the sophorolipids, and can be applied in diverse fields
such as bioremediation, pharmaceutical, and cosmetic indus-
tries (Arutchelvi and Doble 2011; Morita et al. 2013). The
diversity in theMEL structures (e.g., number of acetyl groups)
shows important influence in the physicochemical properties
and consequent practical applications (Morita et al. 2015).
Accordingly, different types of MEL are obtained depending
on microorganism and substrate used in biotechnological pro-
cess (Faria et al. 2014).

Other characteristic of these biosurfactants is their self-
assembly properties that are defined as the auto-organization
capacity of molecules into ordered structures. MELs can form
different three-dimensional lyotropic liquid crystals such as
cubic, sponge, lamella, and hexagonal phases and also self-
assembled monolayer, liposomes, large unilamellar, and
multilamellar vesicles (Imura et al. 2004; Imura et al. 2005;
Imura e t a l . 2006 ; 2007 ; Kon i sh i e t a l . 2008 ;
Worakitkanchanakul et al. 2008; Kitamoto et al. 2009;
Arutchelvi and Doble 2011).

Among all the types of MELs, MEL-A is the most found
type, with lower water solubility and hydrophilicity, and it
is able to reduce the surface tension of water from 72 mN/
m to values below 30 mN/m (Imura et al. 2006; Morita
et al. 2009b). Moreover, MEL-A exhibited good stability
during exposure to temperature variation, high concentra-
tions of salts, and wide range of pH values and the produc-
tion of this type of molecule and MEL-A homologs is
dependent of copper salts, manganese, and peptone when
performed by Pseudozyma aphidis (Fan et al. 2014). In
contrast, MEL-B and MEL-C exhibit better solubility in
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water, indicating that they could be more suitable for
application in water-in-oil type emulsifiers and washing
detergents (Morita et al. 2008a; 2009b).

The yields and types of mannosylerythritol lipids obtained
from microbial production are affected by several factors such
as hydrophilic and hydrophobic carbon sources, nitrogen
source, temperature, and total time of the biotechnological
process (Arutchelvi and Doble 2011; Morita et al. 2008b;
Rau et al. 2005; Morita et al. 2009a). Konishi et al. (2011)
describe the influence of yeast extract in the production of
MELs by Pseudozyma hubeiensis SY62. In this study, the
MEL production was carried using glucose, olive oil, and yeast
extract at different concentrations. Using 1 g/L of yeast extract
and 50 g/L of olive oil and glucose, it has achieved 8.5 g/L of
MEL, while with 10 g/L of yeast extract and 100 g/L of olive
oil and glucose resulted in a concentration of 49.2 g/L of gly-
colipids. However, when using the same concentration of yeast
extract and 200 g/L of glucose and olive oil, it was observed
that the concentration of biosurfactant produced was reduced,
confirming the positive effect of yeast extract in the production
of MELs. Considering the optimal concentration of these
substrates, the fed-batch fermentation was performed, adding
glucose and olive oil after 3 days of P. hubeiensis SY62
inoculation and 129 g/L of MEL was achieved in 7 days of
process with volumetric productivity of 18.4 g/L day.

Fukuoka et al. (2008) related the production of three novel
diastereomers of conventional mannosylerythritol lipids by
Pseudozyma crassa. When glucose and oleic acid were used
as carbon source, the total concentration of MELs reached
approximately 4.6 g/L. The structures of these glycolipids
were similar to well-known MEL-A, B, and C but with con-
figuration of the erythritol moiety opposite to that of conven-
tional MELs. Besides that, the MEL-A analogue was the

major component of the diastereomers, with nearly the same
surface-active properties as the conventional MEL-A, al-
though it exhibited different aqueous phase behavior and bio-
chemical properties.

In order to reduce process costs, many studies of MEL
production have shown the feasibility of using alternative
substrates. As for the other glycolipid families mentioned in
this review, it should be considered that the use of alternative
substrates requires more studies for its implementation on an
industrial scale and all works reporting the use of this type of
substrate as potential alternative give little information about
the real benefit of these compounds. In this context, Bhangale
et al. (2013b) used two types of honey as a carbon source for
the production of MELs by Pseudozyma antarctica ATCC
32657. Authors showed that 14 % (w/v) of honey from red
dwarf honeybees (RDH) (Apis florea) resulted in 5.61 g/L of
MEL. In addition, MEL crude extract was capable to reduce
surface tension of water from 72 to 29.5 mN/m, interfacial
tension at water/n-heptane interface to 0.602 mN/m, and low
CMC value of 0.066 g/L. The use of castor oil as a substrate
for Pseudozyma tsukubaensis NBRC1940 achieved the pro-
duction of diastereomer of MEL-B and new type of MEL-B
with hydroxyl group in the fatty acid moiety with different
interfacial properties (Yamamoto et al. 2013). The MEL-B
water surface tension reduction was similar of the unconven-
tional MEL-B, 28.5 and 28.2 mN/m, respectively, but the
CMC value was fivefold higher than that of unconventional
MEL-B, demonstrating the high influence of structure in the
physiochemical properties.

Another interesting approach is the use of wild strains iso-
lated from leaves, plant tissues, and soil samples. Pseudozyma
churashimaensis strain isolated from leaves of sugarcane
(Saccharum officinarum) was able to produce a mixture of

R1 R2 MEL-type

OCOCH3 OCOCH3 A

OCOCH3 H B

H OCOCH3 C

H H D
n= 6-10

Fig. 4 Structures of
mannosylerythritol lipids
produced by Pseudozyma species
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mannosylerythritol lipids, including a novel tri-acetylated de-
rivative (MEL-A2), from glucose with good surface properties
like low CMC value of 0.0011 g/L and reduction of surface
tension to 29.2 mN/m (Morita et al. 2011b). On the other
hand, the selective production of MEL-B was observed by
fungi Ustilago scitaminea from sugarcane juice with produc-
tion of 25.1 g/L (Morita et al. 2011a). Moreover, the product
concentration varied according to the carbon source used, the
use of glucose enabled the production of 3.8 g/L, and while
using soybean oil it reached 2.7 g/L. Previous studies with
new strains of P. tsukubaensis isolated from leaves of Perilla
frutescens showed that one these strains was able to produce
MEL-B in concentration of 73.1 g/L (Morita et al. 2010b). Fai
et al. (2015) demonstrated that P. tsukubaensis is able to pro-
duce, beyond of MEL biosurfactant, prebiotic galacto-
oligosaccharides (GOS) in the same process using cassava
wastewater. This shows the versatility of this microorganism
to produce two compounds commercially attractive and the
feasibility of the process using an alternative substrate in the
biotechnological process. The results are consistent with stud-
ies that reported the use of cassava wastewater as substrate for
lipopeptide biosurfactant production by Bacillus species
(Quadros et al. 2011; Barros et al. 2008; Nitschke and
Pastore 2003). However, using cassava wastewater for MEL
production, the values of yields obtained were not given in
consecutive production with GOS but only the surface tension
values as a production parameter.

A screening study was conducted by Morita et al. (2012)
using 43 fungal MEL producers isolated from sugarcane
plants. Four strains were able to grown in culture containing
50 % sugarcane juice as alternative substrate with production
varying from 0.8 to 3.7 g/L. Sari et al. (2013), using an endo-
phytic yeast Pseudozyma Y10BS025 isolated from sirih leaf
(Piper betle L.), observed mainly the production of MEL-C
and showed excellent yield production reaching 115 g/L.
After isolation and characterization, these MEL derivatives
reduce the surface tension of water to 30.8 mN/m. The results
of the studies above show the feasibility of obtaining high
concentrations of MEL using new strains isolated from alter-
native sources, concluding that this is an attractive strategy.

Structural modifications of MEL-A and MEL-B by lipase
enzymatic systems are also another approach to obtain novel
surface-active compounds based inMELs (Recke et al. 2013).
In this case, two new glycoconjugates were obtained and
showed great surface tension activity, stabilization water-in-
oil emulsion capacity, and antibacterial and antitumor activi-
ties. The use of enzymes in biotechnological process to MEL
production also can be performed as an additional step like
demonstrated in a three-step process recently patented, using
lignocellulosic materials as a carbon source (Fonseca et al.
2014). Considering the emulsifying and surface activities of
mannosylerythritol lipids, other application could be in envi-
ronmental field to bioremediation process since these

biosurfactants are able to emulsify different hydrocarbons
such kerosene, 2-methylnaphthalene, hexadecane, and other
n-alkanes (Konishi et al. 2008; Hua et al. 2003; Yu et al.
2015). This property makes these glycolipids become even
more valuable commercially and demand more feasibility
studies to large-scale production.

Concerning the biological activities, several studies
showed that MELs exhibit antimicrobial, antioxidant, and
anti-inflammatory activities and also can be applied in skin
care and hair cosmetics or cleaning products (Kitamoto et al.
1993; Takahashi et al. 2012; Morita et al. 2011c; Yamamoto
et al. 2012; Morita et al. 2010a; Sajna et al. 2013). In addition,
MELs showed other biological properties such as induction of
differentiation in human leukemia cells, rat pheochromocyto-
ma, and mouse melanoma cells and exhibited high binding
affinity toward different immunoglobulins and lectins (Isoda
et al. 1997a; Wakamatsu et al. 2001; Zhao et al. 2001; Im et al.
2003; Konishi et al. 2007). Recent study describes the influ-
ence of MELs produced by P. antarctica in morphological
development and propagation of fungi strains in plant surfaces
(Yoshida et al. 2014).

T h e a n t i o x i d a n t a n d p r o t e c t i v e e f f e c t s o f
mannosylerythritol lipids produced byPseudozyma antarctica
T-34, P. tsukubaensis NBRC 1940, U. scitaminea NBRC
32730, Pseudozyma graminicola CBS 10092, Pseudozyma
siamensis CBS 9960, and P. hubeiensis KM-59 in different
carbon sources were evaluated by Takahashi et al. (2012)
using a 2,2-diphenyl-1-picrylhydrazine (DPPH) and superox-
ide anion-scavenging assay. Among these MELs, MEL-B
from U. scitaminea and MEL-C from P. hubeiensis at
10 mg/mL showed high and moderate activity, respectively,
when compared with arbutin, a strong scavenger used as pos-
itive control. In superoxide anion-scavenging assay, the MEL-
C types from P. siamensis and P. hubeiensis exhibited the best
activities at 2 mg/mL. Moreover, the MEL-C produced by
P. hubeiensis showed protective effect on human skin fibro-
blasts (NB1RGB cells) against H2O2-induced oxidative stress
and repressor effect on the expression of cyclooxygenase-2
(COX-2). Previously, Morita et al. (2011c) described the
anti-inflammatory action of MEL-A and MEL-B produced
by Pseudozyma antarctica T-34 using soybean oil as hydro-
phobic carbon source; these glycolipids inhibit the secretion of
inflammatory mediators as leukotriene C4 and cytokine
TNF-α from mast cells.

Fan et al. (2016) reported the production of MEL-A by
P. aphidis DSM70725 using soybean oil and tested the cyto-
static effects against three melanoma cell lines (B16-4A5,
B16-F0, and B16). This biosurfactant showed a CMC value
of 15.0 mg/L, decreasing the surface tension to 27.69 mN/m.
In addition, MEL-A exhibited a strong inhibition against B16
cell growth in a time-dependent and dose-dependent manner.
Furthermore, it was proposed that MEL-A induced the B16
cell apoptosis via the endoplasmic reticulum (ER) stress
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pathway, combined with the downregulation of B cell lym-
phoma 2 (Bcl-2) and the upregulation of caspase-12, caspase-
3, cleaved caspase-3, C/EBP homologous protein (CHOP),
and glucose-regulatory protein-78 (GRP78), as well as the
unfolded protein response (UPR) signaling proteins.

The application of MELs in cosmetics is related to an in-
crease in the stratum corneum water content in the skin and
repairing effects on the damaged hair (Yamamoto et al. 2012;
Morita et al. 2010a). These activities demonstrated that its
biosurfactants can be considered as a potential substitute of
natural ceramides in cosmetic formulations in terms of cost
and safety (Morita et al. 2015). Considering other potential
applications of MELs, recent patents developed by Henkel
Company (DE102014225184 and DE102014221889) de-
scribed the use of MELs in formulations to improve the re-
moval of antiperspirant stains in the washing of textiles and to
enhance the detergent action during the wash process at low
temperatures of textiles with greasy and/or oily soiling
(Schulz et al. 2016; Hellmuth et al. 2016). In a study per-
formed by Sajna et al. (2013), a novel Pseudozyma strain
(designated as Pseudozyma sp. NII 08165) was able to pro-
duce 34 g/L of MELs using soybean oil as carbon source at
8 % (w/v) after 9 days of process. In addition, it demonstrated
good stability characteristic of these glycolipids at different
temperature and pH conditions and revealed also that crude
MELs obtained were able to remove stains in fabric wash
analysis indicating the potential use in laundry detergent for-
mulations (Sajna et al. 2013).

Concluding remarks

Glycolipid biosurfactants are surface-active natural com-
pounds produced by several microorganisms with biological
activities and potential applications in medical, environmen-
tal, cosmetic, pharmaceutical, and food industries. The use of
these biosurfactants as substitutes to the chemically produced
is increasing, mainly in cleaning products and cosmetics, giv-
ing to the final product the safety and biodegradability appeal.
The major challenge to the use of glycolipids in products and
process consists in the development of robust and stable bio-
technological methods in large scale with production of de-
fined structures and this is an interesting area to explore with
very innovative possibilities. One of them is the use agro-
industrial wastes and by-products from food industry as sub-
strates, resulting in a reduction of the process costs and in-
creasing the up-scale potential. Moreover, there is the appli-
cation of statistical tools combined with engineered microor-
ganisms to increase yields and product concentration.
According to the exposed, it is necessary that further re-
searches combine all the possibilities to make the industrial
production of glycolipids cost-attractive and increase its avail-
ability to the global market.
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