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Abstract Microalgae are an economically important source of
biomolecules and metabolites that can be exploited as feed,
nutraceuticals and, potentially, as biofuels, among other bio-
technological applications. Microalgae biotechnology involves
both culture and metabolic pathways manipulation to obtain
high-value products, such as omega-3 fatty acids and caroten-
oids. However, the introduction of genes and/or foreign regu-
latory sequences has caused public concern about the effect of
genetically modified microalgae to achieve greater secondary
metabolite accumulations. To placate these worries, we have
focused on two cutting-edge concepts, cisgenesis and
intragenesis in order to sustainably produce commercially rele-
vant metabolites. This review provides updated background on
current and future uses for microalgae molecular farming. We
also discuss the development of genetic tools used in terrestrial
plants to obtain genetically modified microalgae free of foreign
DNA by means of (i) site-specific mutations, (ii) excision of
selectable markers, (iii) zinc-finger nuclease and transcription
activator-like effectors, and (iv) CRISPR/Cas9 systems. It is
currently important to consider scientific debate not only from
a technological standpoint but also in terms of conceptual, so-
cioeconomic, ethical, and legal aspects.
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Introduction

Microalgae are a heterogenic group of eukaryotic and pro-
karyotic, unicellular, and colonial photosynthetic organisms
that are highly important from an ecological standpoint.
Microalgae primarily inhabit aquatic environments and can
be found in waters extending from the tropics to the Polar
Regions. Additionally, these organisms exhibit a wide toler-
ance range to different salinities, temperatures, pH levels, and
nutrient availabilities (Borowitzka 1999; Cadoret et al. 2012;
Singh et al. 2005; Spolaore et al. 2006).

Microalgae play a critical role in ecological terms, consti-
tuting the first link in the food chain. In particular, microalgae
are the primary food source for zooplankton, which in turn,
are a significant source of nutrition for higher aquatic organ-
isms. Concomitant with this, close to half of worldwide pho-
tosynthesis and oxygen production is through microalgae. In
fact, these organisms are strict photoautotrophs and necessar-
ily require light energy for biological processes. Microalgae
are extremely diverse, not only in terms of shape, size, and
phylogeny, but also with regard to a wide range of highly
valuable compounds. Currently, between 40,000 and 70,000
microalgae species have been identified from nine different
phyla (Cadoret et al. 2012; Chisti 2007; Doan et al. 2011;
Gimpel et al. 2015; Ghosh et al. 2016; Rindi et al. 2009).
However, although many microalgae species have been iden-
tified, only a few have been successfully exploited for biotech-
nological ends (Olaizola 2003). The main cultured species are
Chlorella and Spirulina, for human and animal consumption,
and Dunaliella salina and Haematococcus pluvialis, for the
extraction of β-carotene and astaxanthin, respectively. It is
estimated that over 10,000 microalgae species remain
undescribed and that these likely belong to biological groups
completely different than those already defined (Sastre and
Posten 2010).
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The exploitation of microalgae for biotechnological pur-
poses has increased in recent years, leading to diverse com-
mercial applications for microalgae, including in pigments,
nutritional supplements, antioxidants, fatty acids, cosmetics,
and biofuels. These uses have resulted in the development of
important pharmaceutical and nutraceutical products
(Milledge 2011; Leu and Boussiba 2014; Pulz and Gross
2004; Qin et al. 2012). For example, microalgae are currently
the primary sustainable source of carotenoids and omega-3
fatty acids (Borowitzka 2013; Leu and Boussiba 2014;
Vílchez et al. 2011). Nutritional and biomedical applications
are particularly adequate for microalgae as many of the bio-
molecules expressed by these organisms are generally recog-
nized as safe for human consumption (Fletcher et al. 2007;
Franklin et al. 2005; Walker et al. 2005).

The goals of this mini-review are to highlight the potential
of microalgae as biotechnological Bfactories^ for the produc-
tion of commercially relevant metabolites and to describe al-
ternative solutions for natural, sustainable, and environmen-
tally friendly microalgae production. For this, two cutting-
edge concepts in the field of genetically transforming
microalgae will be discussed as new alternatives to
transgenesis—cisgenesis and intragenesis (Abiri et al. 2015;
Camacho et al. 2014; Espinoza et al. 2013; Holme et al. 2012;
Singh et al. 2015).

Genetic engineering in microalgae

Microalgae have recently come to light as novel and attractive
alternatives for producing recombinant proteins, including
from therapeutic proteins to biofuels. Microalgae also have
the capacity to over-express endogenous enzymes from par-
ticular metabolic pathways, thereby facilitating the accumula-
tion of metabolites of interest, such as astaxanthin and poly-
unsaturated fatty acids (Adarme-Vega et al. 2012; Cadoret
et al. 2012; Hamilton et al. 2014; Leu and Boussiba 2014;
Steinbrenner and Sandmann 2006).

The high demand for, but productivity low, algae-based
biotechnologies has promoted advanced research into the de-
velopment of genetically engineered microalgae strains
(Almaraz-Delgado et al. 2014). Transformation protocols ex-
ist for genetic manipulations of the nucleus (Kindle 1990),
mitochondria (Remacle et al. 2006), and chloroplast
(Boynton et al. 1988). Of these, chloroplasts have presented
the best success in accumulating recombinant proteins for
therapeutic uses, including oral vaccines, immunotoxins, and
monoclonal antibodies, among others (Cadoret et al. 2008;
Demurtas et al. 2013; Gimpel and Hyun 2015; Gregory
et al. 2013; Jones et al. 2013; Jones and Mayfield 2013;
Mussgnug 2015; Purton et al. 2013; Rasala and Mayfield
2015; Soria-Guerra et al. 2014; Specht and Mayfield 2014;
Tran et al. 2013a, b).

To date, more than 30 different microalgae species have
been successfully transformed (Radakovits et al. 2010), an
encouraging figure for ongoing efforts to design algae that
present selected characteristics. As comparedwith current sys-
tems used for producing recombinant proteins (e.g., terrestrial
plants, mammalian cells, yeasts, and bacteria), microalgae
present several comparative advantages. These advantages in-
clude low costs of production, ease of manipulation, and the
fact that certain species of microalgae have been considered
Bgenerally regarded as safe^ (GRAS) by the US Food and
Drug Administration (Cadoret et al. 2008; Gutiérrez et al.
2012; Rasala and Mayfield 2015).

There is a growing interest in the use of microalgae as low-
cost hosts for the synthesis of bioactive metabolites due to
genomic, proteomic, and metabolomic advances in different
species. Indeed, these advances have driven the development
of novel technologies for microalgae genetic engineering
(Doron et al. 2016; Hlavova et al. 2015). For instance, the
manipulation of metabolic pathways can redirect cellular
functions to the synthesis of determined products, giving rise
to the direct control of a cellular organism through the intro-
duction of extra copies of a particular enzyme (Gimpel et al.
2015; Henríquez et al. 2016; León et al. 2007). Innovation is
further fueled by widespread interest in the commercial de-
mand for the high-value compounds produced by microalgae,
including for lutein from Chlorella protothecoides, β-
carotene from D. salina, astaxanthin from H. pluvialis
(Campenni et al. 2013; Kathiresan et al. 2015; Shi et al.
1997; Steinbrenner and Sandmann 2006; Sun et al. 2014; Ye
and Jiang 2010), and biofuels (Burkart and Mayfield 2013;
Ghosh et al. 2016; Gimpel et al. 2013; Glass 2015; Gouveia
2011; Grima et al. 2013; Hannon et al. 2010; Scranton et al.
2015).

Cisgenic and intragenic technologies

Genetic transformation is a technology used to produce re-
combinant proteins and accumulate commercially valuable
metabolites. This technology is primarily applied in terrestrial
plants (Abiri et al. 2015; Gupta et al. 2013; Halford 2012;
Kempinski et al. 2015; Molesini et al. 2012; Napier et al.
2015; Ortiz Rios 2015; Ulukan 2011) and, to a lesser extent,
in microalgae (Cui et al. 2014; Gregory et al. 2013; Liu et al.
2013, 2014; Rasala et al. 2010; Sharon-Gojman et al. 2014;
Zheng et al. 2014; Zhong et al. 2011). The optimization of
desired characteristics has led to the generation of genetically
modified crops that do not compromise human or animal
health and that are environmentally friendly. Likewise, signif-
icant efforts have been made to apply genetic transformation
in higher plants through cisgenic and intragenic technologies
to attain products similar to those naturally produced (Cardi
2016; Cotter et al. 2015; Espinoza et al. 2013; Haverkort
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2015; Jacobsen and Schouten 2007; Mlalazi et al. 2012;
Napier et al. 2015; Schaart et al. 2015; Vanblaere et al.
2011). These technologies are analogous to self-cloning and
natural occurrence processes in which fragments of non-
recombinant and recombinant DNA, respectively, from a sex-
ually compatible organism are introduced to a host (Kasai
et al. 2015).

Genetic transformation through transgenesis, cisgenesis,
and intragenesis has been widely reviewed by a number of
authors (Holme et al. 2012, 2013a, b; León et al. 2004;
Schouten et al. 2006, 2008; Singh et al. 2015). Transgenesis
consists in the transference of foreign genes or transgenes to a
particular organism, leading to the expression of new charac-
teristics. Furthermore, transgenesis involves the recombina-
tion of genetic material that cannot naturally hybridize
(Gupta et al. 2013; Molesini et al. 2012; Ortiz Rios 2015). In
turn, the terms cisgenesis and intragenesis are used to describe
species genetically modified using genes and genetic elements
exclusively originating from a sexually compatible donor,
usually from the same or a phylogenetically related species
(Holme et al. 2012; Mlalazi et al. 2012; Molesini et al. 2012).
These concepts were introduced over a decade ago, and to
date, certain crops have been modified by these techniques
and have been widely accepted by society (Holme et al.
2013a, b).

Cisgenesis only involves the use of genes and genetic ele-
ments from the same species or from a cross-breedable species
(Camacho et al. 2014). Full coding sequences, including gene
introns with the corresponding promoter and terminator re-
gions, should be used in the transformation, thereby
preventing recombination with genetic material from foreign
species (Holme et al. 2013a; Schouten et al. 2006). In turn, the
concept of intragenesis implies the use of genes and regulatory
elements from phylogenetically related and/or cross-breedable
species (Camacho et al. 2014). Thus, the genes are manipulat-
ed and/or reordered in vitro, including intron removal and
sense or antisense orientation. These manipulations are driven
by promoter and terminator regions of other endogenous
genes that do not necessarily correspond to the same cisgene
(Holme et al. 2012; Molesini et al. 2012; Rommens et al.
2007). These types of technologies accelerate gene transfer-
ence among sexually compatible species, circumventing the
linkage drag associated with conventional interbreeding while
favoring the exchange of genetic material. Moreover,
intragenesis favors expression levels by using more efficient
promotors, thus decreasing the instance of gene silencing.
Figure 1 shows the three types of gene modification:
transgenesis, cisgenesis, and intragenesis.

These new technologies are highly promising tools for
algae-based biotechnologies since the resulting products can
be considered natural and conserved from one generation to
the next one. These features are particularly relevant to con-
sider for the accumulation of omega-3 polyunsaturated fatty

acids and carotenoids with nutraceutical applications (Shew
et al. 2015; Sticklen 2015). Furthermore, diverse studies in
microalgae demonstrate the underlying potential of metabolic
engineering using endogenous genes for the accumulation of
these bioactive compounds. Nevertheless, metabolic engi-
neering is classified more as a partial intragenic technology
as it contains selection markers and vector backbones.

Genes coding for key enzymes involved in the biosynthesis
of fatty acids have been identified in a number of species
(Adarme-Vega et al. 2012; Schuhmann et al. 2012), including
Ostreococcus tauri (Wagner et al. 2010), Ostreococcus
RCC809 (Vaezi et al. 2013), Ostreococcus lucimarinus
(Petrie et al. 2010), Thalassiosira pseudonana (Tonon et al.
2005; Xu et al. 2013), Phaeodactylum tricornutum
(Domergue et al. 2003), and in the model organism
Chlamydomonas reinhardtii (Chi et al. 2008).

The overexpression of DGAT2 in P. tricornutum showed a
significant increase in the proportion of polyunsaturated fatty
acids, with EPA in particular increasing by 76.2 % (Niu et al.
2013). Likewise, the overexpression of delta-5-desaturase in
the same microalgae resulted in a higher accumulation of
EPA, specifically a 58 % increase (Peng et al. 2014). The
coding sequences of delta-6-desaturase OtD6 and delta-5-
desaturase OtElo5 cloned from O. tauri in P. tricornutum re-
sulted in an increased accumulation of DHA (Hamilton et al.
2014). These three studies used the specific pPha-T1 nuclear
vector of the P. tricornutum diatom (Zaslavskaia et al. 2000).
Similarly, Nannochloropsis oceanica cells engineered with
DGAT2 show significantly increased (53.1 %) saturated fatty
acid content as compared with wild-type cells. On the other
hand, monounsaturated fatty acids decreased by 52.9 %.
Similarly, polyunsaturated fatty acids showed an apparent de-
crease of 74.6 %, including for arachidonic acid (C20:4) and
EPA (C20:5) (Li et al. 2016).

The microalgae Chlorella zofingiensis and H. pluvialis are
promising candidates for the genetic engineering of caroten-
oids, particularly considering the commercial relevance of
these pigments (Henríquez et al. 2016). Various enzymes have
been identified from the metabolic pathways of carotenoids,
including phytoene synthase (PSY), phytoene desaturase
(PDS), plastid terminal oxidase, lycopene cyclase (LCY-b),
and β-carotene ketolase (CRTR-B) in H. pluvialis
(Henríquez et al. 2016; Huang and Chen 2006a; Kajiwara
et al. 1995; Lotan and Hirschberg 1995; Tan et al. 2007;
Steinbrenner and Linden 2001, 2003). The mutated pds gene
has been used in H. pluvialis as a dominant selection marker
and reporter gene for transformation (Steinbrenner and
Sandmann 2006).

Similarly, the genes involved in the biosynthesis of
astaxanthin in C. zofingiensis include PSY (Cordero et al.
2011), PDS (Huang et al. 2008), LCY-b (Cordero et al.
2010), LCY-e (Cordero et al. 2012), BKT (CrtO) (Huang
et al. 2006b), and CrtR-b (Chy-b) (Li et al. 2008). The
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endogenous pds gene of C. zofingiensis was mutated and
transformed, conferring resistance to norflurazon, and
transformants accumulated 54.1 % more astaxanthin (Liu
et al. 2014).

Cisgenesis and intragenesis have promising applications in
microalgae. In particular, these technologies represent possi-
ble alternatives for increasing the accumulation of commer-
cially relevant metabolites through the overexpression of na-
tive enzymes, in accordance with the needs of consumers and
in line with environmental conservation (Adarme-Vega et al.
2012).

Generation of cisgenic and intragenic microalgae

The generation of new products through biotechnological
means should not present human health risks; therefore, the
presence of a selectable marker gene is inconvenient
(Espinoza et al. 2013; Henley et al. 2013; Tuteja et al. 2012;
Wannathong et al. 2016). The development of novel tools has

facilitated an evident change in obtaining genetically modified
organisms (GMOs) free of foreign DNA. These tools include
(i) site-specific mutations, (ii) the excision of the selectable
marker, (iii) zinc-finger nuclease and transcription activator-
like effectors (TALEs), and (iv) Clustered Regularly
Interspersed Short Palindromic Repeats System (CRISPR/
Cas9) systems.

Site-specific mutations

Considering photoautotrophic growth, chloroplast trans-
formations have used non-photosynthetic receptor strains
with the mutated endogenous genes atpB, psbA, and tscA
as reporters for recovering photosynthetic activities
(Doron et al. 2016). Based on herbicide resistance, the
psbA gene from C. reinhardtii encoding the D1 protein
for the photosystem I has been mutated to modify the
binding site for various herbicides (Johanningmeier et al.
1987). Indeed, resistance to the herbicide metribuzin was
a key trait for the direct selection of C. reinhardtii

Fig. 1 General diagram for genetic transformation: transgenesis, cisgenesis, and intragenesis in microalgae
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transformants (Przibilla et al. 1991). Similarly, and as
previously mentioned, Steinbrenner and Sandmann
(2006) mutated the pds gene by changing the leucine co-
don in position 504 for an arginine codon, which resulted
in transformants exhibiting high resistance to the herbi-
cide norflurazon. Furthermore, acquired resistance to the
herbicide sulfometuron methyl has been demonstrated by
mutating the AHAS gene, which codes for the enzyme
acetohydroxyacid synthase (Lapidot 2002). On the other
hand, and considering metabolic enzymes, reversing mu-
tations of the arg7 and arg9 genes, which are both in-
volved in arginine synthesis and respectively code for
argininosuccinate lyase (Debuchy et al. 1989) and the N-
acetyl ornithine aminotransferase protein (Remade et al.
2009), result in a restored ability to synthesize arginine.
Likewise, other studies propose designing plasmids and
using the endogenous pds gene as a dominant selectable
marker for efficient nuclear transformations in H. pluvialis
and C. zofingiensis (Sharon-Gojman et al. 2014). Genetic
modifications using endogenous genes as selectable
markers are an advancement towards successfully gener-
ating environmentally friendly cisgenic and transgenic
microalgae.

Excision of selectable markers using direct repeats

Methods for the removal of selectable markers have already
been described (Fischer et al. 1996). Selectable markers are
inevitable in the selection of modified microalgae, resulting in
the need to isolate stable transformants when cloning genes
within the chloroplast. However, selectable markers can be
eliminated when flanked by direct-repeat sequences that split
the DNA sequence interspersed together with direct repeat
copies. Excision of the selectable marker and restoration of
the microalgal chloroplast genome is mediated by the native
machinery of homologous recombination (Akbari et al. 2014;
Day and Goldschmidt-Clermont 2011). Excision is a sponta-
neous process, where the frequency depends on the length of
the direct repeat sequences, which should be between 400 and
650 base pairs (Fischer et al. 1996). Finally, a uniform popu-
lation of chloroplast genomes free of the selectable marker
will be produced.

According to Day and Goldschmidt-Clermont (2011), the
split DNA is unstable and will be naturally lost. Also, the
removed selection markers are not reintegrated nor does ho-
mologous recombination occur.

Roles of zinc-finger nucleases and transcription
activator-like effector in editing the microalgal genome

Genes from and the genome of C. reinhardtii have been
edited in situ by engineering nucleases via TALEs (Gao
et al. 2014) and zinc-finger nucleases (Sizova et al. 2013).

The principal difference between zinc-finger and TALE
domains is the mechanism employed for recognizing
DNA sequences. Zinc-finger modules always distinguish
three base pairs, limiting the number of potential target
sequences. In contrast, TALEs are composed of a variable
number of four different DNA recognition domains, each
of which specifically recognizes one of the four nucleo-
tides. Therefore, 12–20 of these domains can fuse to cre-
ate a TALE that binds to any desired target DNA se-
quence (Jinkerson and Jonikas 2015).

TALEs were originally obtained from Gram-negative,
pathogenic plant bacteria of the Xanthomonas genus. These
bacterial TALEs inject proteins into plant cells through a type
III secretion system mechanism (SST3). The injected proteins
are translocated to the nucleus and specifically bind with the
promoter regions of certain genes in the host DNA.
Consequently, the genes are activated, and the transcriptome
is manipulated, which contributes to bacterial survival and
colonization for promoting further infection (Boch and
Bonas 2010; Bogdanove et al. 2010; Moscou and
Bogdanove 2009; Romer et al. 2009). TALEs have become
the effectors of choice for increasing transcription, surpassing
other options, such as zinc-fingers and meganucleases, due to
the relatively easy and low-cost of laboratory synthesis, high
specificities for the selected sequences, and low cellular tox-
icity, among other noted advantages (Bogdanove and Voytas
2011; Gaj et al. 2013; de Lange et al. 2014; Moscou and
Bogdanove 2009).

Artificially designed TALEs have been used for gene-
specific activation in Chlamydomonas. Specifically, Gao
et al. (2014) selected two endogenous C. reinhardtii genes,
ARS1 and ARS2, as activation targets for TALE domains.
Through the TALE domains, both target genes exhibited no-
ticeably increased transcript and protein expressions, which
were confirmed via protein activity by ARS colorimetric as-
says. This genome-editing technique has also been used in the
model diatom P. tricornutum to interrupt the urease enzyme
encoding gene as a method for clarifying the role of urease in
the urea cycle and improving the molecular toolkit for diatoms
(Weyman et al. 2016).

Zinc-finger nucleases involve a fusion of three to four zinc-
finger DNA-binding modules to a FokI DNA cleavage do-
main, forming an artificial restriction enzyme (Jinkerson and
Jonikas 2015). A pair of these molecular scissors can be tai-
lored to target specific DNA sequences, where dimerization of
the FokI domain activates the nuclease, provoking site-specif-
ic, double-stranded DNA breaks that enable genome editing
(Townsend et al. 2009). In C. reinhardtii, this technology has
been used to interrupt genes of interest (Sizova et al. 2013).
Furthermore, aC. reinhardtii genome database exists that con-
tains over 330,000 identified target sites, accounting for 93 %
of all model genes (Reyon et al. 2012). This technology could
be useful for redirecting particular metabolic pathways.
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Role of CRISPR/Cas in editing the microalgal genome

Currently, the traditional methods for genome editing in
higher plants are being replaced by CRISPR technology
(Ahuja 2015; Cong et al. 2013; Horvath and Barrangou
2010; Jiang et al. 2014; Jinek et al. 2012; Marraffini and
Sontheimer 2010; Puchta and Fauser 2014). The development
of this cutting-edge technology in activating and/or
inactivating native genes is ongoing and seeks to circumvent
the use of exogenous genes, thereby creating crops that are
more socially acceptable (Araki et al. 2014; Araki and Ishii
2015; Hartung and Schiemann 2014; Kanchiswamy et al.
2015; Voytas and Gao 2014). CAS9 is an RNA-guided
DNA nuclease that has been successfully used for targeted
mutations in eukaryotic genomes (Belhaj et al. 2013; Cong
et al. 2013; Dominguez et al. 2016; Gaj et al. 2013; Jinkerson
and Jonikas 2015; Mali et al. 2013; Mussgnug 2015).
Similarly, a CRISPR/Cas system was recently identified and
characterized in the genome of the freshwater cyanobacterium
Microcystis aeruginosa (Yang et al. 2015). In microalgae, pre-
liminary studies in C. reinhardtii indicate that CRISPR/Cas
technology can be feasibly used for editing the nuclear ge-
nome (Greiner 2014; Jiang et al. 2014). However, stable
transformants of C. reinhardtii expressing the CAS9 protein
were unobtainable (Guihéneuf et al. 2016; Mussgnung 2015).
Recently, this technology has been employed to efficiently
generate stable targeted gene mutations in the marine diatom
P. tricornutum (Nymark et al. 2016). Genetic engineering ad-
vancements in higher plants using endogenous genes and ap-
plying CRISPR/Cas technology ensure the generation of non-
GMOs (Araki and Ishii 2015; Cardi 2016). These studies
could serve as strategies for standard genome editing to create
cisgenic and intragenic microalgae.

Regulatory considerations for the development
of cisgenic and intragenic microalgae

In general, the regulatory frameworks established by interna-
tional entities for the testing and development of genetically
modified plants have been rather drastic (Camacho et al. 2014;
Devos et al. 2014; Sundaramurthy 2010; Wijffels 2015;
Willems et al. 2016). Worries regarding the dissemination of
GMOs are linked to ethical considerations and apprehensions
concerning health risks and the propagation of new gene com-
binations in the environment (Shew et al. 2015; Sticklen
2015). However, most nationally established regulations have
been fundamentally based only on transgenic organisms,
without giving consideration to the concepts of transgenesis,
cisgenesis, or intragenesis (Molesini et al. 2012; Schouten
et al. 2006). In particular, evaluations of GMOs are primarily
based on regulations given in the still standing 2000
Cartagena Protocol on Biosafety (Hartung and Schiemann

2014). Worth considering is that in Japan, the self-cloning
microalga Pseudochoricytis ellipsoidea is considered natural,
not GMO, and corresponding experiments are not governed
by GMO limitations outlined in the Cartagena Protocol on
Biosafety (Lusser et al. 2012; USDA Japan Report 2014).

Today, more than ever, researchers are making significant
efforts to generate GMOs, particularly for plants, which are
environmentally friendly and safe for human and animal
health. Cis- and intragenesis involve the exchange of DNA
between interbreeding groups, due to which, imposed regula-
tions should be similar to those applied to conventional breed-
ing. Regulations on cisgenic and intragenic organisms are cur-
rently under debate in various countries, including in the
European Union and USA, where regulations are close to
being defined (Kasai et al. 2015). While cisgenic and intra-
genic crops have already been developed and field-tested, on-
ly one intragenic crop has been approved for commercial use,
the Innate™ potato developed by Simplot Plant Sciences.
Likewise, the Wageningen University and Research Centre
has applied cisgenesis to develop a potato resistant to the late
blight fungus Phytophthora infestans. To date, regulations are
pending for considering these organisms separate from trans-
genic GMOs.

In the near future, the innate properties of microalgae will
become important resources for biotechnological products.
Therefore, governmental authorities should take note of ongo-
ing advancements and duly consider microalgae produced
through cisgenic and/or intragenic technologies.
Furthermore, self-cloning technology is important for outdoor
open-pond algae breeding, which is currently considered the
most viable option for the large-scale cultivation of
microalgae (Brennan and Owende 2010).

Conclusions

The application of cisgenesis and intragenesis in microalgae
represents promising biotechnological tools for rapidly and
securely advancing the commercial exploitation of attractive
and highly valued compounds, particularly of polyunsaturated
fatty acids and carotenoids. Furthermore, these technologies
could become socially accepted and can be considered
Bconsumer friendly.^ Cis- and intragenesis have already been
applied in crops, but microalgae remain to be exploited, de-
spite the existence of the required genetic tools. Both technol-
ogies require that microalgae be transformed only with geno-
mic sequences derived from the same or sexually compatible
species, and it is worth noting that foreign sequences, such as
selectable markers and vector backbones, would be absent
from cis- and intragenic microalgae.

Cisgenesis and intragenesis have provided new opportuni-
ties for discussions between scientists, producers, and con-
sumers regarding the safety of genetically modified crops.
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These discussions should serve as a basis for more flexible
governmental regulations, which would likely lead to new
crops generated through modern technologies. Finally, less
restrictive regulations should reasonably exist for cisgenic
and intragenic organisms considering that the gene pools used
in these technologies are identical to conventional interbreed-
ing. Indeed, these technologies could facilitate the scaling of
environmentally safe open-culture systems.
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