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Abstract Rare sugars have recently drawn attention because
of their potential applications and huge market demands in the
food and pharmaceutical industries. All L-hexoses are consid-
ered rare sugars, as they rarely occur in nature and are thus
very expensive. L-Hexoses are important components of bio-
logically relevant compounds as well as being used as precur-
sors for certain pharmaceutical drugs and thus play an impor-
tant role in the pharmaceutical industry. Many general strate-
gies have been established for the synthesis of L-hexoses;
however, the only one used in the biotechnology industry is
the Izumoring strategy. In hexose Izumoring, four entrances
link the D- to L-enantiomers, ketose 3-epimerases catalyze the
C-3 epimerization of L-ketohexoses, and aldose isomerases
catalyze the specific bioconversion of L-ketohexoses and the
corresponding L-aldohexoses. In this article, recent studies on
the enzymatic production of various L-hexoses are reviewed
based on the Izumoring strategy.
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Introduction

Hexose is a typical monosaccharide and classified into the D-
or L-configuration, with the chemical formula C6H12O6. The

D-form is usually the isomer found in nature, and the biotech-
nological production of various D-hexoses has recently been
reviewed in detail elsewhere (Mu et al. 2015). Recently, L-
hexoses have recently garnered attention because of their po-
tential applications in the pharmaceutical industry (Table 1). L-
Hexoses can be categorized to include four L-ketohexoses
including L-sorbose, L-psicose, L-tagatose, and L-fructose,
and each L-ketohexose corresponds to two L-aldohexoses, giv-
ing rise to eight different sugars including L-gulose, L-idose, L-
galactose, L-talose, L-altrose, L-allose, L-mannose, and L-
glucose.

L-Sugars have often been recognized as important compo-
nents of biologically relevant compounds and precursors of
certain pharmaceutical drug molecules (Ahmed 2001). L-
Sorbose has been used as an intermediate for industrial synthesis
of L-ascorbic acid (vitamin C) for decades (Pappenberger and
Hohmann 2014). L-Tagatose is used as a starting material for
synthesis of deoxygalactonojirimycin (DGJ), a pharmacological
chaperone, with synergistic activity that has potential implica-
tions for treating lysosomal storage disorders (Jenkinson et al.
2011). L-Fructose is a potential nonnutritive sweetener (Levin
et al. 1995) and an effective inhibitor of various glycosidases
(Muniruzzaman et al. 1996). L-Gulose is an important compo-
nent of Bleomycin A2, which is employed clinically as an anti-
tumor antibiotic (Saitta et al. 2008), and its 6-deoxy derivative,
6-dexoy-L-gulose, is contained in yet another anti-tumor antibi-
otic, zorbamycin (Wang et al. 2007), while L-gulosamine is a
key component of adenomycin, a potential antibacterial agent
(Hung et al. 2001). The L-idose derivative L-iduronic acid is an
important component of the repeating unit of some glycosami-
noglycans (GAGs), including heparin, heparin sulfate, and
dermatan sulfate (Seeberger and Werz 2007). L-Talose has been
used as substrate to synthesize 9-α-L-talopyranosyladenine, a
slow-reacting substrate for calf intestinal adenosine deaminase
(EC 3.5.4.4), which inhibits the growth of leukemia L1210 cells
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in vitro (Lerner and Mennitt 1994). L-Glucose is a major com-
ponent of littoralisone, a natural bioactive product from Verbena
littoralis, which plays a role in enhancing nerve growth factor
(NGF)-induced neurite outgrowth in PC12D cells (Li et al.
2001). These findings have greatly increased the interest in re-
search regarding the synthesis of L-hexoses.

By definition, all L-hexoses are classified as rare sugars and
are thus very expensive (Granstrom et al. 2004). Limited
availability and high costs limit the research and application
of L-hexoses. General methodologies for L-hexose synthesis
have been widely studied. Chemical synthesis of L-hexoses
has recently been reviewed in detail (D’Alonzo et al. 2009;
Frihed et al. 2015), while the Izumoring strategy is the pre-
ferred method in the biotechnology industry (Granstrom et al.
2004; Izumori 2002). In this article, recent advances in the
studies of enzymatic production of various L-hexoses are
reviewed. However, due to the scope of this review, L-hexitols
were not included.

Entrances to form L-hexoses from D-hexoses

Based on the hexose Izumoring strategy, there are four en-
trances to form L- from D-hexoses via four D, L-series of
hexitols, including D-glucitol (L-gulitol, D-sorbitol), allitol
(D-allitol, L-allitol), galactitol (D-galactitol, L-galactitol,
dulcitol), and D-gulitol (L-glucitol, L-sorbitol) (Izumori
2006). These four hexitols can be converted to L-ketohexoses
by polyol dehydrogenases and are then inevitable passing
points to enter the L-hexose world (Fig. 1).

L-Sorbose production from D-sorbitol

L-Sorbose is the most studied L-hexose not only because it is
used as an important intermediate for L-ascorbic acid
(Pappenberger and Hohmann 2014) but also because the sub-
strate for L-sorbose synthesis, D-sorbitol, is very cheap and
easy to obtain. D-Sorbitol can be industrially produced from

Table 1 L-Hexoses serve as important components or precursors of bioactive or pharmaceutical molecules

L-Hexose CAS no. Application Reference

L-Ketohexose L-Sorbose 87-79-6 An important intermediate for industrial
production of L-ascorbic acid

Pappenberger and Hohmann (2014)

L-Tagatose 17598-82-2 A starting material for synthesis of
deoxygalactonojirimycin (DGJ), a
pharmacological chaperone for
treatment of lysosomal storage
disorders

Jenkinson et al. (2011)

L-Psicose 16354-64-6 Not found

L-Fructose 7776-48-9 A potential inhibitor of various
glycosidases

Muniruzzaman et al. (1996)

L-Aldohexose L-Gulose 6027-89-0 A chemical component of Bleomycin
A2, a broad-spectrum anti-tumor drug

Saitta et al. (2008)

L-Idose 5934-56-5 L-Iduronic acid is a major uronic acid
component of glycosaminoglycans (GAGs).

Hallak et al. (2000)

L-Galactose 15572-79-9 A glycosyl component of the side chain of
rhamnogalacturonan II; a structurally
complex pectic polysaccharide

O’Neill et al. (2004)

L-Talose 23567-25-1 The starting material to produce
9-α-L-talopyranosyladenine, an inhibitor
of the growth of leukemia L1210 cells
in vitro

Lerner and Mennitt (1994)

L-Altrose 1949-88-8 A specific component of extracellular
polysaccharide from the anaerobic
microorganism Butyrivibrio fibrisolvens
strain CF3

Ferreira et al. (1997)

L-Allose 9392-62-6 The derivative 6-deoxy-L-allose is contained
in tetracyclic triterpene datiscoside C
isolated from Datisca glomerata.

Sasamori et al. (1983)

L-Mannose 10030-80-5 Contained in a polysaccharide capsule from
Sphingomonas strain S88, used as a
gelling agent in the food industry

Yamazaki et al. (1996)

L-Glucose 921-60-8 An important component of littoralisone,
a natural bioactive agent from Verbena
littoralis, enhances NGF-induced neurite
outgrowth in PC12D cells

Li et al. (2001)
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D-glucose, with theoretically 100 % yield by simple chemical
hydrogenation (Zhang et al. 2013a).

L-Sorbose production was firstly reported by Reichstein
et al., stating that L-sorbose could be biotechnically synthe-
sized by oxidation of D-sorbitol usingGluconobacter oxydans
(previously called Acetobacter suboxydans) pyrroloquinoline
quinone (PQQ) enzymes (Reichstein et al. 1933). Since then,
bulk L-sorbose production has been widely studied using mi-
crobial fermentation by G. oxydans (Giridhar and Srivastava
2001a; Giridhar and Srivastava 2001b; Macauley-Patrick
et al. 2005). Furthermore, D-sorbitol 2-dehydrogenase (EC
1.1.1.14) is very responsible for converting D-sorbose to L-
sorbose (Shinjoh et al. 2002). Immobilized whole cells were
used for efficient production of L-sorbose from D-sorbitol
(Kim et al. 1999; Spassov et al. 1995; Wang et al. 2013),

and the fermentation of L-sorbose could be significantly en-
hanced by improving the mRNA abundance of D-sorbitol 2-
dehydrogenase in these cells (Xu et al. 2014).

L-Psicose production from allitol

Through specific polyol dehydrogenase, L-psicose could be
produced from allitol, which is a scare hexitol and converted
from D-psicose. Enzymatic oxidation of allitol to L-psicose
was first reported using Acetomonas oxydans (Carr et al.
1968).However, the processwas lengthy and required 2weeks
for L-psicose production. Consequently, Takeshita et al. devel-
oped a highly efficient production of L-psicose from allitol
using the whole cells of Gluconobacter frateurii IFO 3254.
The conversion rate was approximately 98 % when 100-g L−1

Fig. 1 Enzymatic production of L-hexoses based on the hexose Izumoring strategy. Entrances to form L- from D-hexoses are included, and the enzymatic
epimerization and isomerization of L-hexoses are shown
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allitol was used; however, the enzyme responsible for catalyz-
ing this reaction is still unknown (Takeshita et al. 1996).

L-Tagatose production from galactitol

Bioconversion of galactitol to L-tagatose is the third of the four
entrances to form L- from D-hexoses (Fig. 1). However, only
two publications have focused on L-tagatose production from
galactitol. Shimonishi et al. used an isolated L-tagatose-pro-
ducing bacterial strain from soil, Klebsiella pneumoniae strain
40b, to produce L-tagatose, with a yield of higher than 60 %
from 0.5 to 2 % galactitol (Shimonishi et al. 1995). Huwig
et al. developed a strategy for enzymatic production of L-
tagatose from galactitol using a specific galactitol dehydroge-
nase from Rhodobacter sphaeroides D, with NADH regener-
ation by L-lactate dehydrogenase (EC 1.1.1.27) and with the
overall yield of L-tagatose reaching 78 % (Huwig et al. 1998).

L-Fructose production from L-glucitol

L-Fructose can theoretically be produced from L-glucitol by
enzymatic dehydrogenation and the latter can be produced by
dehydrogenation of D-sorbose (Fig. 1). Unfortunately, there
are no reports concerning these two steps, but interestingly,
the reverse reactions of these two steps have been document-
ed. The L-glucitol dehydrogenase responsible for catalyzing
the conversion of L-glucitol to D-sorbose was first identified
from Pseudomonas sp. Ac (Mayerskuntzer et al. 1994), and
the whole cells produced D-sorbose from L-glucitol, with a
yield of higher than 95 % (Huwig et al. 1996). Through hy-
drogenation, Aureobasidium pullulans LP23, isolated from a
soy sauce mash, could convert L-fructose to L-glucitol
(Sasahara and Izumori 2005).

C-3 epimerization between L-ketohexoses

Ketose 3-epimerase catalyzes the epimerization of various ke-
toses at the C-3 position to produce their C-3 epimers. The
enzyme generally exhibits a broad specificity toward many
ketoses including ketohexoses and ketopentoses, and theoret-
ically, is able to catalyze the epimerization between L-sorbose
and L-tagatose and between L-psicose and L-fructose.

In 1993, the enzyme was first reported by Izumori et al.,
which they isolated fromPseudomonas cichorii (Izumori et al.
1993). The purified enzyme showed C-3 epimerization activ-
ity toward various ketoses with the optimum substrate being
D-tagatose, and thus, it was classified as D-tagatose 3-
epimerase (EC 5.1.3.31) (Itoh et al. 1994). Twelve years later,
a second ketose 3-epimerase was identified fromAgrobacterium
tumefaciens (Kim et al. 2006a), showing the highest activity
toward D-psicose and was named D-psicose 3-epimerase (EC
5.1.3.30). In 2009, the third ketose 3-epimerase, with D-fructose

being the optimum substrate, was characterized from R.
sphaeroides (Zhang et al. 2009). Recently, D-psicose 3-
epimerases were identified from Clostridium cellulolyticum
(Mu et al. 2011), Ruminococcus sp. 5_1_39BFAA (Zhu et al.
2012), Clostridium scindens (Zhang et al. 2013b), Desmospora
sp. 8437 (Zhang et al. 2013c), Clostridium sp. BNL1100 (Mu
et al. 2013), Clostridium bolteae (Jia et al. 2014), Dorea sp.
CAG317 (Zhang et al. 2015), and Treponema primitia (Zhang
et al. 2016). Finally, a ketose 3-epimerase with the optimum
substrate of L-ribulose, named L-ribulose 3-epimerase (EC
5.1.3.31), was first identified from Mesorhizobium loti (Uechi
et al. 2013b).

Ketose 3-epimerases have attracted considerable attention,
because they have a very important role in the Izumoring
strategy (Izumori 2006) and in the biological production of
D-psicose (Mu et al. 2012). These enzymes are also used for
the production of deoxyketohexoses (Gullapalli et al. 2010;
Rao et al. 2009), methyl-ketohexoses (Jones et al. 2008; Rao
et al. 2008), and some other rare sugars, including D-sorbose
(Itoh et al. 1995), L-xylulose (Uechi et al. 2013b), L-tagatose,
and L-fructose (Itoh and Izumori 1996). Although they exhibit
broad substrate specificity toward various ketoses, the activi-
ties of many ketose 3-epimerases toward L-sugars have not
been measured, probably due to the difficulty in obtaining L-
sugars as substrates commercially. Only the D-psicose 3-
epimerase from P. cichorii (Izumori et al. 1993) and the L-
ribulose 3-epimerase from M. loti (Uechi et al. 2013b), iden-
tified by the Rare Sugar Research Center at Kagawa
University, have been used to measure the epimerization ac-
tivity toward L-ketohexoses. The epimerase isolated from P.
cichorii not only displayed 20% of the relative activity toward
L-psicose, compared to the optimum substrate D-tagatose, but
also showed trace activity toward L-tagatose, L-sorbose, and L-
fructose (Itoh et al. 1994). The epimerase isolated fromM. loti
exhibited specific activities of 31, 10, and 5.5 U mg−1 toward
L-psicose, L-fructose, and L-tagatose, respectively, and by
comparison, showed a specific activity of 230 U mg−1 toward
the optimum substrate L-ribulose and only trace activity to-
ward L-tagatose (Uechi et al. 2013b).

Except for the oxidative dehydrogenation by polyol dehy-
drogenase, C-3 epimerization is an efficient approach to bio-
logical production of L-ketohexoses. However, only isolated
P. cichorii has been used for the enzymatic production of L-
ketohexoses. The enzymewas first immobilized onChitopearl
beads BCW 2510, and the immobilized enzyme produced
20 % L-tagatose and 65 % L-fructose from 40 g L−1 of L-
sorbose and 20 g L−1 of L-psicose, respectively (Itoh and
Izumori 1996). The crystal structure of ketose 3-epimerases
from P. cichorii (PDB: 2QUL) (Yoshida et al. 2007),
A. tumefaciens (PDB: 2HK0) (Kim et al. 2006b),
C. cellulolyticum (PDB: 3VNI) (Chan et al. 2012), and
M. loti (PDB: 3VYL) (Uechi et al. 2013a) has been deter-
mined and is available in the Protein Data Bank. Based on
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already known crystal structure information, a molecular
modification made to these epimerases would be expected to
improve the substrate specificity and enzymatic activity to-
ward L-ketohexoses, and thus, the enzymatic production of
L-ketohexoses could be more efficient and widely utilized in
the near future.

Isomerization between L-ketohexoses
and L-aldohexoses

L-Ketohexoses can be biologically produced through the same
entrances from D-hexoses mentioned above. Enzymatic isom-
erization is an important approach in the production of L-
aldohexoses from L-ketohexoses (Fig. 1). Each L-ketohexose
corresponds to two different L-ketoaldoses by isomerization.
Many aldose isomerases and aldose phosphate isomerases have
been identified to catalyze the isomerization between various
ketoses and their corresponding aldoses. Unfortunately, none
of the reported isomerases shows a high activity toward L-hex-
oses. Still, some aldose isomerases have been used for L-
aldohexose production, including L-rhamnose isomerase (EC
5.3.1.14) (Bhuiyan et al. 1997; Leang et al. 2004a; Takata
et al. 2011), L-ribose isomerase (EC 5.3.1.B3) (Terami et al.
2015), and D-arabinose isomerase (EC 5.3.1.3) (Leang et al.
2003). Some aldose phosphate isomerases have also shown po-
tential for the application of L-aldohexose production, including
D-ribose-5-phosphate isomerase (EC 5.3.1.6) (Park et al. 2010),
D-glucose-6-phosphate isomerase (EC 5.3.1.9) (Yoon et al.
2009b), D-mannose-6-phosphate isomerase (EC 5.3.1.8)
(Yeom et al. 2009a), and D-galactose-6-phosphate isomerase
(EC 5.3.1.26) (Park et al. 2007). However, for practical indus-
trial applications, it is essential to obtain enzymes that utilize L-
hexoses as an optimum substrate, or the specific activity needs
to be vastly improved using molecular modification.

Isomerization of L-sorbose to L-gulose and L-idose

To the best of our knowledge, there is no existing literature
concerning the biological production of L-gulose and L-idose
from L-sorbose. However, it was discovered that the Pyrococcus
furiosus D-glucose-6-phosphate isomerase (Yoon et al. 2009b),
the Serratia proteamaculans D-lyxose isomerase (EC 5.3.1.15)
(Park et al. 2010), and the Cellulomonas parahominis L-ribose
isomerase (Morimoto et al. 2013) exhibit isomerization activity
toward L-sorbose. Using L-sorbose as the substrate, the P.
furiosus D-glucose-6-phosphate isomerase could convert L-
sorbose to L-idose and L-gulose by a two-step isomerization
mechanism. The final equilibrium ratio of L-sorbose/L-idose/L-
gulose is 60:26:14. (Yoon et al. 2009b). In contrast, the S.
proteamaculansD-lyxose isomerase andC. parahominis L-ribose
isomerase only catalyze one-step isomerization between L-gulose
and L-sorbose (Park et al. 2010; Morimoto et al. 2013).

Isomerization of L-tagatose to L-talose and L-galactose

Many aldose and aldose phosphate isomerases can catalyze
the isomerization between L-tagatose and L-talose (Table 2).
Most of the isomerases produce L-talose as a sole product
from L-tagatose. However, P. furiosus D-glucose-6-phosphate
isomerase produces two aldo-isomers from L-tagatose, giving
a conversion ratio of L-tagatose/L-talose/L-galactose of
80:15:5 (Yoon et al. 2009b). The L-rhamnose isomerase from
Pseudomonas stutzeri also produces both L-talose and L-ga-
lactose from L-tagatose (Leang et al. 2004b). However, theM.
loti L-rhamnose isomerase only catalyzes one-step isomeriza-
tion between L-tagatose and L-talose (Takata et al. 2011).

Production of L-tagatose from L-talose

The P. furiosus D-glucose-6-phosphate isomerase shows
the highest activity toward L-talose among all the tested
aldoses, giving the specific activity of 620 U mg−1, and
therefore has great potential for L-tagatose production
(Yoon et al. 2009b). Streptococcus pneumoniae D-ribose-
5-phosphate isomerase, another potential L-tagatose-pro-
ducing enzyme, catalyzed the isomerization between L-
talose and L-tagatose, which could produce 450 g L−1 of
L-tagatose from 500 g L−1 of L-talose after a 5-h reaction
(Park et al. 2011).

Production of L-talose from L-tagatose

L-Talose production was performed by anM. loti L-rhamnose
isomerase immobilized on Chitopearl beads BCW 2510,
which converted 300 g L−1 of L-tagatose to 30 g L−1 of L-
talose without any byproducts after 12 h of reaction (Takata
et al. 2011). The P. stutzeri L-rhamnose isomerase
immobilized on BCW 2603 beads was also used for L-talose
production, and it produced L-talose from 200 g L−1 of L-
tagatose, with a conversion ratio of 12 % (Bhuiyan et al.
1999). However, the P. stutzeri L-rhamnose isomerase normal-
ly produces both L-talose and L-galactose from L-tagatose
(Leang et al. 2004b), which makes it an unlikely candidate
in the production of L-talose on the industrial level.

Production of L-galactose from L-tagatose

The P. stutzeri L-rhamnose isomerase has also been used
for L-galactose production. The enzyme immobilized on
BCW 2510 beads produced approximately 7.5 g L−1 of
L-galactose from 25 g L−1 of L-tagatose, with L-talose
production as a minor byproduct during the reactions
(Leang et al. 2004a).

Appl Microbiol Biotechnol (2016) 100:6971–6979 6975



Isomerization of L-psicose

Isomerization between L-psicose and L-altrose

There are scarce reports in the literature regarding the
isomerization between L-psicose and L-altrose. The P.
furiosus D-glucose-6-phosphate isomerase can catalyze
the conversion between L-psicose and L-altrose, with spe-
cific activities of 251 and 67 U mg−1, respectively.
However, the reactions with both substrates produced L-
allose as a very minor byproduct (Yoon et al. 2009b).

Isomerization between L-psicose and L-allose

L-Ribose isomerases have potential to be used in the isomer-
ization between L-psicose and L-allose. An L-ribose isomerase
isolated from C. parahominis catalyzed L-psicose/L-allose
isomerization, with an equilibrium ratio of 65:32 (Morimoto
et al. 2013). The enzymewas also used for L-allose production
from L-psicose via immobilization on DIAION HPA25L
beads. The immobilized enzyme produced 33 g L−1 of L-allose
from 100 g L−1 of L-psicose after a 1-day reaction (Terami
et al. 2015).

Isomerization of L-fructose

Isomerization between L-fructose and L-mannose

Most of the reported L-rhamnose isomerases prefer L-rham-
nose and L-lyxose, respectively, as the first and second aldose
substrates, with the third preference toward the production of
L-fructose from L-mannose. The specific activities of the en-
zymes isolated from P. stutzeri, Caldicellulosiruptor
saccharolyticus (Lin et al. 2011), Thermotoga maritime
(Park et al. 2010), Thermoanaerobacterium saccharolyticum
(Hung et al. 2014), Bacillus pallidus (Poonperm et al. 2007),
M. loti (Takata et al. 2011), and Bacillus subtilis (Park 2014)
toward L-mannose were 81.6, 38, 15, 6, 4.52, 2.27, and
0.92 U mg−1, respectively. In addition, L-fructose has also
been produced from L-mannose with a conversion ratio of
approximately 25 % by an enzyme reactor packed with
cross-linked Streptomyces rubiginosus D-glucose isomerase
crystals (Jokela et al. 2002).

Certain L-rhamnose isomerases are also used for L-man-
nose production. The enzyme isolated from P. stutzeri con-
verted L-fructose to L-mannose, with a yield of 30 % via im-
mobilization on BCW 2603 beads (Bhuiyan et al. 1997). The
free enzyme from B. subtilis produced 25 g L−1 of L-mannose

Table 2 Summary of the isomerases catalyzing bioconversion between L-talose and L-tagatose

Enzyme Microbial source Specific activity
(U mg−1)

Equilibrium ratio (L-talose/

L-tagatose, %)

Km (mM) kcat/Km

(mM−1 min−1)
Reference

L-
Talose

L-
Tagatose

L-
Talose

L-
Tagatose

L-
Talose

L-
Tagatose

D-Glucose-6-phosphate
isomerase

Pyrococcus furiosus 620a 404a 15:80:5 (L-talose/L-tagatose/

L-galactose)

133 NR 215 NR Yoon et al.
(2009b)

L-Rhamnose isomerase Mesorhizobium loti 5.23a NR 10:90 5.25 NR 80 NR Takata et al.
(2011)

D-Mannose-6-
phosphate isomerase

Geobacillus
thermodenitrificans

26a NR NR NR NR NR NR Yeom et al.
(2009b)

Bacillus subtilis 0.47b 0.08b NR NR NR NR NR Yeom et al.
(2009a)

D-Ribose-5-phosphate
isomerase

Clostridium
thermocellum

7363a 720a 11:89 37 125 368 15 Yoon et al.
(2009a)

Streptococcus
pneumoniae

19b 1.3b 10:90 NR NR NR NR Park et al.
(2011)

Clostridium difficile 28b 14b NR 520 NR 18 NR Park et al.
(2010b)

Thermotoga maritima 307b 55b NR 190 NR 420 NR Park et al.
(2010b)

NR not reported
a One unit (U) is defined as the enzyme amount producing 1-μmol product from substrate per minute
b One unit (U) is defined as the enzyme amount producing 1-nmol product from substrate per minute
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from 100 g L−1 of L-fructose after a reaction of 80 min (Park
et al. 2010), and the enzyme isolated from T. maritime pro-
duced 175 g L−1 of L-mannose from 500 g L−1 of L-fructose
after 5 h (Park 2014).

Isomerization between L-fructose and L-glucose

There have been few reports regarding the enzymatic isomer-
ization between L-fructose and L-glucose. An L-glucose-pro-
ducing D-arabinose isomerase was isolated from Klebsiella
pneumoniae, and the enzyme empirically produced 0.35 g of
L-glucose from 1.0 g of L-fructose, with an overall yield of
35 % (Leang et al. 2003).
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