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Abstract Yupingfeng (YPF) is a kind of Astragali radix-
based ancient Chinese herbal supplemented with
Atractylodis Macrocephalae Rhizoma and Radix
Saposhnikoviae. Increasing evidence has proven the benefi-
cial immunomodulating activity of YPF. However, the action
mechanism(s) of it is not known. Here, we explored the im-
munomodulatory activity of unfermented Yupingfeng polysac-
charides (UYP) and fermented Yupingfeng polysaccharides
(FYP) obtained using Rhizopus oligosporus SH in weaning
Rex rabbits. The results showed that both UYP and FYP ex-
hibited notable growth-promoting and immune-enhancing ac-
tivities, improvement of the intestinal flora homeostasis, and
maintenance of intestinal barrier integrity and functionality.
Notably, compared with UYP, FYP effectively enhanced

average daily gain, organ indices, interleukin-2 (IL-2), IL-4,
IL-10, tumor necrosis factor-alpha (TNF-α), TLR2, and
TLR4 mRNA levels in spleen, IL-1, IL-2, IL-4, IL-6, IL-10,
IL-12, TNF-α, and IFN-γ protein concentrations in serum,
and TLR2 and TLR4 mRNA expressions in the gastrointesti-
nal tract (GIT). Moreover, FYP exhibited greater beneficial
effects in improving the intestinal flora, including augment
flora diversity and the abundance of cellulolytic bacteria, re-
duction the abundance of Streptococcus spp. and
Enterococcus spp. in the GIT, particularly the foregut and
maintaining the intestinal barrier integrity and functionality
by upregulating zonula occludens 1, claudin, polymeric im-
munoglobulin receptor, trefoil factor, and epidermal growth
factor mRNA levels in the jejunum and ileum. Our results
indicated the immunoenhancement effect of FYP is superior
over that of UYP, which is probably related with the amelio-
ration of the intestinal microflora and intestinal barrier in the
foregut.

Keywords Yupingfeng polysaccharide .Rhizopus
oligosporus SH . Immunity . Intestinal microflora . Intestinal
barrier . Toll-like receptors

Introduction

A considerable number of traditional Chinese medicines
(TCMs) have a long history of being used in Asian countries
for the prevention and treatment of diseases and improvement
of immunity (Ma et al. 2013), because TCMs cause few side
effects and exhibit low toxicity (Li et al. 2008). In recent years,
the interest in TCMs is growing not only commercially but
also academically, due to a broad spectrum of immune
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regulatory activities of TCMs (Burns et al. 2010). Yupingfeng
(YPF) is a kind of Astragali radix (AR)-based TCMs supple-
mented with Rhizoma Atractylodis Macrocephalae (RAM)
and Radix Saposhnikoviae and has been clinically prescribed
for hundreds of years to prevent or treat colds, flu, and
inflammation-associated diseases (Hou and Xin 2000), in-
cluding asthma (Chen et al. 2014), allergic rhinitis (Makino
et al. 2004), and allergic conjunctivitis (Chen 2013). Modern
pharmacological studies have shown that the YPF polysac-
charides are one of the main active components of this formula
(Jiang et al. 2010), which can wield bidirectional immuno-
modulatory effects (Du et al. 2013). Early study verified that
the total polysaccharides of YPF could produce beneficial
immunomodulatory effects by promoting the proliferation of
splenocytes and the secretion of IL-2 (Yang et al. 2015).
Moreover, Rhizopus oligosporus has been widely used to pro-
duce a variety of bean-fermented foods, such as fermented
bean curd, fermented soya beans, soy sauce, and tempeh,
which has a powerful enzyme production system, and
R. oligosporus-fermented canavalia has been reported to im-
prove the bioactive potential (Niveditha and Sridhar 2012;
Vedavyas et al. 2014). TCMs fermented by probiotic exerted
a greater immune effect (Bose et al. 2012a), including the
biotransformation of YPF (Wang et al. 2010; Xu et al. 2006).

Increasing evidence indicated that the commensal microbi-
ota is critical for the development and maintenance of immune
and intestinal homeostasis through stimulating immune sys-
tem and regulating the intestinal mucosal barrier functions in
animals (Walsh et al. 2014). It has been shown that immune
response is positively regulated by intestinal microbiota via
highly conserved pattern recognition receptors (PRRs) includ-
ing Toll-like receptors (TLRs), which recognize microbe-
associated molecular patterns (MAMPs) (Goto and Kiyono
2012), resulting in specific immune responses, such as
defensins and cytokine release (Netea and Meer 2011).
Moreover, symbiotic bacteria also can strengthen intestinal
barrier function by promoting the development and functional
maturation of intestinal epithelial cells and intestinal architec-
ture (Round andMazmanian 2009), imparting stimuli for con-
tinuing repair and restoration of intestinal barrier (Sharma
2010). However, a reduced biodiversity and a disorder of
gut flora are associated with dysregulation of immune re-
sponses and impairment of intestinal barrier (Round and
Mazmanian 2009), which lead to hyperresponsiveness im-
mune response and increased intestinal permeability, and
eventually contribute to the development of inflammatory
bowel disease (Dupont 2016). Conspicuously, substantial
studies have revealed that probiotics, prebiotics, synbiotics,
and TCMs (Chen et al. 2016) can exert beneficial effects on
immunity via affection of intestinal microbiota homeostasis
and regulation of intestinal barrier.

The fermentation with R. oligosporus has been discovered
to increase active ingredients, and the fermentation process of

TCMs has been uncovered to improve their pharmaceutical
effects (Alolga et al. 2015). We hypothesized that fermented
Yupingfeng polysaccharides (FYP) with R. oligosporus SH
may be more successful than unfermented Yupingfeng poly-
saccharides (UYP) in enhancing the immune responses via
improving the microflora homeostasis and intestinal barrier
integrity and functionality. In the present study, employing
weaning rex rabbit with an underdeveloped immune and di-
gestive system, we undertaken to evaluate whether the bene-
ficial immunomodulatory effects of UYP and FYP are related
to ameliorate intestinal microbiota and barrier function, and
whether FYP with R. oligosporus SH may wield a stronger
helpful immunomodulatory impacts than UYP.

Materials and methods

Materials

Yupingfeng polysaccharides (YP) were provided by the
Guangzhou Foshan Institute of Technology. The carbohydrate
and protein concentrations of YP were 70.09 and 16.00 %,
respectively. R. oligosporus SH (CCTCC M2015360) was
screened and identified by the Microecosystem Engineering
Laboratory, College of Veterinary Medicine, Sichuan
Agricultural University, Chengdu, China (NCBI upload se-
quence ID: KP340799.1).

Preparation of FYP

YP was placed in flasks and dissolved in the ddH2O
(0.1 g mL−1). The FYP was inoculated with 3 %
R. oligosporus SH, whereas the UYP was inoculated with
saline; both samples were fermented at 200 rpm, 37 °C for
2 days. The broths were subjected to low-speed centrifugation
to sediment the particles, and the supernatants were stored at
4 °C. Endotoxin quantity of the final UYP and FYP broth was
4.46 ± 0.02 and 4.55 ± 0.05 EU/mL (P > 0.05), respectively.

Experimental design and sampling

The experiment was performed in the breeding center of rex
rabbit research institution (Chengdu, China). After 7 days of
acclimation in separated cages under the same temperature
(25 ± 2 °C controlled by automatic heating and ventilation
devices) with access to customized fodder without antibiotics
free and water ad libitum, 45, weaning (day 35) rex rabbits
(Sichuan White Rex Rabbit) were randomly divided into nor-
mal control (NC) group, UYP group and FYP group. During
the entire experimental period of 4 weeks, rex rabbits were fed
with customized fodder (Table S1) with saline, UYP, and FYP
(10 mL/kg) in the NC group, UYP group, and FYP group,
respectively. There were not illness and death during the
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experimental period. At the end of the fourth week, rex rabbits
were weighed, and 10 rex rabbits were randomly selected and
sacrificed in each group. Blood was collected from the ear
vein under anesthesia, and serum was separated. The rex rab-
bits were then sacrificed according to the institutional animal
care guidelines. The spleen and liver were quickly excised and
weighed, then stored in liquid nitrogen. Fresh fecal and intes-
tinal tissue samples were collected from the jejunum, ileum,
and cecum, which were immediately transferred into liquid
nitrogen for temporary storage before they were sent to the
laboratory where the samples were stored at −80 °C until
further analysis.

Determination of serum levels of cytokines

The separated serums from each group were used for the cy-
tokines assay. The levels of interleukin-1 (IL-1), IL-2, IL-4,
IL-6, IL-10, IL-12, tumor necrosis factor-alpha (TNF-α), and
interferon-gamma (INF-γ) in serum were measured using the
ELISA kits (R&D, USA) according to the instructions, and
the regression curves of various cytokines were presented in
Table S2.

DNA extraction

Genomic DNAwas isolated from the fecal samples (200 mg
each) by using the TIANamp stool DNA kit (TIANGEN,
Beijing, China) according to the instruction. For better extract
of gram-positive bacteria DNA, the second incubation at
95 °C for 10 min was executed after the initial incubation at
70 °C for 5 min and the Inhibit EX was used to adsorb other
impurities in the protocol. DNA quality was analyzed by 2 %
(w/v) agarose gel electrophoresis. Finally, DNAwas stored at
−80 °C before further analysis.

PCR-DGGE analysis

The V3 region of the bacterial 16S rDNA of total bacterial
DNA was amplified by the universal bacterial primer with a
GC-clamp (314f-GC, 5′-CGC CCG CCG CGC GCG GCG
GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG
AGG CAG CAG-3′ and 518r, 5′-ATTACC GCG GCT GCT
GG-3′) (Wang et al. 2015). PCR reaction was performed on
MyCycler™ Thermal Cycler (Bio-Rad, CA, USA) with the
following condition: 95 °C for 4 min; 35 cycles of 94 °C for
30 s, 58 °C for 30 s, and 72 °C for 1 min; and 72 °C for 8 min.
The size and quality of PCR products were detected by 1.5 %
agarose gel electrophoresis. Subsequently, denaturing gradi-
ent gel electrophoresis (DGGE) analysis of the mixtures
(10 μL PCR product and 10 μL loading buffer) was per-
formed using DCode™ Universal Mutation Detection
System (Bio-Rad, CA, USA) as follows: polyacrylamide gel
with 35–65 % linear gradients of denaturant (100 %

denaturant equivalents to 7 Murea and 40 % (v/v) formamide)
in 1× Tris acetate-EDTA buffer (TAE). DGGEwas performed
at 60 °C for 5 min at 200 Vand subsequent at 60 °C for 16 h at
100 V. After electrophoresis of the mixture, the polyacryl-
amide gel was stained with AgNO3 and imaged using a
BIO-RAD Gel Doc XR+ (Bio-Rad, CA, USA).

Quantitative PCR quantification of microbial

A CFX Connect™ Real-Time system (Bio-Rad, CA,
USA) system and SYBR® Premix Ex Taq™ II (TaKaRa,
Dalian, China) were used to perform quantitative PCR (Q-
PCR), to estimate the abundance of well-known beneficial
bacteria, harmful bacteria, and major cellulolytic bacteria
in samples. Primers for Q-PCR of microflora are listed in
Table 1. The reaction mixture (25 μL) included 9.5 μL of
sterile deionized water, 12.5 μL SYBR® Premix Ex
TaqTM II, 1 μL of forward, and reverse primer and
1 μL template DNA. The protocols were as follows:
95 °C for 1 min, subsequently, 40 cycles of 94 °C for
15 s, annealing at the optimal temperatures for 30 s,
72 °C for 30 s and subsequently, the melting curves were
produced to supervise specificity of the PCR primers.

In order to build the standard curves, the amplified products
were cloned and sequenced as described above. Positive
clones were then cultured to extract the plasmids using A
E.Z.N.A.™ plasmid mini kit (Omega Bio-Tek, USA), and
the Nano Drop spectrophotometer was subsequently used to
determine the concentration and quality of plasmid DNA,
which include goal gene sequence. The standard curves were
built using triplicate tenfold serial dilutions of the plasmid
DNA. Copy numbers of the target bacterial phylum or genus
for samples were calculated according to the standard curves.

Determination of mRNA expression levels by Q-PCR

Total RNA was isolated by RNAiso Plus reagent (Takara,
Dalian, China) according to the protocol, and the RNA
concentration was determined by a Nano Drop spectro-
photometer. Then RNA was reverse transcribed into
cDNA using PrimeScript™ RT reagent Kit (Takara,
Dalian, China) according to the manufacturer’s instruc-
tions. Finally, cDNAwas stored at −80 °C before analysis.

Q-PCR was performed using SYBR® Premix Ex Tap™
II and ROX reference dye II following the manufacturer’s
instructions to estimate the relative expression of TLR2
and TLR4 in the spleen, liver, and intestinal tissue, and
zonula occludens protein 1 (ZO-1), claudin, occludin, im-
munoglobulin A (IgA), polymeric immunoglobulin recep-
tor (PIGR), β-defensin, trefoil factor 1-like (TFF), and
epidermal growth factor (EGF) in intestinal tissue. The
information of primers was listed in Table 2. The SYBR
signal was detected by CFX Connect™ Real-Time
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system. Amplification was performed as follows:
predenaturation at 95 °C for 4 min, followed by 40 cycles
of denaturation at 94 °C for 15 s, annealing for 15 s at
suitable temperature, extension at 72 °C for 15 s, and
another extension at 72 °C for 8 min. The melting curve
was acquired after amplification phase, and 5 μL of the
PCR products was drawn for electrophoresis by using
1.2 % agarose gel to confirm the specific amplicon. The
amplification efficiency of the abovementioned genes was
controlled between 98 and 103 %. Relative expression of
the genes was analyzed using the 2−ΔΔCT method; mRNA
levels were presented as fold changes after normalization
to the housekeeping gene (GAPDH) and relative to a
calibrator.

Statistical analysis

NTSYS 2.10 package (Exeter software) and SPSS 19.0
were used to construct a phylogenetic tree and principal
component analysis (PCA) of DGGE profiles, respective-
ly. Biodiversity index of DGGE profiles, Shannon-Wiener
index, species evenness index, and species richness index

were calculated as previously described (Gupta et al.
2015). Data were expressed as mean ± SD and analyzed
using SPSS version 19.0. The difference was evaluated by
one-way ANOVA and considered significant if P < 0.05
or P < 0.01.

Results

The average daily gain and organ index of rex rabbit

The average daily gain (ADG) and organ indices are pre-
sented in Fig. 1. Treatment with UYP (P < 0.05) and FYP
(P < 0.01) significantly increased the ADG of rex rabbit,
and the ADG in the FYP group was significantly higher
than that in the UYP group (P < 0.01, Fig. 1a). The spleen
index of the UYP and FYP groups showed higher values
than that of the NC group (P < 0.01), and in the FYP
group, the spleen index was significantly higher than that
in the UYP group (P < 0.05, Fig. 1b), while UYP and
FYP have less effect on the liver index (P > 0.05).

Table 1 Primer information and standard curves of microflora for Q-PCR

Bacterial species Primer sequence (5 → 3) Regression curve/Tm/size Reference

Total bacteria F: CGGYCCAGACTCCTACGGG
R: TTACCGCGGCTGCTGGCAC

y = 14.354–0.2607X R2 = 0.997
Tm = 60 °C 130 bp

Guo et al. (2008)

Firmicutes F: GGAGYATGTGGTTTAATTCGAAGCA
R: AGCTGACGACAACCATGCAC

y = 13.073–0.2985X R2 = 0.998
Tm = 60 °C 126 bp

Bacteroidetes F: GGARCATGTGGTTTAATTCGATGAT
R: AGCTGACGACAACCATGCAG

y = 14.390–0.2807X R2 = 0.998
Tm = 58 °C 126 bp

Fibrobacter succinogenes F: GGTATGGGATGAGCTTGC
R: GCCTGCCCCTGAACTATC

y = 13.098–0.1725X R2 = 0.996
Tm = 56 °C 445 bp

Koike and Kobayashi (2001)

Ruminococcus flavefaciens F: TCTGGAAACGGATGGTA
R: CCTTTAAGACAGGAGTTTACAA

y = 14.211–0.2739X R2 = 0.998
Tm = 57 °C 295 bp

Prevotella prophyromonas F: GGTGTCGGCTTAAGTGCCAT
R: CGGAYGTAAGGGCCGTGC

y = 10.508–0.2952X R2 = 0.993
Tm = 58 °C 140 bp

Rinttila et al. (2004)

Bifidobacterium F: TCGCGTCYGGTGTGAAAG
R: CCACATCCAGCRTCCAC

y = 13.837–0.2045X R2 = 0.998
Tm = 62 °C 243 bp

Clostridium cluster I F: ATGCAAGTCGAGCGAKG
R: TATGCGGTATTAATCTYCCTTT

y = 13.376–0.2266X R2 = 0.998
Tm = 60 °C 120 bp

Enterococcus spp. F: CCCTTATTGTTAGTTGCCATCATT
R: ACTCGTTGTACTTCCCATTGT

y = 14.356–0.2542X R2 = 0.998
Tm = 52 °C 144 bp

Lactobacillus F: AGCAGTAGGGAATCTTCCA
R: CACCGCTACACATGGAG

y = 14.899–0.2863X R2 = 0.999
Tm = 58 °C 341 bp

Walter et al. (2001)

Butyrivibrio fibrisolvens F: CGCATGATGCAGTGTGAAAAGCTC
R: CCTCCCGACACCTATTATTCATGG

y = 14.290–0.2907X R2 = 0.994
Tm = 60 °C 240 bp

Fernando et al. (2010)

Clostridium cluster IV F: GCACAAGCAGTGGAGT
R: CTTCCTCCGTTTTGTCAA

y = 14.288–0.2472X R2 = 0.992
Tm = 60 °C 230 bp

Matsuki et al. (2004)

Clostridium cluster XIVa F: AAATGACGGTACCTGACTAA
R: CTTTGAGTTTCATTCTTGCGAA

y = 14.748–0.2615X R2 = 0.997
Tm = 60 °C 440 bp

Matsuki et al. (2002)

Enterobacteriaceae F: CATTGACGTTACCCGCAGAAGAAGC
R: CTCTACGAGACTCAAGCTTGC

y = 13.870–0.1927X R2 = 0.995
Tm = 52 °C 195 bp

Bartosch et al. (2004)

Streptococcus spp. F: AGAGTTTGATCCTGGCTCAG
R: GTTAGCCGTCCCTTTCTGG

y = 14.086–0.2630X R2 = 0.996
Tm = 60 °C 485 bp

Franks et al. (1998)
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Effects of UYP and FYP on cytokine expression
in the spleen

The mRNA expressions of inflammatory (IL-2, TNF-α, and
IFN-γ) and anti-inflammatory (IL-4 and IL-10) cytokines
were raised after administration of UYP and FYP (Fig. 2).
Compared to NC group, FYP significantly increased the ex-
pressions of IL-2 and TNF-α, and UYP appreciably enlarged
the expression of IFN-γ (P < 0.05) (Fig. 2a). However, only
FYP significantly upregulated the expressions of IL-10
(P < 0.05) and IL-4 (Fig. 2b). Meanwhile, there were no sig-
nificant differences between the UYP and FYP in the expres-
sion of cytokines (P > 0.05).

Effects of UYP and FYP on cytokine secretion in serum

As shown in Fig. 3, UYP and FYP increased the concentra-
tions of IL-2, IL-4, IL-12, TNF-α, and IFN-γwhen compared
with NC group in the serum, which indicated that UYP and
FYP could promote the secretion of some cytokines and main-
tain a low level and controllable of immune activation.
However, treatment with only FYP effectively improved the

concentrations of cytokines in serum and the levels of IL-2,
IL-6, and TNF-α, and IL-10 (Fig. 3b, c, e, and h) in FYP
group were significantly higher than those in UYP group
(P < 0.05 or P < 0.01).

Effects of UYP and FYP on TLR2 and TLR4 expressions

The mRNA expressions of TLR2 and TLR4 were significant-
ly elevated by treatment with UYP and FYP (Fig. 4).
Treatment with UYP increased the mRNA expression of
TLR2 in the jejunum (P < 0.05), ileum, and spleen
(P < 0.01) (Fig. 4a), and improved TLR4 mRNA in the ileum
and spleen (P < 0.01) (Fig. 4b). Treatment with FYP resulted
in significantly augmented TLR2 mRNA expression in the
jejunum, ileum, and spleen (P < 0.01) (Fig. 4a), and declined
the TLR2mRNA expression in the cecum and enlarged TLR4
mRNA in the jejunum, ileum, and cecum (P < 0.01) (Fig. 4b)
compared with the NC group. Furthermore, compared to
UYP, FYP significantly upregulated TLR2 mRNA expression
in the jejunum (P < 0.05) and ileum (P < 0.01) (Fig. 4a), TLR4
mRNA expression in the jejunum (P < 0.05) and spleen
(P < 0.01) (Fig. 4b), TLR2 expression in the spleen, and

Table 2 Primer information of genes for Q-PCR

Gene name Primer sequence (5 → 3) Tm (°C)/ size (bp) Accession

IL-2 F: TGAAACATCTTCAGTGTCTAGAAG
R: CCATTTGTTCAGAAATTCTACAATG

60/203 Z36904.1

IL-4 F: GTCACTCTGCTCTGCCTCCT
R: GCAGAGGTTCCTGTCGAGTCC

60/302 AF169170.1

IL-10 F: GAGAACCACAGTCCAGCCAT
R: CATGGCTTTGTAGACGCCTT

60/179 D84217.1

IFN-γ F: CGGTGGATGATCGGCTGGTCC
R: CGCCGACCTCGAAACAGCGT

60/124 NM_001081991.1

TNF-α F: CCTGCTGGCCAACGGCATGA
R: AGGAGCACGTAGGAGCGGCA

60/120 AB128153.1

TLR2 F: TGCCTCCTTGTTACCTATGC
R: AGATGAAGTTGTTCCCTCCG

57/153 NM_001082781

TLR4 F: GAGCACCTGGACCTTTCAAATAAC
R: GAACTTCTAAACCACTCAGCCCTTG

57/235 NM_001082732

Claudin F: GGAGCAAAAGATGCGGATGG
R: AATTGACAGGGGTCAAAGGGT

60/93 NM_001089316.1

Occludin F: GCAAGAGGCCGTATCCAGAG
R: AGTCCGTCTCGTAGTGGTCT

60/207 XM_008262320.1

ZO-1 F: CCTGCGAAACCCACCAAAG
R: ATGCTGTCAGAAAGGTCAGGG

60/293 XM_008269782.1

IgA F: GCTTTCTACGGCTTGGACCT
R: ACGGTCGCTGAAGTGTCTTT

60/128 AF090361.1

PIGR F: ACCATCACCTGCCCTTTCAC
R: GACCAGGAGTTAGCAGTCGG

60/286 NM_001171045.1

β-defensin F: CAGGGGCCGAAAATCTTGCT
R: TGCAGCAGTAGTTGCCGTTT

60/104 XM_008256301.1

TFF F: TGTTTTAACCGCTCCATCCCC
R: GAACGGGCACTCCTCTTCT

60/84 XM_002724403.2

EGF F: CTGGGTCCTGCACCTTTCTT
R: TGCCTTTCCAAATCCACCCA

60/164 XM_008267485.1

GAPDH F: TGTTTGTGATGGGCGTGAA
R: CCTCCACAATGCCGAAGT

56/129 NC_013676.1
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TLR4 in the ileum and cecum. However, there was no signif-
icant effect on TLR2 mRNA expression in the cecum
(P > 0.05).

Intestinal microbiota community was revealed
by PCR-DGGE

In this study, complicated and analogous DGGE fingerprints
of total bacterial community were presented significantly dif-
ferent among the test groups in the gastrointestinal tract (GIT)
(Fig. 5). The DGGE patterns found in feces from between
UYP group and FYP group seemed to be more similar than
those from the NC group in the jejunum and ileum (Fig. 5a
and b), whereas slight difference appeared among the three
groups in the cecum. The discernable bands of the DGGE
profiles were descending along the cecum, ileum, and jeju-
num. Some bands appeared in all groups, whereas some bands
only appeared in NC group, UYP group, or FYP group.
Meanwhile, the strengths of some bands changed consider-
ably. And the banding patterns in the UYP or FYP group
seemed to be more diverse than those obtained from the NC
group in jejunum and ileum (Fig. 5a and b). Additionally, the
discernable bands of samples from FYP seemed to be the most
diverse than those observed from the other groups in the GIT
(Fig. 5).

Treatment with UYP or FYP caused a notable alteration in
the bacterial community, as also revealed by the unweighted

Pair Group Method with Arithmetic mean algorithm
(UPGMA) dendrogram and by the principal component anal-
ysis (PCA) based on the unweighted UniFrac distance matrix-
es derived from DGGE profiles. More specifically, the den-
drograms from the total samples illustrated that each group
was clustered into a cluster. The similarity coefficients of the
banding patterns from the different groups were significant
difference from 44, 39, and 71 % to 100 % in the jejunum,
ileum, and cecum, respectively. Thus, the similarity coeffi-
cient of the samples from the cecum was the highest. The
samples in the FYP and NC groups were clustered into a large
branch in the cecum (about 78 % similarity, Fig. 5c), whereas
the FYP and UYP were clustered into a large branch in the
jejunum and ileum (both possessed about 72 % similarity,
Fig. 5a and b). Meanwhile, PCA plots were consistent with
the above dendrograms, which revealed the relationships be-
tween the community structures of the rex rabbit gut microbi-
ota, and demonstrated that treatment groups separately gath-
ered together in different locations in different GIT (Fig. 5d, e,
and f). The first and second principal components explained
58.14 and 21.45 %, 61.41 and 19.66 %, and 36.40 and
25.23 % of the variance in the jejunum, ileum, and cecum,
respectively. Thus, the flora community structures of UYP
group and FYP group showed higher relatedness in the jeju-
num and ileum (Fig. 5d and e), while the higher relatedness of
the flora community structures appeared in between the NC
group and FYP group in the cecum (Fig. 5f).
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In addition, bacterial diversity was clarified by DGGE fin-
gerprint analysis (Fig. 5). There was no significant difference in
the Shannon-Weiner diversity index (Fig. 5g), evenness index
(Fig. 5h), and richness index (Fig. 5i) among the three groups in
the cecum (P > 0.05), while these indices were significantly
higher in the UYP and FYP groups when compared with the
NC group in the jejunum and ileum (P < 0.05 or 0.01). These
indices in the FYP group were consistently higher than those of
UYP in the jejunum (P < 0.05) and ileum (Fig. 5g, h, and i).
Overall, these results indicated that the different treatments
caused different microbial community structures and predomi-
nant population. The intestinal microflora structures of the jeju-
num and ileum, but not the cecum, were greatly affected after
treatment with UYP and FYP, especially in the FYP groups.

Microbial populations quantified by Q-PCR

Treatment with UYP and FYP resulted in considerable alteration
in gut flora including differentially increasing the abundance of
total bacteria, Firmicutes, Bacteroidetes, Prevotella
prophyromonas, Butyrivibrio fibrisolvens (except for UYP in
ileum), Clostridium cluster IV, and Clostridium cluster XIVa
(P< 0.01, Fig. 6a–c, d, g, h, and j), aswell as remarkably reduced
the abundance of Enterococcus spp. (P < 0.01, Fig. 6n) in the
jejunum and ileum, but not in the cecum. Moreover, the abun-
dance of Lactobacillus was significantly enhanced in the cecum
and jejunum (P < 0.05, Fig. 6e); the abundance of Enterococcus
spp. in the cecum (P < 0.05) and the abundance of Streptococcus
spp. in the cecum and ileum (P < 0.01) were significantly de-
creased upon treatmentwithUYP and FYP (Fig. 6n and o). After
FYP treatment, the abundance of total bacteria, Firmicutes,
Bacteroidetes, P. prophyromonas , Lactobacillus ,
Bifdobacterium, Fibrobacter succinogenes, B. fibrisolvens,
Clostridium cluster IV, and Clostridium cluster XIVa
remained a higher level, whereas that of Enterobacteriaceae,
Enterococcus spp., and Streptococcus spp. were lower than
those in the NC group in the GIT. Interestingly, after FYP
treatment, the abundance of total bacteria, Firmicutes, B.
fibrisolvens in the ileum (P < 0.01), Bifidobacterium spp.
in the cecum (P < 0.05), and F. succinogenes in the jejunum
(P < 0.05) were obviously higher, but that of
Enterobacteriaceae in the ileum and Enterococcus spp. in
the ileum and jejunum were clearly lower (P < 0.01) in
comparison with UYP (Fig. 6). Others showed no significant
difference among the three groups in the GIT. Overall, these
results indicated treatment with UYP or FYP resulted in a
considerable impact on the number of some vital bacteria in
the jejunum and ileum, particularly in FYP group.

Effects of UYP and FYP on physical barrier in intestine

The genes expressions of tight junction, including ZO-1,
claudin, and occludin in the jejunum and ileum were shown

in Fig. 7a and d, respectively. FYP upregulated the mRNA
expressions of ZO-1, claudin, and occludin in the jejunum and
ileum, whereas only the mRNA expressions of claudin in the
jejunum and ZO-1, claudin, and occludin in the ileum in UYP
groups. In addition, only FYP established a higher level of
mRNA expression of the genes in the GIT. The mRNA ex-
pressions of ZO-1 and claudin in the FYP group were signif-
icantly higher than that in the UYP and NC groups in the
ileum (P < 0.05, Fig. 7d).

Effects of UYP and FYP on immunological barrier
in the intestine

As shown in Fig. 7b and e, treatment with UYP and FYP
markedly promoted the mRNA expressions of IgA, PIGR,
and β-defensin in the jejunum and ileum. The mRNA expres-
sions of β-defensin in the jejunum and ileum (P < 0.05) and
PIGR in ileum (P < 0.01, Fig. 7e) in FYP were noticeably
higher than that in NC group. Meanwhile, a higher level of
mRNA expression still appeared in the FYP group; the
mRNA expression of PIGR in FYP group was significantly
higher than that in the UYP group in the ileum (P < 0.01,
Fig. 7e).

Effects of UYP and FYP on chemical barrier
in the intestine

The results of Fig. 7c and f showed higher mRNA levels of
TFF and EGF were observed in the UYP and FYP groups
when compared with the NC group. The mRNA expression
of TFF was obviously facilitated in the jejunum by UYP
(P < 0.05) and FYP (P < 0.01, Fig. 7c), and that in ileum by
FYP (P < 0.05, Fig. 7f). Meanwhile, only treatment with FYP
resulted in significantly increasing the mRNA expression of
EGF in the jejunum (P < 0.05, Fig. 7c) and ileum (P < 0.01,
Fig. 7f). In addition, the mRNA expression of EGF in FYP
group was significantly higher than that in the UYP group in
the jejunum (P < 0.05, Fig. 7c) and ileum (P < 0.01, Fig. 7f).

Discussion

The beneficial effects of commensal microflora, probiotics,
and their fermentation products on health and immunity were
well evidenced (Dupont 2016). The fermentation process has
been revealed to improve the biological properties and phar-
macological activities of TCMs (Alolga et al. 2015). In the
study, we investigated whether FYP with R. oligosporus SH
could produce a stronger immunomodulatory property in
compa r i s on w i t h UYP and t h e mechan i sm o f
immunopotentiating effects of UYP and FYP in rex rabbit.
Our results indicated UYP and FYP possessed growth promo-
tion and immunopotentiating capability and could improve
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the balance of intestinal flora and maintain the integrity of
intestinal barrier.

The spleen is a pivotal immune organ for creatures,
which is the node of development, activation, and
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proliferation of immune cells. The development state of
immune organs directly impacts immune function and the

capability of disease resistance. Thus, the immune organ
index is known as the preliminary indicators to reflect
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immune organ development and immune function.
Previous study declared that the protective function of
AR on the spleen of rats with obstructive jaundice by
inhibiting apoptosis in the spleen (Zhang et al. 2009),
and the polysaccharides of Cyrtomium macrophyllum
(CM) could promote the development of the spleen (Ren
et al. 2014). Compared with YPF, YPF-fermented product
significantly increased spleen index in immunosuppres-
sive mice (Xu et al. 2006). Similar to the results, the
present experiment showed that the spleen indices in the
UYP and FYP groups were higher than that in the NC
group (Fig. 1b). Treatment with only FYP induced higher
spleen indices (Fig. 1b). Based on these results, it is con-
ceivable that UYP and FYP could promote the develop-
ment of the spleen, and FYP may be more effective than
UYP in promotion of immune organ indices.

Cytokines are soluble extracellular pleiotropic peptides or
glycoproteins, which possess multiple sources, multiple tar-
gets, and multiple functions (Burns et al. 2010), such as en-
gaging in innate and adaptive inflammatory host-protective
responses, regulating the development, differentiation, activa-
tion, and function of immune cells, as well as starting repair
processes aimed to maintain homeostasis (Hiscott and Ware
2011). A number of studies have reported that TCMs induced
appropriate immune responses through regulation of mRNA
and protein expression of cytokines genes (Burns et al. 2010).
Various polysaccharides of TCMs including CM (Ren et al.
2014) have beneficial effects on cytokines expression.
Moreover, the biotransformation of YPF could enhance the
immune function by improving the contention of IL-2 in se-
rum (Wang et al. 2010). Our results were consistent with these
findings that treatment of UYP and FYP augmented mRNA
expressions of IL-2, IL-4, IL-10, TNF-α, and IFN-γ in the
spleen when compared to the NC group. The mRNA expres-
sions of IL-2, IL-4, IL-10, and TNF-α were significantly en-
hanced only by FYP (P < 0.05, Fig. 2). Simultaneously, both
UYP and FYP exhibited immune-enhancing activity were re-
vealed by their capability to increase the concentrations of IL-
2, IL-4, IL-12, TNF-α, and IFN-γ in serum of rex rabbit and
to decrease the ratio of IFN-γ/IL-4, indicating that the Th1/
Th2 balance toward Th2 response. FYP also disclosed a sig-
nificantly higher facilitation of IL-2, IL-6, TNF-α, and IL-10

secretion compared to UYP (Fig. 3). These results suggested
that both UYP and FYP could ameliorate immune responses
by regulation of cytokine synthesis, and FYP is more effective
than UYP. In addition, the variation trends of cytokine con-
centrations in serum and cytokines mRNA levels in the spleen
were not all identical, indicating that UYP and FYP not only
affecting the transcription of cytokines but also regulating
cytokines translation.

Ligands induce TLR2 constructing a heterodimer with ei-
ther TLR1 or TLR6 to regulate cytokine synthesis. TLR2/1
elevates IFN-γsecretion, while TLR2/6 stimulates IL-10 pro-
duction, which indicated that TLR2 signaling possesses bidi-
rectional immunomodulatory activity (Bryant et al. 2015).
Maybe, this explains why both pro- and anti-inflammatory
cytokines were improved by UYP or FYP (Figs. 2 and 3).
TLR4 is other important PRRs associated with immunity
and is expressed in immune cells and enterocytes, and it elicits
cytokine synthesis with recruitment of innate and adaptive
immune cells to improve the body’s defense function via ac-
tivation of NF- B (Frosali et al. 2015). TCMs and their com-
ponents affected the activation status of DCs via TLRs signal-
ing pathways (Li and Zhang 2015). The rhubarb polysaccha-
rides evoked immunomodulatory activity through the TLR4
signaling pathway (Zhang et al. 2013). Our results showed
that the mRNA expression of TLR2 and TLR4 were upregu-
lated by UYP or FYP, and only FYP could more effectively
upregulate TLR2 and TLR4 mRNA levels (Fig. 4). Based on
these findings, it is suggested that immune-enhancing activi-
ties of UYP and FYP probably through activating TLR2 and
TLR4 pathways, and the effect was better for FYP.

TCMs can affect the intestinal flora (Chen et al. 2016), for
instance, the unfermented and fermented Rhizoma coptidis
significantly augmented the population of Bifodobacterium
and Lactobacillus (Bose et al. 2012b) as well as the RAM
polysaccharide which could also obviously ameliorate and
adjust the disordered intestinal microflora (Wang et al.
2014a). Simultaneously, microbial flora plays a crucial role
in accurately regulating the immune responses, and alterations
in the gut microbiota are associated with shifts in intestinal
immune response (Ivanov and Dan 2011). Unfermented and
fermented Flos Loniceramaintained immune balance through
significantly improving disordered intestinal flora and intesti-
nal permeability (Wang et al. 2014b). In the study, PCR-
DGGE profiles revealed that the patterns of intestinal flora
possessed noticeable differences among the three groups,
and the bacterial diversities were significantly higher in the
UYP and FYP groups than that in the NC group in the jeju-
num and ileum (Fig. 5). In addition, cluster analyses of PCR-
DGGE fingerprints indicated that each group was distinctly
separated cluster, and the lowest similarity coefficients of the
banding patterns among the different groups were 44 and
39 % in the jejunum and ileum (Fig. 5a and b). PCA analyses
indicated a close association of the UYP and FYP groups in

�Fig. 6 Effects of UYP or FYP on functional bacteria. a–o Log10DNA
gene copies of total bacteria, Firmicutes, Bacteroidetes, Prevotella
prophyromonas, Lactobacillus spp., Bifdobacterium, Clostridium
cluster IV, Clostridium cluster XIVa, Fibrobacter succinogenes,
Butyrivibrio fibrisolvens, Clostridium cluster I, Ruminococcus
flavefaciens, Enterobacteriaceae, Enterococcus spp., and Streptococcus
spp. in the cecum, ileum, and jejunum, respectively. Log10DNA gene
copies quantification data were normalized to the standard curve lines
and presented with the means ± standard deviation (n = 6). *and #
indicate P < 0.05, ** and ## indicate P < 0.01, compared with the NC
group and UYP group, respectively
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the jejunum and ileum (Fig. 5d and e). These findings implied
that treatment with UYP or FYP resulted in different microbial
community structures and predominant flora in the foregut,
and compared to UYP, FYP can exert a more beneficial
consequence.

Moreover, in our study, there was a rise in the abundance of
total bacteria, Firmicutes, Bacteroidetes, and beneficial bacte-
ria, while the number of harmful bacteria was decreased after
treatment with UYP or FYP in the GIT (Fig. 6). These results
implied that microbial community structures were improved
by UYP and FYP. Firmicutes and Bacteroidetes are predom-
inant bacteria in the GIT of rex rabbits (Zeng et al. 2015).
Firmicutes mainly includes multiple cellulolytic bacteria,
which is closely related to bioconversion of feeds in the body
(Evans et al. 2011). Bacteroidetes is known to promote the
catabolism of plant cell wall (Cheryl et al. 2006), and in-
creased abundance of Bacteroidetes might ameliorate the in-
testinal mucosal barrier function, ultimately enhancing the
innate immune responses (Sonnenburg et al. 2005). Results
of this study indicated that UYP and FYP significantly raised
the abundance of Firmicutes and Bacteroidetes in the jejunum
and ileum (P < 0.01, Fig. 6b and c), and the abundance of total
bacteria, Firmicutes, and Bacteroidetes remained a higher lev-
el only in the FYP group than that in the NC group in the GIT,
especially in the jejunum and ileum (Fig. 6a, b, and c). These
results demonstrated that intestinal microenvironment and gut
microflora composition appeared significant changes

treatment with UYP and FYP in foregut, and FYP possessed
better activity.

P. prophyromonas are representative species of sugar-
fermenting microbes and synergistically participate in com-
plex carbohydrate disintegration along with cellulolytic bac-
teria via production of β-galactosidases (Nathani et al. 2015).
F. succinogenes and B. fibrisolvens are major cellulolytic bac-
teria species in rumen ecosystem (Nathani et al. 2013),
converting undigested carbohydrates to short-chain fatty acids
(SCFAs) including acetate, propionate, and butyrate, which
can improve the intestinal microbial community structure
and intestinal barrier integrity and participate in
immunomodulation, including controlling the regulatory T
cell development and function (Hu and Hongbo 2015) and
cytokine production (Shastri et al. 2016). Clostridium cluster
IV and Clostridium cluster XIVa are butyrate-producing bac-
teria in the GIT (Suchodolski 2010). A study has revealed that
Clostridium cluster IV and Clostridium cluster XIVa actively
regulated the host’s immune system by promoting differenti-
ation of naive T cells toward regulatory T cells which can
cause the specific increase of IL-10-producing Treg cells in
the spleen (Atarashi et al. 2011). In the study, the results re-
vealed that the amount of P. prophyromonas, R. flavefaciens,
Clostridium cluster IV, and Clostridium cluster XIVa was sig-
nificantly increased by UYP and FYP in the jejunum and
ileum (P < 0.01, Fig. 6d, g, h, and j). In addition, only FYP
could more effectively elevate the abundance of four species
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in the GIT (Fig. 6d, g, h, and j). This result suggested that the
immunoenhancement activity of UYP and FYP may be relat-
ed to increasing the number of cellulolytic bacteria in the
foregut.

Lactobacillus and Bifidobacterium are recognized as ben-
eficial intestinal flora. Previous studies have shown that they
could evoke nonspecific immune responses through enhanc-
ing production of cytokines via the activation of TLR path-
ways (Klein et al. 2008) and upregulate the expressions of
claudin and occludin in the intestine (Wang et al. 2014c).
The inc reased abundance of Lactobac i l lus and
Bifidobacteriummay be associated with improving immunity
through activation of TLRs (Klein et al. 2008). Our results
revealed that both UYP and FYP increased the number of
Lactobacillus and Bifidobacterium in the GIT (Fig. 6 e and
f). Enterobacteriaceae, Enterococcus spp., and Streptococcus
spp. are recognized as normal parts of the digestive tract flora,
which are considered as major opportunistic pathogens that
could cause many diseases (Munita et al. 2012).
Bifidobacterium can inhibit the growth of Enterobacteriaceae
(Simone et al. 2014), Streptococcus spp. (Aloisio et al. 2014),
and Enterococcus spp. (Itami et al. 1996). This study
displayed that the number of Enterobacteriaceae,
Enterococcus spp., and Streptococcus spp. were decreased
by UYP and FYP in the GIT, particularly FYP in the jejunum
and ileum (Fig. 6m, n and o). The results indicated that the
beneficial immune effects of UYP and FYP may be due to
increasing the number of probiotics to inhibit the proliferation
of harmful bacteria, especially FYP. However, what kind of
specific bacteria showed obvious correlation between FYP or
UYP and the immunoenhancement effects that need to be
studied further.

The intestinal barrier is a complex and vital system for
nutrient absorption, defense against harmful substances inva-
sion, and maintaining immune balance. It consisted of physi-
cal barrier refers to tight junctions, immunological barrier re-
lates to IgA, PIGR and β-defensins, chemical barrier contains
TFF and EGF and biological barrier consisted of commensal
flora (Dai and Wang 2015). Thus, the homeostasis of the in-
testinal barrier integrity and function is directly related to the
permeability of the GIT. ZO-1, claudin, and occludin are three
key proteins for the strength of tight junction in the GIT
(Halpern and Denning 2015). Unfermented or fermented
Flos Lonicera improved intestinal barrier function by upreg-
ulating ZO-1 and claudin mRNA expressions (Wang et al.
2014b). Similarly, our study displayed UYP and FYP signif-
icantly raised the ZO-1, claudin, and occludinmRNA levels in
the jejunum and ileum, and FYP showed higher activity of
improving physical barrier of the GITwhen compared to UYP
(Fig. 7a and d).

A pivotal role for intestinal barrier surfaces is the consid-
erable synthesis of secretory immunoglobulin A (SIgA) by
plasma cells (Anand et al. 2007). Commensal flora promotes

SIgA and PIGR productions to maintain host-microbial mu-
tualism and immune homeostasis through activation of PRRs
(Kaetzel 2014).β-Defensins belong to antimicrobial peptides,
which are primarily produced by intestinal epithelial cells, and
may strongly strengthen host defense indirectly by inducing
immune responses (Halpern and Denning 2015). Researches
have shown that decoction YPF could obviously raise the
secretion of IgA in mucosa (Hou and Xin 2000). Similarly,
our results revealed that UYP and FYP increased the mRNA
expressions of IgA, PIGR, and β-defensins, and FYP more
strongly facilitated their mRNA levels (Fig. 7b and e). These
results implied that UYP and FYP played a beneficial role in
immune barrier, and FYP exerted a greater activity than UYP.

TFF and EGF are recognized as epithelial reparative factors
(Halpern and Denning 2015). TFF is a small polypeptide pri-
marily synthesized by the intestinal goblet cells, which con-
tributed to epithelial regeneration and maintain mucosal integ-
rity by regulating TLRs in the GIT (Jing and Sun 2011). It has
been shown that kiwifruit improved colonic barrier function
by upregulating the expression of TLRs and TFF genes
(Gunaranjan et al. 2014). EGF, a heat- and acid-stable peptide,
along with the EGF-receptor accelerates proliferation and dif-
ferentiation of epithelial cells, remarkably improves gut integ-
rity, and heals damaged mucosa or renews epithelial cells
(Dvorak 2010). In the study, the mRNA expressions of TFF
and EGF were increased after treatment with UYP and FYP,
and FYP more strongly facilitated their mRNA levels (Fig. 7).
These results indicated that both UYP and FYP possessed
potent beneficial effect on chemical barriers, and FYP a stron-
ger effect.

It is demonstrated that the interplay between the MAMPs
derived from microbes and PRRs including TLRs expressed
on a variety of cells could maintain the intestinal homeostasis
and epithelial barrier integrity (Louis and Lin 2009) via regu-
lating immune cell differentiation and synthesizing cytokines,
defensins, and immunoglobulins. Therefore, TLR pathway
may be considered as an interface among intestinal barrier,
microbiota, and immune system, which play a pivotal role in
shaping intestinal microbiota (Frosali et al. 2015). While in-
testinal flora also can regulate the TLRs expression to main-
tain immune balance (Goto and Kiyono 2012). For example,
B. fragilis through TLR2, stimulated cytokine production and
T cell differentiation (Round et al. 2011). In addition, the gas-
trointestinal barrier integrity and function are closely related to
TLR pathways; TLR2 and TLR4 pathways are essential for
mucosal protection against acute intestinal injury via mainte-
nance of epithelial barrier integrity (Cario 2008). In return, the
intestinal barrier provides venues for intestinal flora modulat-
ing the immune responses by TLRs, especially intestinal im-
mune, because the intestinal barrier contains many immune
cells and non-immune cells, which express TLRs (Fermín et
al. 2014). Therefore, the integrity of the intestinal barrier is the
foundation of flora regulating immune through TLRs. In the
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current study, both UYP and FYP exhibited robust immune-
enhancing activity, raising the expressions of TLR2 and TLR4
and improving intestinal microbial community and intestinal
barrier integrity. In addition, FYP exhibited significantly
higher beneficial effects than UYP. These results indicated
that the immunoenhancement activity of the two formulations,
particularly FYP, perhaps is related to improve the intestinal
community structure and intestinal barrier integrity and func-
tionality by activating the TLR2 and TLR4 pathways.

In conclusion, our study highlighted that treatment with
FYP resulted in more prior improvement in promoting growth
and strengthening the immune than UYP. Moreover, our re-
sults also suggested the above beneficial effects of FYP are
probably related to stimulate cytokines synthesis by activation
of TLR2 and TLR4 pathways, ameliorate intestinal commu-
nity structure, and improve intestinal barrier integrity and
functionality. In future studies, we will devote to identify
and isolate the compound(s) or mediator(s) in the FYP that
are accounted for exerting the immunoenhancement effects of
FYP.
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