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Abstract As many plant secondary metabolites have antimi-
crobial activity, microorganisms of the anaerobic digestion
process might be affected when plant material rich in these
compounds is digested. Hitherto, the effects of plant second-
ary metabolites on the anaerobic digestion process are poorly
investigated. In this study, the alkaloid gramine, a constituent
of reed canary grass, was added daily to a continuous co-
digestion of grass silage and cowmanure. A transient decrease
of the methane yield by 17 % and a subsequent recovery was
observed, but no effect on other process parameters. When
gramine was infrequently spiked in higher amounts, the ob-
served inhibitory effect was even more pronounced including
a 53 % decrease of the methane yield and an increase of acetic
acid concentrations up to 96 mM. However, the process re-
covered and the process parameters were finally at initial
values (methane yield around 255 LN CH4 per gram volatile
solids of substrate and acetic acid concentration lower than
2 mM). The bacterial communities of the reactors remained
stable upon gramine addition. In contrast, the methanogenic
community changed from a well-balanced mixture of five
phylotypes towards a strong dominance of Methanosarcina
(more than two thirds of the methanogenic community) while
Methanosaeta disappeared. Batch inhibition assays revealed
that acetic acid was only converted to methane via acetoclastic

methanogenesis which was more strongly affected by gramine
than hydrogenotrophic methanogenesis and acetogenesis.
Hence, when acetoclastic methanogenesis is the dominant
pathway, a shift of the methanogenic community is necessary
to digest gramine-rich plant material.

Keywords Continuous stirred tank reactor . Biogas
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Introduction

Many plants form secondary metabolites have ecological and
physiological functions like regulation of growth, activity
against herbivores, fungi, and prokaryotes as well as allelop-
athy. Plant secondary metabolites (PSM) are classified accord-
ing to their chemical structures, e.g., phenols, alkaloids, or
terpenoids (Harborne 1999). If plant biomass containing sec-
ondary metabolites is considered for energy generation like
biogas production, the effects of these PSM on the anaerobic
digestion (AD) process should be taken into account. Many
PSM have antimicrobial activity (Wallace 2004) and may thus
affect microorganisms of the biogas process.

The effects of PSM on AD processes are poorly studied.
Recently, the phenolic PSM coumarin was proven to cause a
reduction of methane formation and to induce changes of the
bacterial community composition while the methanogenic
community remained stable (Popp et al. 2015). Mono- and
polyphenols were shown to have an inhibitory effect on meth-
ane production during anaerobic treatment of wastewater
(Akassou et al. 2010; Borja et al. 1997). In contrast, two poly-
phenolic flavonoids, rutin and hesperidin, commonly found in
brewery wastewater had no effect on AD (Herrmann and
Janke 2001). Furthermore, polyphenolic tannins are known
to inhibit anaerobic wastewater treatment processes by
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complexation of proteins (Mannucci et al. 2010). Effects on
ruminal methane productionwere investigated by screening of
hundreds of PSMs (Bodas et al. 2008; García-González et al.
2008). The motivation of this research, however, was the re-
duction of methane emissions from ruminal livestock. In con-
trast, maximized methane yields are desired for biogas
processes.

Other inhibitors of the AD process like antibiotics, nano-
particles, long-chain fatty acids, and xenobiotics occurring in
waste water were studied in more detail (Gonzalez-Estrella
et al. 2013; Flores et al. 2015; Ma et al. 2015). Systematic
studies with several antibiotics at different concentrations re-
vealed that the volatile fatty acids (VFA) degrading pathways
were affected (Cetecioglu et al. 2012; Aydin et al. 2015).
Furthermore, recent investigations shed light on the interplay
of antibiotics, the microbiome, and their biodegradation capa-
bilities (Aydin et al. 2016). However, the effect of inhibitors
on biogas production from agricultural and municipal sources
might be different because of the different process conditions.

Perennial grasses as substrates for biogas production can
provide high methane yields while entailing ecological advan-
tages over established energy crops like maize. Cultivation of
perennial grasses like reed canary grass (Phalaris
arundinacaea) decreases soil erosion, sequesters carbon, and
improves biological diversity by providing habitat for wildlife
(Johnson et al. 2007). Reed canary grass is commonly found
in temperate regions in Europe, North America, and Asia. It
grows onmoist and wet sites but also tolerates drought (Casler
et al. 2009). Reed canary grass is not suitable for grazing or as
fodder as it contains harmful alkaloids such as gramine,
hordenine, and N,N-dimethyltryptamine, which reduce its pal-
atability. Sheep grazing on alkaloid-rich reed canary grass
pastures shows a reduced voluntary intake and weight gain
and a higher rate of diarrhea (Marten et al. 1976). However,
there is an increasing interest in using reed canary grass for
other purposes than animal feed like energy production
(Jasinskas et al. 2008; Oleszek et al. 2014).

Gramine (1-(1H-indol-3-yl)-N,N-dimethylmethanamine) is
the simplest indole alkaloid commonly found in reed canary
grass. Its concentration amounts up to 0.7 % of total solid (TS)
content (Coulman et al. 1976). Conflicting results were report-
ed for the effect of gramine in ruminal systems. Coulman et al.
(1977) found only little effect of gramine on the in vitro di-
gestibility of cellulose or plant material. In contrast, gramine
inhibited the in vitro digestibility of orchard grass (G.W.
Arnold, personal communication cited in Coulman et al.
(1977)). Furthermore, gramine was proven to have antibacte-
rial properties impairing the growth of Pseudomonas
(Sepulveda and Corcuera 1990). To the best of our knowl-
edge, the present study is the first addressing the effects of
gramine on AD.

Gramine was added continuously or episodically to lab-
scale continuous co-digestions of cow manure and grass

silage. Effects on the process parameters were evaluated and
bacterial as well as methanogenic communities were moni-
tored by molecular fingerprinting on the DNA level.
Furthermore, the inhibitory effects of gramine on acetogenesis
and methanogenesis were investigated in more detail by batch
inhibition assays. Acetic acid conversion pathways were dis-
tinguished by using 13C-methyl group-labeled acetic acid. In
contrast to existing studies, no presumption about dominant
pathways or the most sensitive step of the AD process was
applied in the inhibition studies.

Methods

Operation of continuous stirred tank reactors

Three continuous stirred tank reactors (CSTRs) (named A, B,
and C; total volume 15 L, working volume 10 L) were oper-
ated in parallel under mesophilic conditions (38 °C). The re-
actors were inoculated with a mixture of 7 L reactor content
from a lab-scale biogas reactor digesting cow manure and
grass silage and 23 L digestate from a pilot-scale biogas reac-
tor digesting cow manure and maize silage. A mixture of 58 g
grass silage (TS = 30 %fresh mass , volatile solids
(VS) = 89 %TS) and 217–280 g cow manure (TS = 7–9 %fresh

mass, VS = 77–80%TS) was added daily to each reactor togeth-
er with 0.04 g Ferrosorb DGμ (HeGo Biotec GmbH,
Germany) per added grams of TS. Substrates were obtained
from a farm-scale biogas plant near Neichen (Germany) and
stored at 4 °C. Grass silage was milled in liquid nitrogen
before adding to each reactor. Cow manure was diluted with
tap water to obtain a TS content of 4.5 %fresh mass. The organic
loading rate (OLR) was 3.2 gVS L−1 day−1, and the mean
hydraulic retention time (HRT) was 21 days. A pre-
experimental time of 80 days preceded the start of the gramine
addition. The main experiment began with the start of the
daily addition of 0.65 mmol of gramine (0.7 %TS of the grass
silage) to reactor A. Reactor B was spiked with higher con-
centrations of gramine adding 13.8 mmol on day 63 (resulting
in a theoretical concentration of 1.38 mM in the reactor),
27.5 mmol on day 86 (2.75 mM), and 27.5 mmol on
day 121 (2.75 mM). Actual gramine concentrations after the
second and third spike could be higher as the reactor might
still contain gramine from the previous spike. The third reactor
C served as a gramine-free control.

Analyses of the process parameters

TS and VS contents were determined as described by Sträuber
et al. (2012). TS content of grass silage was corrected for
volatile components as described by Popp et al. (2015).
Daily gas production was measured by drum-type gas meters
TG05 (Ritter, Germany) and normalized to standard pressure
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(101.325 kPa) and standard temperature (273.15 K). Gas com-
position was determined by an AWIFLEX gas analyzer
(AWITE Bioenergie, Germany). pH values of digestates were
measured by a pH 3310 pH meter equipped with a SenTix 41
electrode (WTW, Germany). Ammonia nitrogen concentra-
tion, organic acid/alkalinity ratio, and concentrations of VFA
(acetic, propionic, iso-butyric, n-butyric, iso-valeric, and n-
valeric acid) were determined as described by Lv et al. (2014).

Microbial community analysis by terminal restriction
fragment length polymorphism fingerprinting

Samples of digestates were sieved (mesh size 1 mm) and
frozen at −20 °C until DNA extraction. DNA was isolated
from 200 μL of each sample with NucleoSpin Soil Kit
(Macherey-Nagel, Germany) using lysis buffer SL1 and
Enhancer SX according to the manufacturer’s instructions.
Bacterial 16S ribosomal RNA (rRNA) genes were amplified
by polymerase chain reaction (PCR) using the MyTaq™Mix
(Bioline, Germany) and applying the primers 27f and 1492r
(Lane 1991). The PCR reactionmixtures contained 6.25μL of
MyTaq™ Mix, 1 μL of each primer (5 pmol), and 1 μL ge-
nomic template DNA in a total volume of 12.5 μL. The cy-
cling protocol comprised an initial denaturation at 95 °C for
1 min, followed by 30 cycles of denaturation at 95 °C for 15 s,
primer annealing at 58 °C for 15 s, elongation at 72 °C for
10 s, and a final elongation step at 72 °C for 15 min. The
methanogenic community was investigated by amplifying
the mcrA (methyl coenzyme-M reductase) genes using the
same polymerase and the primers mlas and mcrA-rev de-
scribed by Steinberg and Regan (2008). The PCR reaction
mixtures contained 6.25 μL of MyTaq™ Mix, 1 μL of each
primer (5 pmol), and 1 μL of genomic template DNA in a total
volume of 12.5 μL. The thermocycling protocol was as fol-
lows: 3 min at 95 °C, followed by 5 cycles for 30 s at 95 °C,
45 s at 48 °C, a temperature ramp from 48 °C to 72 °C at
0.1 K s−1 and 30 s at 72 °C, followed by 26 cycles at 95 °C for
30 s, 45 s at 52 °C, 120 s at 72 °C, and a final elongation step at
72 °C for 20 min. The primers 27f and mcrA-rev were labeled
with phosphoramidite fluorochrome 5-carboxyfluorescein
(FAM). For analyzing terminal restriction fragment length
polymorphism (T-RFLP), restriction of 16S rRNA amplicons
withHaeIII orMspI (New England Biolabs, Germany) and of
mcrA amplicons with MwoI or BstNI (New England Biolabs,
Germany) was performed as described earlier (Popp et al.
2015). For T-RFLP analysis of 16S rRNA amplicons,
0.2 μL of the size standard MapMarker 1000 labeled with
carboxy-X-rodamine (ROX; Eurogentec, Germany) was
added; for analyzing the mcrA amplicons, 0.2 μL of the
MCLAB Red DNA Size Standard (Nimagen, Germany) was
added. The terminal restriction fragments (T-RFs) were sepa-
rated by an ABI PRISM 3130xl Genetic Analyzer (Applied
Biosystems, USA). T-RFLP data were analyzed as described

by Popp et al. (2015). Relative abundances of T-RFs were
calculated by dividing the individual peak areas by the total
peak area. Phylogenetic assignment of T-RFs based on mcrA
amplicons was performed using the public mcrAT-RFLP da-
tabase (Bühligen et al. 2016). Differences between the reac-
tors regarding the 16S rRNA gene-based T-RF profiles from
all sampling days (days 0, 49, 84, 119, and 148, respectively)
were analyzed by analysis of similarities (ANOSIM) function
of the Bvegan^ package (version 2.3-3) using R version 3.2.3
(Oksanen et al. 2016).

Batch inhibition experiments

Inhibition of acetogenesis and methanogenesis by gramine
was further investigated in batch experiments. Therefore,
gramine and specific substrates for acetogenesis (propionic
or n-butyric acid) and methanogenesis (acetic acid or H2/
CO2) were added to digestate from reactors B or C. Reactors
B and C were further operated after the main experiment as
described above. Reactor B was further spiked with gramine
(27.5 mmol) on days 150, 170, 184, 196, 228, and 252.
Digestates from reactors B and C were taken as inocula on
day 214 for acetic acid, on day 263 for hydrogen, and on day
266 for propionic and n-butyric acid experiments. Digestate
was stored under N2 atmosphere at 37 °C for at least 3 days to
minimize background gas production. Afterwards, it was
sieved (1 mm mesh size) and 50 g of it were filled in
120-mL cultivation bottles under N2 flow. Bottles were closed
with rubber stoppers and sealed with aluminum caps, and
headspaces were flushed with N2/CO2 (80:20 vol/vol) for at
least 2 min (0.2 L min−1). Gramine (0.29 mmol) had been
added beforehand to the bottles resulting in a final concentra-
tion of 5.7 mM. As substrates, 13C-labeled acetic acid (sodium
acetate-2-13C, 10 mM, Sigma-Aldrich, Germany), propionic
acid (10 mM), or n-butyric acid (2 mM) were added from
anoxic stock solutions (sodium salts). Substrate concentra-
tions were based on literature values and preliminary experi-
ments performed in our laboratory to ensure complete sub-
strate utilization and to avoid inhibition by high substrate con-
centrations (data not shown). H2/CO2 (80:20 vol/vol) gas was
added to 1 bar overpressure. Duplicate cultivation bottles were
incubated at 37 °C.

VFA concentrations in the liquid phase were monitored by
high-pressure liquid chromatography (HPLC) as described by
Popp et al. (2015). Gas production was measured by using a
liquid displacement technique as described by Porsch et al.
(2015). Gas volumes were normalized to standard temperature
(273.15 K) and pressure (101.325 kPa) and corrected for
background gas production using substrate-free controls.
Gas phase of cultivation bottles was sampled to determine
the gas composition by taking 1 mL of gas with a syringe
flushed with nitrogen. Gas samples were transferred into
20-mL vials filled with argon for gas chromatography (GC).
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Samples were pre-heated to 40 °C by a TurboMatrix HS-110
autosampler (PerkinElmer, Germany). Gas composition was
measured by a gas chromatograph Clarus 580 (PerkinElmer,
Germany) equipped with parallel columns. A Hayesep N col-
umn (7″ length, 1/8″ diameter) separated CO2 and a Mole
sieve 13X column (9″ length, 1/8″ diameter) separated N2,

H2 and CH4. Argon was used as carrier gas with a flow rate
of 25 mL min−1 at a pressure of 230 kPa. Injector temperature
was 150 °C and detector temperature was 200 °C. For analysis
of 12CO2 and

13CO2 as well as
12CH4 and

13CH4 in the gas
phase, gas chromatography-mass spectrometry (GC-MS)
analysis was performed using a PerkinElmer GC Clarus 600
system with an Rtx®-1 capillary column (60 m × 320 μM).
For GC-MS detection, an electron ionization system was op-
erated with an ionization energy of 70 eV. Mass spectra were
taken from 14 to 70 Da. Helium was used as carrier gas at a
constant flow with 300 kPa, and an injection volume of 10 μL
(split ratio 10:1) was employed manually using gas-tight sy-
ringes. Each sample was measured five times and average
values were calculated. The total amounts of 12CO2 and
13CO2 as well as

12CH4 and
13CH4 were analyzed by extrac-

tion of the masses 44 and 45 as well as 16 and 17, respectively,
followed by peak integration. Finally, the percentage of la-
beled CO2 and CH4 was calculated and corrected for back-
ground 13CO2 and

13CH4 contents by measuring the gas phase
of a substrate-free control.

Results

Impact of gramine on a continuous biogas process

Continuous AD experiments were performed to investigate
the effect of gramine. Therefore, three CSTRs A, B, and C
digesting grass silage and cow manure were operated in par-
allel for 80 days at a constant OLR to obtain a stable biogas
process. The biogas yield of each of the three reactors was
around 445 mLN gVS

−1 and the methane content about 60 %
resulting in a methane yield of 267 mLN gVS

−1. VFA concen-
trations in all reactors were lower than 3.2 mM acetic acid,
0.3 mM propionic acid, 68 μM iso-butyric acid, 28 μM n-
butyric acid, 23 μM iso-valeric acid, and 6.1 μM n-valeric
acid. Ammonia nitrogen concentrations were between 1.0
and 1.6 g L−1 and always similar in all reactors. pH values
were around 7.5 in all reactors.

The impact of gramine on the biogas process was first
tested by adding 0.65 mmol gramine (0.7 %TS of grass silage)
daily to reactor A for 150 days until the end of the main
experiment. Based on the HRT of 21 days, the gramine con-
centration would increase up to 1.38 mM. The process param-
eters were compared to those of reactor C which served as
gramine-free control. However, none of the monitored process
parameters (biogas yield, VFA concentrations, pH value, and

ammonia nitrogen concentration) diverged from the parame-
ters of the gramine-free control reactor except for the gas
composition. The methane content of the biogas decreased
from 60 % on day 20 to 54 % on day 30. Simultaneously,
the carbon dioxide content increased from 39 to 46 %.
Hence, a 17 % decrease of the methane yield was observed.
However, the biogas composition returned to the initial ratio
of about 60 % methane and 40 % carbon dioxide on day 38.

For further investigations, the impact of gramine on the
biogas process was studied by adding higher gramine doses
(13.8 mmol) to reactor B on day 63 resulting in a concentra-
tion of 1.38 mM gramine in the reactor content. Before, no
gramine was added to reactor B. This spike of gramine had no
effect on the process parameters (Fig. 1). A second spike of
27.5 mmol gramine was applied to reactor B on day 86
(2.75 mM). A decrease of the biogas yield was observed from
day 89 on Fig. 1a. This decline continued until day 97 to a
biogas yield of 262 mLN gVS

−1. Simultaneously, the methane
content decreased from 60% to a minimum of 45 % while the
carbon dioxide content increased to 55 %. This corresponded
to a methane yield of 126 mLN gVS

−1 which was about 53 %
less than that of the gramine-free control reactor C.
Furthermore, a drop of the pH value was observed from
around 7.5 to below 7.2 around day 100 (Fig. 1b). In contrast,
the pH values in the gramine-free reactor C remained stable at
7.5. Meanwhile, VFA concentrations increased in the
gramine-spiked reactor B (Fig. 1c), whereas concentrations
in the gramine-free control reactor C did not change. The
concentration of acetic acid increased to a maximum of
96 mM on day 101. The concentration of other VFAs in-
creased to a maximum of 3.9 mM propionic acid, 1.8 mM
iso-butyric acid, 2.1 mM n-butyric acid, 1.8 mM iso-valeric
acid and 0.1 mM n-valeric acid. Concentrations of these acids
in the gramine-free control reactor C were lower than the
detection limits of 4.2 μM for iso-butyric acid, 9.6 μM for
n-butyric acid, 3.8 μM for iso-valeric acid, and 6.1 μM for n-
valeric acid. Ammonia nitrogen concentrations remained be-
tween 1.0 and 1.6 g L−1 after gramine addition and were sim-
ilar to those in the gramine-free control reactor C. The ob-
served decreases of the biogas yield and pH and the increase
of VFA concentrations indicated a transient process inhibition
due to gramine before the biogas process recovered.

The biogas yie ld increased to a maximum of
626 mLN gVS

−1 on day 104, which was even more than the
biogas yield of the gramine-free control reactor C
(419 mLN gVS

−1). Afterwards the biogas yield decreased to
around 425 mLN gVS

−1 which was similar to the biogas yield
before the gramine addition and of the gramine-free reactor C.
Likewise, the biogas composition returned to initial percent-
ages of 60 % methane and 40 % carbon dioxide.
Concentrations of VFAs also recovered to pre-inhibition
values and those of control reactor C. Likewise, the pH value
returned to the initial level of around 7.5. After this recovery, a
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third spike of gramine (27.5 mmol, resulting in a gramine
concentration increase by 2.75 mM in the reactor) was applied
on day 120 to reactor B. An 11 % decreased biogas yield
compared to the gramine-free reactor was observed between
day 123 and 129 (Fig. 1a) without any effect on the biogas
composition. Thereafter, the biogas yield was as high as for
the gramine-free reactor C. This third spike had no effect on
the other monitored process parameters VFA concentrations,
pH value, and ammonia nitrogen concentration.

Dynamics of bacterial communities

Along with the process parameters, the microbial communi-
ties in all three reactors were monitored. The bacterial com-
munities were studied by T-RFLP based on the 16S rRNA
genes. In total, 35 and 36 T-RFs were obtained by using re-
striction endonucleases HaeIII and MspI, respectively. Visual
comparison of the T-RFLP profiles showed only slight differ-
ences between gramine-exposed reactors (A and B) and the

gramine-free reactor C (see Fig. 2 for results based on HaeIII
restriction and Figure S1 for results based on MspI).
Furthermore, analysis of similarity (ANOSIM) was performed
for each sampling day (days 0, 49, 84, 119, and 148, respec-
tively). Only small, insignificant differences (ANOSIM
R = 0.2, p = 0.06) were observed between the three reactors
indicating that the continuous or episodic addition of gramine
had no significant effect on bacterial community composition.

Dynamics of methanogenic communities

The dynamics of the methanogenic communities were moni-
tored by T-RFLP fingerprinting based on amplicons of the
functional mcrA marker genes. T-RFLP analyses using the
restriction endonucleases MwoI (Fig. 3) and BstNI
(Figure S2) showed 20 T-RFs each. Assigned T-RFs
accounted for 83 to 95 % or 48 to 93 % of the community
with MwoI or BstNI, respectively. Numerical data presented
here refer to T-RFLP results from restriction with MwoI,
which were confirmed by BstNI. Before gramine addition,
the communities in all three reactors were mainly composed
of five phylotypes: Methanoculleus (6–37 % relative abun-
dance), Methanosaeta (12–27 %), Methanosarcina (5–
2 4 % ) , Me t h a n o b a c t e r i u m ( 1 4 – 2 3 % ) , a n d
Methanomassiliicoccus (15–19 %), as well as other unas-
signed T-RFs with abundances lower than 6 %.

The composition in reactor A changed after the daily addi-
tion of gramine (Fig. 3). On day 49, Methanosaeta could not
be detected anymore and rela t ive abundance of
Methanosarcina rose to 36 %. Furthermore, Methanoculleus
( 3 7 % ) , M e t h a n o b a c t e r i u m ( 1 0 % ) , a n d
Methanomassiliicoccus (4 %) were found. Communities at
the following three time points (days 84, 119, and 148) were
quite similar. Methanosarcina was dominating with an aver-
age relative abundance (±standard deviation) of 67 % (±1 %)
and Me thanocu l l e u s , Me thanobac t e r i um , a nd
Methanomassiliicoccus were less abundant with 16 (±1 %),
9 (±1 %), and 8 % (±1 %), respectively.

The gramine addition on day 63 to reactor B resulted in a
dominance ofMethanoculleus (38 %) and a lower abundance
of Methanosaeta (13 %), whereas Methanosarcina could not
be detected (Fig. 3). The rest of the community remained as
before gramine addition (Methanomassiliicoccus 19 % and
Methanobacterium 16 %). After the second spike on day 86,
a pronounced change in favor ofMethanosarcina (72 %) was
seen, whereas Methanoculleus and Methanobacterium be-
came less abundant and Methanosaeta as well as
Methanomassiliicoccus were not detected anymore. After
the th i rd sp ike on day 121 , the dominance o f
Methanosarcina increased further to 79 %.

In contrast to reactors A and B, the methanogenic commu-
nity of the gramine-free control reactor C remained stable
(Fig. 3). In summary, the addition of gramine resulted in a
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strong dominance of Methanosarcina and reduced abun-
dances of Methanoculleus, Methanobacterium and
Methanomassiliicoccus, whereas Methanosaeta was not de-
tected anymore.

Effects of gramine on acetogenesis and methanogenesis

As the biogas yield of reactor B decreased and the concentra-
tions of VFA increased after gramine addition, gramine most
probably adversely affected the acetogenesis and/or
methanogenesis of the AD process. To gain more insight into
this inhibition, batch tests were performed in which the spe-
cific substrates for acetogenesis or methanogenesis and
gramine were added to digestate of the gramine-free control

reactor C (non-adapted inoculum) or the gramine-spiked reac-
tor B (adapted inoculum). The gramine concentration in these
experiments was as high as 5.7 mM to induce strong inhibi-
tory effects. Substrate consumption and methane formation
(corrected for background production by subtracting methane
production of substrate-free controls) were monitored and
compared to the respective gramine-free control.

The effect of gramine on butyric acid degradation was test-
ed by adding gramine and n-butyric acid. When the non-
adapted inoculum was used, n-butyric acid was consumed
within the first 7 days (Fig. 4a). Concentrations of acetic acid
increased to 10 mM and the methane production was lower
than in the substrate-free control. The same n-butyric acid
consumption was observed in the gramine-free control in
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which, however, the acetic concentration decreased to
0.4 mM. Furthermore, 0.4 mmol methane was produced
(Fig. 4a). When adding n-butyric acid and gramine to the
adapted digestate, n-butyric acid was consumed within the
first 7 days as well (Fig. 4b). However, in contrast to the
non-adapted inoculum, the acetic acid concentration slightly
decreased. Methane production was lower than in the
substrate-free control. In the absence of gramine, n-butyric
acid was readily degraded, acetic acid concentrations slightly
decreased, and 0.2 mmol methane was produced.

When propionic acid was added to the non-adapted inocu-
lum in the presence of gramine, it was degraded within the
first 7 days (Fig. 4c). Acetic acid concentrations increased to
16mM and less methane than in the substrate-free control was
produced. The same propionic acid degradation was observed
in the gramine-free control (Fig. 4c). In contrast, acetic acid

concentrations remained stable around 0.4 mM, and 0.7 mmol
methane was produced. With the adapted inoculum in the
presence of gramine, propionic acid was degraded within
7 days (Fig. 4d). Acetic acid concentration was around
1.2 mM with decreasing tendency, and less methane than in
the gramine-free controls was formed from propionic acid. In
the gramine-free controls, kinetics of propionic and acetic acid
concentrations were similar as with gramine (Fig. 4d) but
more methane was produced. Taken together, n-butyric or
propionic acid was readily degraded regardless of gramine
presence and inoculum type. However, acetic acid accumulat-
ed in case of the non-adapted inoculum and gramine caused a
decrease of the methane production irrespective of the inocu-
lum type.

To eva lua t e g ramine e f f ec t s on ace toc l a s t i c
methanogenesis, 13C-methyl group-labeled acetic acid was

d) Adapted inoculum + propionic acid

c) Non-adapted inoculum + propionic acid

b) Adapted inoculum + n-butyric acid

a) Non-adapted inoculum + n-butyric acid
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acetic acid concentrations, and
methane formation during
anaerobic batch digestion of n-
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used as substrate. It allows differentiating between acetoclastic
methanogenesis and syntrophic acetate oxidation with subse-
quent hydrogenotrophic methanogenesis as the two possible
conversion routes of acetic acid. If only acetoclastic
methanogenesis takes place, methane will be 13C-labeled
and carbon dioxide remains unlabeled. When syntrophic ace-
tate oxidation is involved, also carbon dioxide will be 13C-
labeled. In all experiments described in the following, 13C-
labeled methane was detected in up to 60 % of the total meth-
ane (Fig. 5a, b). In contrast, less than 1 % of the total carbon
dioxide was 13C-labeled. Hence, the conversion occurred ex-
clusively via acetoclastic methanogenesis irrespective of the
presence of gramine.

When acetic acid was added as substrate to the non-adapted
inoculumwith gramine, its concentration initially decreased to
8 mM and then increased to 12 mM accompanied by lower

methane production than in the substrate-free control
(Fig. 5a). Without gramine, acetic acid decreased to 0.3 mM
while 0.4 mmol methane was produced (Fig. 5a). When added
to the adapted inoculum in the presence of gramine, acetic
acid decreased from 11 to 4.9 mM (Fig. 5b). Until day 3,
0.13 mmol methane was formed. Thereafter, methane produc-
tion was lower than in the substrate-free control. In contrast,
the acetic acid concentrations of the gramine-free control
steadily decreased to 1.1 mM while 0.3 mmol methane was
produced. In summary, acetic acid accumulated and less meth-
ane was formed in the presence of gramine. However, acetic
acid accumulation was less pronounced and methane produc-
tion was higher with the adapted inoculum compared to the
non-adapted inoculum.

H2/CO2 was added to investigate the effects of gramine on
the hydrogenotrophic methanogenesis. When supplied to the

d) Adapted inoculum + H
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/CO
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Fig. 5 Substrate consumption,
methane formation, and acetic
acid concentrations during
anaerobic batch digestion of
acetic acid or H2/CO2 as substrate
with and without gramine.
Digestates from the gramine-free
control reactor C (non-adapted)
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non-adapted inoculum together with gramine, hydrogen was
completely consumed within 4 days and 1 mmol of methane
was produced (Fig. 5c). Hydrogen was similarly consumed in
the gramine-free controls. However, less methane was pro-
duced (0.5 mmol). As with the non-adapted inoculum, in the
presence of gramine, hydrogen was depleted by the adapted
inoculum within 4 days and up to 0.2 mmol methane was
produced (Fig. 5d). Even though the hydrogen consumption
was similar, twice the amount of methane was produced in the
gramine-free controls. In contrast to the non-adapted inocu-
lum, a lower methane production was observed in the pres-
ence of gramine than without. In all cases, the acetic acid
concentration remained around or below 1 mM.

Discussion

Whereas reed canary grass is not suitable as fodder, it is a
promising alternative energy crop. Cultivation of reed canary
grass is possible without pesticide or herbicide application and
improves soil quality, and it can be harvested with common
agricultural equipment (Strasil 2012). Furthermore, high po-
tential methane yields of up to 430 LN CH4 kgVS

−1 (Butkutė
et al. 2014; Lehtomäki et al. 2008) enhanced the interest in
cultivating reed canary grass for biogas production and there-
by reducing social and economic conflicts faced with common
energy crops (Mathews 2009). However, reed canary grass
contains the alkaloid PSM gramine which might affect the
AD process. Here, we described the effect of gramine on a
continuous co-digestion of grass silage and cow manure.

Impact on continuous biogas production

Before gramine addition, the reactors yielded slightly more
methane than comparable digestion processes described in
the literature (Wang et al. 2010) which might be due to differ-
ences in substrate quality. When gramine was added daily,
mimicking a gramine-rich crop as substrate for biogas produc-
tion, no changes of process parameters except for a transient
decrease of the methane yield were observed. However, when
higher gramine doses were spiked, the decrease of the meth-
ane yield was more pronounced. Furthermore, VFA concen-
trations increased, with especially acetic acid concentrations
up to 96 mM indicating a severe process imbalance. Hill et al.
(1987) took acetic acid concentrations above 13 mM as indi-
cator for process disturbance. Concentrations of propionic,
butyric, and valeric acids also increased after gramine addi-
tion, but to a much smaller extent. Proposed thresholds for iso-
butyric and iso-valeric acid indicating process disturbances
(Hill and Holmberg 1988) were exceeded more than tenfold.
Decreased methane production in combination with increased
VFA concentrations thus clearly indicated a gramine-induced
inhibition of the acetogenesis and/or methanogenesis of the

AD process. This is a typical inhibition pattern which was also
observed for other inhibitors like ammonia nitrogen, long-
chain fatty acids and the plant secondary metabolite coumarin
(Angelidaki and Ahring 1993; Nielsen and Ahring 2006;
Popp et al. 2015).

Response of the microbial communities

The addition of gramine had little influence on the bacterial
community composition. In the literature, changes of the bac-
terial community had been reported as a result of the addition
of the PSM coumarin (Popp et al. 2015), along with increasing
phenol concentrations (Rosenkranz et al. 2013) and when
substrates were varied (Wang et al. 2009). Thus, it was some-
what surprising that the bacterial community was not suscep-
tible to gramine.

In contrast, the methanogenic community composition
changed towards a strong dominance of Methanosarcina
and disappearance ofMethanosaeta after gramine was added.
The shift could be directly attributed to gramine addition and
not to high VFA concentrations during the inhibition because
the shift also occurred in the daily gramine-exposed CSTR A
which showed no increased VFA concentrations.
Methanosarcina is known for its resistance to stressors like
pH or temperature changes and high VFA or ammonia con-
centrations (De Vrieze et al. 2012). According to our results,
Methanosarcina appears to be also more resistant to the alka-
loid gramine than other methanogens, especially
Methanosaeta. However, at this point, we do not know how
the differential sensitivity to gramine relates to biochemical or
physiological differences between these methanogens.
Furthermore, the way of gramine addition, continuously or
episodically, apparently influenced the methanogenic commu-
nity shift.Methanosaetawas not detected in the CSTR A after
49 days of daily gramine addition resulting in a theoretical
gramine concentrat ion of 1.23 mM. In contrast ,
Methanosaeta was still present in the CSTR B after the first
spike of gramine which resulted in a gramine concentration of
1.36 mM. Hence, applying similar concentrations in different
ways resulted in different communities.

The generaMethanosarcina andMethanosaeta are the on-
ly known acetoclastic methanogens. As Methanosaeta be-
came undetectable after gramine addition and acetic acid
was not converted via syntrophic acetate oxidation (as shown
by the inhibition experiments with both inocula using 13C-
labeled acetic acid), acetoclastic methanogenesis appeared to
be performed only by Methanosarcina. Hence, acetoclastic
methanogenesis became the bottleneck for acetic acid conver-
sion to methane in the presence of gramine. Gramine addition
with its effect on the functional redundancy of the methano-
genic community is thus likely to cause a higher vulnerability
of the AD process to process disturbances. Presumably, any
further process imbalances compromising the activity of

Appl Microbiol Biotechnol (2016) 100:7311–7322 7319



Methanosarcina would have put the AD process at risk and
acetic acid might accumulate. In general, functional redundan-
cy results in greater process stability (Briones and Raskin
2003) and a high (bacterial) diversity denotes the proper func-
tioning of a biogas reactor (Carballa et al. 2011). Plants like
reed canary grass contain usually a mixture of alkaloids in-
cluding gramine (Duynisveld et al. 1990). It can be expected
that other alkaloids also affect the AD, and even synergistic
effects are possible as described for antibiotics and solvents in
AD processes (Akyol et al. 2015; Aydin et al. 2015).

That the third spike of gramine to CSTR B had only a
minor impact on the AD process might be explained by the
shift to a methanogenic community that is better adapted to
gramine. Alternatively, anaerobic degradation of gramine
might have occurred decreasing its toxic effect. The anaerobic
degradation of gramine was only observed in ruminal systems
hitherto (Aguiar andWink 2005) and is therefore also likely to
happen in the biogas process.

Batch inhibition assays

From the results of the batch inhibition assays we concluded
that mainly the acetoclastic methanogenesis was inhibited by
gramine. This is in agreement with results from the CSTR
experiments in which acetic acid was the most prominent
VFA during the inhibition. The batch inhibition assays re-
vealed that the conversion of n-butyric or propionic to acetic
acid was not affected by gramine. However, methane produc-
tion from n-butyric or propionic acid decreased as acetic acid
accumu la t ed . Unexpec t ed ly, hyd rogeno t roph ic
methanogenesis of the non-adapted inoculum was actually
positively influenced by gramine, a finding that could be con-
firmed by repeating the experiment with a similar setup (data
not shown). This beneficial effect of gramine might be ex-
plained by a mechanism comparable to hormesis. Hormesis
describes an overcompensating response to low levels of a
toxin resulting in a higher fitness of the physiological system
(Calabrese and Baldwin 2002). Hernandez and Edyvean
(2008) observed a hormetic response of an AD process after
addition of phenolic compounds. Experiments using different
gramine concentrations and the resulting dose response curve
would help to clarify if gramine has a hormetic effect on
hydrogenotrophic methanogenesis.

Even though acetoclastic methanogenesis was inhibited by
gramine, acetic acid was not converted via syntrophic acetate
oxidation and subsequent hydrogenotrophic methanogenesis.
However, the absence of this pathway was not due to gramine
as acetate oxidation was observed neither with the non-
adapted nor with the adapted inoculum. Hence, the syntrophic
acetate oxidation was not possible due to unfavorable condi-
tions or the absence of bacteria capable of acetate oxidation.
This latter explanation is however implausible because reac-
tors were supplied daily with cow manure likely containing

syntrophic acetate oxidizing bacteria as they are commonly
found in methanogenic environments (Hattori 2008).

Many studies investigating the effects of specific inhibitors
on AD in sewage treatment focused on acetoclastic
methanogenesis (Akyol et al. 2015; Cetecioglu et al. 2012;
Hwu and Lettinga 1997). It has been argued that
methanogenesis is the most sensitive step of AD and that
70 % of the methane comes from acetic acid via acetoclastic
methanogenesis (Jeris and McCarty 1965). However, other
steps of the AD process were shown to be more sensitive to
specific inhibitors than acetoclastic methanogenesis
(Hernandez and Edyvean 2008; Karri et al. 2006).
Furthermore, hydrogenotrophic methanogenesis can also be
the dominant methanogenic pathway in AD processes for bio-
gas production (Nikolausz et al. 2013; Town et al. 2014). Few
studies so far addressed acetoclastic and hydrogenotrophic
methanogenesis by using acetic acid and hydrogen as sub-
strate (Gonzalez-Estrella et al. 2013; Karri et al. 2006;
Rodriguez-Freire et al. 2015). Furthermore, an even broader
perspective was applied by investigating inhibitory effects on
methanogenesis and on syntrophic butyric and propionic acid
degradation using these compounds as substrates for
acetogenesis (Aydin et al. 2015). Nonetheless, the alternative
acetic acid conversion via syntrophic acetate oxidation with
subsequent hydrogenotrophic methanogenesis is usually
neglected. Here, syntrophic acetate oxidation was not studied
directly but indirectly by using labeled acetic acid and
measuring labeled methane and carbon dioxide.

Literature about effects of specific inhibitors on AD for
biogas production is rare. Ma et al. (2015) described an inhi-
bition of AD of algal biomass by long-chain fatty acids com-
prising analysis of process parameter as well as microbial
communities and kinetic modeling. Similarly, the effects of
phenol on anaerobic cellulose degradation and the bacterial
as well as archaeal community were studied recently
(Chapleur et al. 2015). Here, we described detailed in-
hibition experiments using CSTR processes (continuous
addition and spiking of gramine) including monitoring
of microbial communities and batch assays embracing
the acetogenic as well as the methanogenic steps of
the AD process. We suggest that inhibition studies in
biogas systems should be performed without presump-
tions about preferred metabolic pathways or the most
sensitive step. Only this unbiased approach will result
in a comprehensive insight into the effects of specific
inhibitors on the AD process.
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