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Abstract Outer membrane vesicles (OMVs) produced by
Gram-negative bacteria have been intensively investigated in
recent times. Vesicle formation models have been proposed,
some factors affecting the process were established, and im-
portant roles vesicles play in vital activities of their producing
cells were determined. Studies of pathogenic bacterial vesicles
contribute to understanding the causes of acute infection and
developing drugs on their basis. Despite intensive research,
issues associated with the understanding of vesicle biogenesis,
the mechanisms of bacterium–bacterium and pathogen–host
interactions with participation of vesicles, still remain unre-
solved. This review discusses some results obtained in the
research into OMVs of Lysobacter sp. XL1 VKM B-1576.
This bacterium secretes into the environment a spectrum of
bacteriolytic enzymes that hydrolyze peptidoglycan of com-
peting bacteria, thus leading to their lysis. One of these en-
zymes, lytic endopeptidase L5, has been shown not only to be
secreted by means of vesicles but also to be involved in their
formation. As part of vesicles, the antimicrobial potential of
L5 enzyme has been found to be considerably expanded.
Vesicles have been shown to have a therapeutic effect in re-
spect of anthrax infection and staphylococcal sepsis modelled
in mice. The scientific basis for constructing liposomal

antimicrobial preparations from vesicle phospholipids and re-
combinant bacteriolytic enzyme L5 has been formed.
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Introduction

Formation of OMVs is a widespread process among Gram-
negative bacteria (Kadurugamuwa and Beveridge 1997;
Beveridge 1999; Kuehn and Kesty 2005; Balsalobre et al.
2006; Vasilyeva et al. 2008, 2009; Olofsson et al. 2010;
Moon et al. 2012). Vesicles are represented by spherical struc-
tures 20–300 nm in size. The first publication on vesicles dealt
with their formation in Vibrio cholerae by splitting off the outer
membrane of the bacterium (Chatterjee and Das 1967). In
1989, after a research into their structure, they began to be
called outer membrane vesicles (Mayrand and Grenier 1989).
Apart from outer membrane components (proteins, lipopoly-
saccharide, phospholipids), vesicles comprise components of
the periplasm (periplasmic proteins, including autolytic en-
zymes; cell wall fragments) and, in pathogenic bacteria, viru-
lence factors (Kadurugamuwa and Beveridge 1995; Horstman
and Kuehn 2000; Kato et al. 2002; Lee et al. 2008; Olofsson
et al. 2010; Roier et al. 2015). An increasing number of recent
works indicate that vesicles include components of the cyto-
plasm (including DNA and RNA) and cytoplasmic membrane
(Lee et al. 2008; Olofsson et al. 2010; Pérez-Cruz et al. 2013;
Zielke et al. 2014; Pérez-Cruz et al. 2015). Their small size and
specific composition enable vesicles to perform important func-
tions in bacterial vital activities: secretion of proteins, utilization
of toxic metabolites, acquisition of nutrients, and expansion of
the ecological niche (Li et al. 1996, 1998; Kadurugamuwa and
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Beveridge 1997; Kobayashi et al. 2000; Kuehn and Kesty
2005; Haurat et al. 2011; Evans et al. 2012; Vasilyeva et al.
2014; Olsen and Amano 2015; Xie 2015; Wang et al. 2015).
Comprehension of the importance of vesicular studies by the
scientific community contributed to the intensive development
of two trends in their research, the studies of the formation
mechanism (biogenesis) and of the functional significance.
The trends were founded by American scientists Jagath L.
Kadurugamuwa and Terry J. Beveridge. The more information
started to appear about vesicles, about their structure, per-
formed functions and biogenesis, the more questions began to
emerge about how they form, which factors are involved in
their formation, how vesicles perform their functions. We will
try to partially answer these questions, as exemplified by one
bacterium, Lysobacter sp. XL1.

The genus Lysobac ter belongs to the fami ly
Xanthomonadaceae and was first described in 1978
(Christensen and Cook 1978). Initially, the genus included
four species: Lysobacter antibioticus, Lysobacter brunescent,
Lysobacter enzymogenes, and Lysobacter gummosus (de
Bruijn et al. 2015). To date, approximately 25 species have
been described. The genus owes its name to a high lytic ac-
tivity manifested by its representatives with respect to Gram-
positive and Gram-negative bacteria, fungi, nematodes, and
unicellular algae (Christensen and Cook 1978). A broad spec-
trum of Lysobacter spp. lytic action is due to production of a
range of biologically active compounds: extracellular en-
zymes (proteases, peptidoglycan hydrolases, glucanases, li-
pases, chitinases), short peptides (e.g., cyclo(L-Pro-L-Tyr)),
antibiotics (cyclodepsipeptides, cyclic lipodepsipeptides,
etc.) (Bone et al. 1989; Kato et al. 1998; Ahmed et al. 2003;
Palumbo et al. 2003, 2005; Ogura et al. 2006; Ko et al. 2009;
Xie et al. 2012; Cimmino et al. 2014; Pidot et al. 2014;
Puopolo et al. 2014). Lysobacter spp. are Gram-negative rod-
like bacteria (Reichenbach 2006). Their representatives inhab-
it soils and freshwater reservoirs (Christensen and Cook 1978;
Reichenbach 2006; de Bruijn et al. 2015). Lysobacter spp. are
anaerobic organisms, though they can survive at low (10 %)
concentrations of oxygen; optimum pH varies from 7 up to 9;
the temperature optimum, in the range of 30 °C, though it
varies depending on the species (Reichenbach 2006). Before
our research, nothing was known about the ability of
Lysobacter representatives to form vesicles.

Our laboratory investigates the bacterium Lysobacter sp.
XL1. This bacterium was isolated from waters of the Oka
River near Pushchino. The bacterium produces a complex of
bacteriolytic enzymes L1–L5, based on which an efficient
antimicrobial drug, lysoamidase, was developed (Kulaev
et al. 2006). Lysoamidase is efficient against Gram-positive
pathogenic bacteria multiply resistant to antimicrobial prepa-
rations and is permitted for external use. Bacteriolytic en-
zymes, constituents of the preparation, exhibit various sub-
strate specificities with respect to peptidoglycan of pathogenic

bacteria. Enzymes L1, L4, and L5 are endopeptidases and
break the peptide bond of the peptide subunit in the
interpeptide bridge of peptidoglycan; L1 and L2 are amidases
and destroy the bond between the first amino acid of the pep-
tide subunit and N-acetylglucosamine; L3 is muramidase that
cleaves the bond between N-acetylglucosamine and N-
acetylmuramic acid (Stepnaya et al. 1996, 2005; Begunova
et al. 2003; Vasilyeva et al. 2014). Each lysoamidase protein
is a potential base for developing new-generation antimicro-
bial drugs for internal use, which could be used for treatment
of infections caused by strains resistant to antibiotics. For this
reason, our interest in research into the topogenesis of these
proteins is evident. Thus, studies of the secretion of L5 from
cells of Lysobacter sp. XL1 into the environment found this
bacterium to be capable of forming vesicles (Vasilyeva et al.
2008). The secretion proved to be performed by means of
these vesicles. The antimicrobial action spectrum of protein
L5 within vesicles was also found to be significantly broader
than that of its soluble form (Vasilyeva et al. 2014). Those
results contributed to the development of three trends of re-
search: studies of vesicle biogenesis, investigation of the an-
timicrobial potential and curative action of vesicles, and con-
struction of liposomal antimicrobial preparations based on
particular lysoamidase lytic enzymes and phospholipids of
Lysobacter sp. XL1 vesicles. This will be discussed in the
review.

Vesicle biogenesis of Gram-negative bacteria

The vesicle formation mechanism (biogenesis) is at present
the most debatable topic of investigations in this field. All
accumulated information about this process was reduced by
Mashburn-Warren and Whiteley (2006) to three models de-
scribing the vesicle formation; the models were then supple-
mented by other investigators (Kulp and Kuehn 2010;
Schwechheimer et al. 2013, 2014; Schwechheimer and
Kuehn 2015). The first model combines the data that the bio-
genesis of vesicles occurs in sites of a temporary rupture of
bonds between the inner leaflet of the outer membrane and
peptidoglycan (e.g., the breakdown of the lipoprotein–pepti-
doglycan bond) (Hoekstra et al. 1976; Wensink and Witholt
1981; Schwechheimer et al. 2013; Schwechheimer et al.
2014). The second model is based on the results supporting
the formation of vesicles in sites of periplasmic components’
pressure on the inner side of the outer membrane (these can be
peptidoglycan fragments and misfolded proteins) (Zhou et al.
1998; Hayashi et al. 2002; McBroom and Kuehn 2007;
Tashiro et al. 2009). The basis of the third model are the data
on the involvement of cell envelope components, that form
sites of outer membrane destabilization due to their biochem-
ical structure, in the vesicle formation process (e.g., B-type
lipopolysaccharide, Pseudomonas quinolone signal (PQS)
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molecules) (Kadurugamuwa and Beveridge 1995; Sabra et al.
2003; Mashburn-Warren and Whiteley 2006; Schertzer and
Whiteley 2012).

Thus, formation of vesicles is performed by one mecha-
nism, through bulging and pinching off of the outer mem-
brane. The factors that determine the process can be different
but all of them are either components of the cell envelope or
are functionally coupled with it (e.g., periplasmic proteins).
As the result of the effect of these factors, there occurs a locus
disturbance of outer membrane rigidity, which is accompanied
by the formation of vesicles. However, it is not to be ruled out
that the process is affected by both several factors simulta-
neously and each of them separately, which can lead to the
formation of heterogeneous vesicles within one cell.
Heterogeneous vesicles have already been found to be formed
by Aggregatibacter actinomycetemcomitans, E. coli,
Helicobacter pylori (Balsalobre et al. 2006; Olofsson et al.
2010; Rompikuntal et al. 2012). Formation of these vesicles
by one bacterial taxon can be determined by specific features
of their biogenesis, in particular, by the action of several fac-
tors on the bacterial outer membrane. Our research has in part
been aimed to confirm this.

Vesicle biogenesis of Lysobacter sp. XL1

The ability of cells of Lysobacter sp. XL1 to form vesicles was
established in studies of extracellular bacteriolytic enzymes it
secretes. The bacteriolytic enzymes of this bacterium efficient-
ly hydrolyze peptidoglycan, the main structural component of
cell walls in competitive bacteria. One of the most investigat-
ed enzymes is lytic protease L5, which is 56% homologous to
α-lytic protease of Lysobacter enzymogenes (Granovsky et al.
2010, 2011; Lapteva et al. 2012). Proceeding from the homol-
ogy to α-lytic protease (Silen et al. 1989; Fujishige et al.
1992), it could have been assumed that, being synthesized as
prepro proteins, L5 are secreted into the environment in two
stages: first via the cytoplasmic membrane into the periplasm,
which is accompanied with the processing of the pre moiety,
and then via the outer membrane, presumably, by means of a
type II secretory mechanism, which is accompanied with the
splitting-off of the pro moiety and the appearance of mature
protein in the extracellular medium. However, L5 was found
to be secreted into the environment bymeans of OMVs, which
proved to form cells of Lysobacter sp. XL1 (Fig. 1a)
(Vasilyeva et al. 2008). Lysobacter sp. XL1 vesicles are 30
up to 160 nm in diameter and have a protein composition
similar to, but not identical to, outer membranes (Vasilyeva
et al. 2009). It was also found that vesicles of smaller, about
20 nm, but homogeneous size (Fig. 1b) form under conditions
blocking the secretion of lytic enzymes. The totality of the
data prompted several ideas: first, that vesicles of Lysobacter
sp. XL1 are heterogeneous not only by size but also by com-
position and, possibly, by performed functions; and second,

that one of the factors that determine the vesicle formation
process can be secreted protein L5 itself.

To prove the heterogeneity, a preparation of Lysobacter sp.
XL1 vesicles was fractionated in a sucrose density gradient
(Kudryakova et al. 2015). Two subpopulations of vesicles were
isolated: of a lighter fraction, 30–65 nm in diameter and con-
taining protein L5; and of a heavier fraction, 65–100 nm in
diameter, containing no protein L5 in their composition. A
comparative electrophoregram of vesicular proteins in the frac-
tions revealed an additional difference in their protein compo-
sition. Thus, it was established that Lysobacter sp. XL1 did
form vesicles heterogeneous by size, density, and protein com-
position. The same experiments confirmed that protein L5
could play a role in the formation of special secretory vesicles.
The role of protein L5 in vesicle biogenesis was also studied by
the electron microscopic immunocytochemistry of ultrathin
sections of Lysobacter sp. XL1 cells (Fig. 2). It is seen in the
figure that in the process of the topogenesis protein L5 is
translocated to the periplasmic space and concentrates in certain
periplasm loci adjacent to the inner leaflet of the outer mem-
brane; subsequently, vesicles are formed out of those loci.
Probably, there is some affinity of protein L5 to the outer mem-
brane that contributes to its concentration in certain loci; this
leads to a pressure on it and a disturbance of rigidity. Additional
confirmation of the involvement of L5 in vesicle biogenesis
was obtained in studies of its secretion in recombinant strain
P. fluorescens Q2–87/B (Vasilyeva et al. 2013). Recombinant
protein L5 was found not only to be secreted by means of
vesicles of strain Q2–87/B but also to affect the vesicle forma-
tion process. Using electron microscopy, strain Q2–87/B ex-
pressing recombinant protein L5 was found to form a greater
number of vesicles of a more heterogeneous diameter as com-
pared with vesicles of parent strain Q2–87.

On the whole, the involvement of Lysobacter sp. XL1 se-
creted protein L5 can be considered within the framework of
the second model of vesicle biogenesis. However, in this case,
the biogenesis proceeds with the participation of protein,
which is functionally significant for the cell and makes use
of vesicles as a transport means, not protein debris as de-
scribed for this model. Besides, the totality of all the data
indicates that protein L5 has some functional features that
determine its ability to affect the vesicle formation process.
Future research (including structure studies) will, possibly,
clarify this issue. It is not to be ruled out that data on the
involvement of secreted proteins in the vesicle biogenesis of
Gram-negative bacteria will subsequently be accumulated,
which would allow considering this process within the frame-
work of a new model.

Thus, we have found that Lysobacter sp. XL1 forms het-
erogeneous vesicles. And one of the factors that determine this
process is secreted protein L5. But the process may also in-
volve other factors: phospholipids, lipopolysaccharide, and
lipoprotein. Unlike the latter two, the involvement of
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phospholipids has not yet been attributed to any of the con-
sidered vesicle biogenesis models, because experimental data
are still scarce. But phospholipids together with lipopolysac-
charide are the main components of outer membranes.
Namely, phospholipids determine the spherical shape of ves-
icles. It would be logical to assume their important role in the
formation of these structures. To date, there are only some data
on the role of phospholipids in vesicle formation. Thus,
P. syringae Lz4W vesicles’ phospholipids were found to be
enriched with unsaturated branched fatty acids (Chowdhury
and Jagannadham 2013). An assumption was made that an
increased membrane flexibility of segments enriched with
phospholipids with these fatty acids might contribute to vesi-
cle biogenesis. On the contrary, for P. aeruginosa vesicles it
was shown that vesicle phospholipids consisted predominant-
ly of elongated and saturated fatty acids, which was indicative
of the vesicle formation exclusively from the more rigid seg-
ments of the outer membrane (Tashiro et al. 2011). We felt it
topical to continue our research from establishing the partici-
pation of phospholipids in the biogenesis of Lysobacter sp.
XL1 vesicles.

We carried out a comparative analysis of phospholipids of
Lysobacter sp. XL1 outer membranes and vesicles by two-
dimensional thin-layer chromatography (unpublished data)
(Fig. 3). In the figure, it is seen that outer membranes
contain a range of phospholipids: the major ones

among them are cardiolipin, phosphatidylethanolamine, and
unidentif ied phospholipid; phosphatidylglycerol ,
phosphatidylmonomethylethanolamine, and a group of un-
identified phospholipids occur in minor amounts. In contrast,
vesicles reveal a small diversity of phospholipids: the major
phospholipid is cardiolipin, and phosphatidylglycerol and an
unidentified phospholipid occur in minor amounts. Evidently,
vesicles form predominantly out of outer membrane segments
enriched with cardiolipin. As the hydrophilic head of
cardiolipin carries two negative charges, the rigidity of the
outer membrane can possibly be disturbed due to their inter-
molecular repulsion in segments enriched with this phospho-
lipid. Thus, we established one more factor determining the
formation of vesicles in Lysobacter sp. XL1.

Based on the literature data and our own results, we can
supplement the model of Lysobacter sp. XL1 vesicle biogen-
esis published earlier (Kudryakova et al. 2015). We feel that
the vesicle formation mechanism is the same for all Gram-
negative bacteria: the outer membrane evaginates due to a
disturbance of its rigidity, and the evagination is completed
by the formation of a vesicle. But the factors that determine
the process can be different. For Lysobacter sp. XL1, two such
factors have been established: secreted protein L5 and acid
phospholipid cardiolipin (Fig. 4). It is not to be ruled out that
both factors act simultaneously. Subsequently, our plans are to
establish the action of other factors, too, which will not only

Fig. 1 Ultrathin sections of Lysobacter sp. XL1 cells. а Under secretion conditions, Lysobacter sp. XL1 forms vesicles 30–160 nm in size. b Under
blocked secretion conditions, formed vesicles are 20 nm in diameter. OM outer membrane, OMVs outer membrane vesicles

Fig. 2 Electron microscopic immunocytochemistry of Lysobacter sp.
XL1 cells. a Heterogeneous vesicles form within one bacterial cell. b
Protein L5 concentrates in certain periplasmic loci adjacent to the inner

leaflet of the outer membrane. OM outer membrane, P periplasm, CM
cytoplasmic membrane
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expand the views of this process in Lysobacter sp. XL1 but
will also contribute to the understanding of vesicle biogenesis
in Gram-negative bacteria on the whole.

Functional significance and applied prospects
of vesicles

OMVs play an enormous role in bacterial cell activity. They
have been the topic of numerous studies. To date, vesicles have
been proven to be involved in protection of bacteria from stress
factors (Kadurugamuwa and Beveridge 1995, 1996, 1997;
Kobayashi et al. 2000). Vesicles mediate the formation of

biofilms, including due to the co-aggregation with other bacte-
ria, which also determines a better survivability of microorgan-
isms in the environment (Kuehn and Kesty 2005; Olsen and
Amano 2015; Xie 2015; Wang et al. 2015). It has been found
that β-lactamase is secreted into the environment by means of
vesicles, which enables protection of the bacterium from the
group of β-lactam antibiotics, deeper layers of the biofilm in-
cluding (Ciofu et al. 2000). Vesicles are a convenient means for
exchanging advantageous material (plasmids, DNA fragments)
between bacteria, which contributes to increasing their surviv-
ability (Yaron et al. 2000; Renelli et al. 2004; Biller et al. 2014).
Vesicles of P. aeruginosa PAO1 contain autolysin lyzing other
bacteria, which enables it to acquire nutrients and occupy a

Fig. 3 Two-dimensional thin-layer chromatography of Lysobacter sp.
XL1 outer membranes and vesicles. а Spectrum of outer membrane
phospholipids. b Spectrum of vesicle phospholipids. CL cardiolipin, PME

phosphatidylmonomethylethanolamine, PE phosphatidylethanolamine,
PG phosphatidylglycerol, PL–PL6 unidentified phospholipids

Fig. 4 A model of the biogenesis of Lysobacter sp. XL1 vesicles. As
Lysobacter sp. XL1 vesicles are heterogeneous, they form under the
influence of various factors. One of the factors is secreted protein L5,
which concentrates in certain loci of the periplasm on the inner leaflet of
the outer membrane. It is in those loci that vesicles containing it are
formed. Another factor, presumably, due to its biochemical structure, is
acid phospholipid cardiolipin: as the hydrophilic head of cardiolipin
carries two negative charges, the rigidity of the outer membrane can be

disturbed due to their intermolecular repulsion. The influence of other
factors on the biogenesis of Lysobacter sp. XL1 vesicles is yet to be
established. PG peptidoglycan, P periplasm, OM outer membrane, CM
cytoplasmic membrane, LPS lipopolysaccharide, Lpp lipoprotein, CL
cardiolipin, PL phospholipids, OMP outer membrane proteins, OMV +
L5 vesicles containing protein L5, OMV−L5 vesicles containing no
protein L5
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certain ecological niche (Li et al. 1996). Because of such an
aggression with respect to competing bacteria, the authors
called them predatory vesicles. Myxococcus xanthus vesicles,
secreting alkaline phosphatase into the extracellular space, un-
der starvation conditions also procure phosphates required to
cells by predatory activities (Evans et al. 2012). Very intensive
research is under way into vesicles produced by pathogenic
bacteria; they are used to release virulence factors, whichmakes
them dangerous participants of the pathogenesis (Kato et al.
2002; Kuehn and Kesty 2005; Mashburn-Warren et al. 2008;
Amano et al. 2010; Ellis and Kuehn 2010; Tashiro et al. 2012;
Kulkarni et al. 2014; Avila-Calderón et al. 2015; Olsen and
Amano 2015; Xie 2015). To date, some mechanisms of how
vesicles of pathogenic bacteria penetrate into host tissues have
been established (Amano et al. 2010; Olofsson et al. 2014;
Kaparakis-Liaskos and Ferrero 2015; Olsen and Amano
2015). It is evident that research into the significance of vesicles
in both bacterium–bacterium and pathogen–host interactions is
of enormous importance for microbial ecology and medicine.

Antimicrobial potential of Lysobacter sp. XL1 vesicles

An important part of our studies is the research into bacterio-
lytic enzymes of Lysobacter sp. XL1. The occurrence of bac-
teriolytic enzyme L5 in Lysobacter sp. XL1 vesicles, certainly,
contributed to studies of their antimicrobial and therapeutic
potential.

We used the spot test method to investigate the antimicro-
bial action of Lysobacter sp. XL1 vesicles as compared with
homogeneous protein L5. First, we chose opportunistic path-
ogenic strains from the laboratory collection, including Gram-
positive and Gram-negative bacteria, yeasts and mycelial fun-
gi. The lytic effect was determined by the zones of lysis in
spots where preparations were applied. The lytic action spec-
trum of protein L5 within vesicles proved to be significantly
extended as compared with its homogeneous form (Table 1)
(Vasilyeva et al. 2014). Gram-positive bacteria were lysed by
vesicles more intensively than Gram-negative ones. This can
be due to particular features of their cell envelope structure
and, correspondingly, by the different mechanisms of vesicu-
lar action on them. Mechanisms of the lytic action of
autolysin-containing vesicles have already been studied earli-
er (Kadurugamuwa and Beveridge 1996). By analogy with the
proposed schemes, during the interaction with the surface of
Gram-positive bacteria vesicles presumably open, and protein
L5, due to its high concentration, rather intensively cleaves the
peptidoglycan in the adhesion zone. Gram-negative bacteria
have an outer membrane, so, probably, vesicles fuse with it
due to a high similarity of their structures. As the result of
fusion, enzyme L5 goes out into the periplasmic space and
freely diffuses in it; herewith, its concentration may decrease,
which can be a cause of a weaker lytic effect.

Jointly with the State Research Center for Applied
Microbiology and Biotechnology, we also investigated the
lytic action of the vesicle preparation on pathogenic bacteria,
including on clinical isolates multiply resistant to antimicro-
bial preparations (Vasilyeva et al. 2014). Vesicles lyzed excel-
lently all chosen Gram-positive test objects, except lacto- and
bifidobacteria (which is of interest), and absolutely failed to
lyze Gram-negative test objects. Noteworthy is the efficient
lysis of multiply resistant S. aureus (MRSA) strains, clinical
isolates of the most widespread hospital-acquired infections.

Curative potential of Lysobacter sp. XL1 vesicles

Recent years have witnessed a significant worldwide increase
in the resistance of infection agents to antibiotics. The World
Health Organization considers antimicrobial resistance as one
of the highest priority problems. In this connection, alternative
ways of controlling pathogenic bacteria have to be searched
for. Lytic bacterial enzymes capable of dissolving microbial
cells are one of such ways. We have begun research into the
curative effect of vesicles containing lytic enzyme L5.
Vesicles in this case are a model, which in future can be used
to develop liposomal antimicrobial preparations.

Jointly with the State Research Center for Applied
Microbiology and Biotechnology, we investigated the cura-
tive action of vesicles on the anthrax infection, lethal for white
outbredmice, induced by Bacillus anthracis vaccine strain 71/
12 (Shishkova et al. 2013). Anthrax was modelled using
pregerminated spores ofB. anthracis 71/12.Micewere treated
with vesicles and with doxycycline, an antibiotic traditionally
used for these purposes. The treatment with doxycycline was
started 3 h after the infection in the first day and was continued
once a day for 5 days. The treatment with vesicles was by
single dosing 3 h after the infection. The animals were ob-
served for 14 days. As the result, the experimental animals
treated with vesicles were found to be totally cured. The ani-
mals treated with doxycycline died in the next 10 days after
the cancellation of the treatment. In the control group, all
animals died in the first 2 days. For prophylaxis of the disease,
the preparation of vesicles was introduced 3 h before the in-
fection. As the result, the preparation ensured a 100 % pro-
phylactic protection: not a single animal died. Thus, the effi-
ciency of the vesicle preparation against lethal infection was
established.

The next task was to establish the curative action of vesi-
cles on staphylococcal infection caused by methicillin-
resistant S. aureus strain 55. S. aureus is one of the prevailing
pathogens in hospitals; what is more, as compared with other
Gram-positive bacteria, namely strains of this bacterium de-
termine a high mortality rate (Gostev et al. 2015; Yin et al.
2015). To study the therapeutic effect of the vesicle prepara-
tion with respect to the systemic staphylococcal sepsis, out-
bred white mice were infected with a fresh culture of MRSA
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Table 1 Lytic action spectrum of
the Lysobacter sp. XL1 vesicle
and protein L5 preparations.

Microorganisms Lytic effect of OMVs Lytic effect of protein L5

Gram-positive bacteria

Bacillus subtilis W23 ++a +

Bacillus subtilis 168 ++ +

Bacillus subtilis var. niger ++ +

Bacillus cereus 217 ++ −
Bacillus cereus 504 ++ −
Bacillus cereus 164 ++ −
Bacillus megaterium 1433 ++ Not detected

Bacillus thuringiensis 1373 ++ Not detected

Bacillus thuringiensis EG 7566 ++ Not detected

Bacillus mesentericus ++ Not detected

Bacillus brevis 1409 ++ Not detected

Bacillus polymyxa 1396 ++ Not detected

Bacillus anthracis 71/12 ++ −
Bacillus anthracis M71 ++ −
Bacillus anthracis STI ++ −
Bacillus anthracis STI PR ++ −
Bacillus anthracis STI pBC16 ++ −
Bacillus anthracis STI 5 ++ −
Micrococcus roseus В1236 ++ +

Micrococcus luteus В1819 ++ +

Corynebacterium xerosis ++ −
Staphylococcus aureus 209P ++ −
Rathayibacter tritici ++ −
Serratia marcescens 570 ++ Not detected

Listeria monocytogenes L ++ −
Listeria monocytogenes R ++ −

Gram-negative bacteria

Pseudomonas fluorescens 1472 +b −
Pseudomonas putida + +

Proteus vulgaris H-19 + +

Proteus mirabilis N2 + +

Escherichia coli K12 ++ ++

Erwinia carotovora В15 ++ −
Alcaligenes faecalis ++ ++

Yeasts

Torulaspora delbrueckii VKM Y-706 –c −
Candida utilis VKM Y-74 + +

Candida boidinii VKM Y-34 + +

Candida guilliermondii VKM Y-41 + +

Saccharomyces cerevisiaeM660 − −
Pseudozyma fusiformata VKM Y-2821 + −

Filamentous fungi

Sclerotinium sclerotiorum − Not detected

Fusarium sporotrichiella ++ Not detected

The results were confirmed in three independent experiments
a Very good lytic effect
b Lytic effect
c No lytic effect
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strain S. aureus 55 into the retro-orbital sinus (Shishkova et al.
2013). The group of experimental animals was injected with
the vesicle preparation 3 h after infection; the control group
was injected with no preparations. On days 5, 7, 9, 12, and 15,
two animals each day were narcotized, dissected, and impres-
sion smears of their internal organs were made onto dishes
with nutrient medium (Fig. 5). In this infection technique,
the culture is isolated from the kidneys and spleen. It is seen
in the figure that, in the control group, MRSA S. aureus 55 is
seeded from the kidneys during the entire experiment; from
the spleen, in 90 % of the cases (Fig. 5a). During the treatment
with the vesicle preparation, the internal organs are cleared of
the pathogenic bacterium. In one case only, the culture was
seeded from the spleen and in two cases from the kidneys
(Fig. 5b). Possibly, at an increase of introduced vesicles’ dose
the cure will be complete. Thus, the vesicle preparation con-
taining Lysobacter sp. XL1 protein L5 possesses a high cura-
tive effect with respect to the chosen model infections. It is
evident that this preparation cannot be used in medicine due to
its multi-component composition, which can cause an acute
allergic reaction. In view of this, the prospects of developing
new-generation liposomal antimicrobial drugs based on par-
ticular lytic enzymes of Lysobacter sp. XL1 are apparent.

Future prospects

We plan to continue the research into Lysobacter sp. XL1
vesicles. The mapping of the bacterium’s genome will enable
us to establish the proteome of vesicles and, possibly, to find
additional factors determining the process of their formation.

We would especially like to note the prospects of develop-
ing efficient new-generation liposomal antimicrobial drugs
that cause no habituation in microorganisms. Modern biotech-
nological techniques make it possible to develop medicinal
products based on liposomes (Gregoriadis 2007). The use of
liposomes for delivery of biologically active substances can
lead to a decrease of the toxicity of a drug, an increase of its
bioavailability and, on the whole, result in the increased effi-
ciency of the therapeutic effect. We have already started such
studies.

Based on phospholipids obtained from Lysobacter sp. XL1
vesicles and recombinant bacteriolytic enzyme L5, we have
produced a liposomal preparation. Its antimicrobial action on
Gram-positive, including multiply resistant, bacteria was stud-
ied. The preparation also proved to lyze test objects as effi-
ciently as vesicles and lysoamidase. Our future research will
be aimed at further studies of the preparation and its preclin-
ical tests.
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