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Abstract Thraustochytrids have been applied for industrial
production of the omega-3 fatty acid docosahexaenoic
(DHA) since the 1990s. Duringmore than 20 years of research
on this group of marine, heterotrophic microorganisms,
considerable increases in DHA productivities have been
obtained by process and medium optimization. Strains of
thraustochytrids also produce high levels of squalene and
carotenoids, two other commercially interesting compounds
with a rapidly growing market potential, but where yet few
studies on process optimization have been reported.
Thraustochytrids use two pathways for fatty acid synthesis.
The saturated fatty acids are produced by the standard fatty
acid synthesis, while DHA is synthesized by a polyketide
synthase. However, fundamental knowledge about the
relationship between the two pathways is still lacking. In the
present review, we extract main findings from the high
number of reports on process optimization for DHA
production and interpret these in the light of the current
knowledge of DHA synthesis in thraustochytrids and lipid
accumulation in oleaginous microorganisms in general. We
also summarize published reports on squalene and carotenoid
production and review the current status on strain
improvement, which has been hampered by the yet very few
published genome sequences and the lack of tools for gene
transfer to the organisms. As more sequences now are

becoming available, targets for strain improvement can be
identified and open for a system-level metabolic engineering
for improved productivities.
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Introduction

Thraustochytrids are unicellular, eukaryote, heterotrophic, and
obligate marine microorganisms, commonly found in
seawater and sediments, with the highest abundance in
nutrient-rich areas, such as mangrove forests (Raghukumar
2002; Singh et al. 2014). Thraustochytrid strains are able to
accumulate high levels of lipids as triacylglycerols, with a
high content of the long-chain omega-3 (ω3) fatty acid
docosahexaenoic acid (DHA). High-productivity strains can
be cultivated to cell densities above 100 g/l dry weight in
4 days and accumulate lipid levels in the range of 50–70 %
of cell dry weight (CDW) with DHA constituting 30–70 % of
the total fatty acids (Chang et al. 2013a; Li et al. 2015;
Raghukumar 2008) . The f i rs t repor ts on use of
thraustochytrids for production of DHA appeared early in
the 1990s and were initiated by the rapidly increasing
understanding of the benefits of long-chain polyunsaturated
(LC-PUFA) ω3 fatty acids for human health. Production of
DHA-rich oils based on thraustochytrids was commercialized
a few years later by the US company OmegaTech, which later
was acquired by Martek, and is now a part of DSM. The
history of the development of the industrial production of
DHA-rich oils from thraustochytrids by OmegaTech has been
reviewed by Barclay et al. (2010), describing their strategies
for strain isolation and further developments to the 150-m3

production scale.
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The taxonomy and phylogeny of thraustochytrids have
been extensively described by others, and DHA-producing
species of thraustochytrids have been identified within all
the thraustochytrid genera (Honda et al. 1999; Yokoyama
and Honda 2007; Yokoyama et al. 2007). Taxonomic
reclassifications within the thraustochytrids have resulted in
the establishment of several new genera. For instance,
Aurantiochytrium was established as a separate genus in
2007, and some species previously classif ied as
Schizochytrium were moved to the new genus (Yokoyama
and Honda 2007). The highest cell densities and DHA
productivi t ies have been reported for species of
Schizochytrium, Aurantiochytrium, and Ulkenia. The ability
of thraustochytrids to produce high levels of DHA is attributed
to the presence of an alternative pathway for DHA synthesis,
catalyzed by a polyketide synthase (PKS) enzyme complex.
The PKS also generates another LC-PUFA, docosapentaenoic
acid (DPA; C22:5ω6), which is a characteristic fatty acid for
thraustochytrids (Hauvermale et al. 2006; Lippmeier et al.
2009; Metz et al. 2001).

The extensive research on thraustochytrids has mainly
been motivated by their properties as DHA producers.
However, during the strain screening programs, also
other commercially interesting products have been iden-
tified. For instance, some strains produce high levels of
carotenoids, others squalene. These products have
established, and growing, markets in food, feed, and
pharma, currently produced from other raw materials.
As saprophytic organisms, thraustochytrids also
produce extracellular enzymes, and some strains have
been reported to produce extracellular polysaccharides,
see, e.g., Gupta et al. (2012) and Singh et al. (2014).
However, based on the reported production levels, the
intracellular, lipid-related compounds squalene and ca-
rotenoids seem to have the highest potential for a future
industrial production by thraustochytrids. Figure 1
shows the biosynthetic pathways for DHA, squalene,
and carotenoids.

The most recent reviews on thraustochytrids thoroughly
cover isolation methods and analytical methods (Gupta et al.
2012), ecological impacts, distribution and role in marine
habitats (Singh et al. 2014), and metabolic pathways and
enzymes involved in DHA synthesis (Xie and Wang 2015).
Results from the high number of process optimization studies
are also referred, but not as a main topic. In the present review,
we extract the main findings from the reports on process
optimization for DHA production and interpret these in light
of the cur ren t knowledge of DHA synthes i s in
thraustochytrids and lipid accumulation in oleaginous
microorganisms in general. We also summarize the published
reports on squalene and carotenoid production and review the
current status on strain improvement and available genetic
tools for thraustochytrids.

DHA—yet the only commercial product
from thraustochytrids

Applications of DHA and market prospects

DHA-rich oils from thraustochytrids are currently on the
market as dietary supplements. The main source of the marine
ω3 fatty acids eicosapentaenoic acid (EPA) and DHA are fish
oils. Approximately 200,000 t fish oils are used in products for
the humanmarkets, while the production of microbialω3-rich
oils constituted only 5000 t in 2011 with thraustochytrids
and the heterotrophic microalgae Chrypthecodinium cohnii
as production organisms. Dietary supplements constitute
the largest market share of 55 % for ω3 products,
followed by functional food and beverages, and pharma-
ceuticals. The ω3-PUFA market is projected to show an
annual growth rate of 12.8 % between 2014 and 2019
and is expected to be worth USD 4300 millions by
2019 (www.marketsandmarkets.com).

EPA and DHA are also important constituents in the
feed for marine aquaculture. The annual production of
fish oil is in the order of 1 × 106 t, of which 71 % was
used for aquafeed in 2010 (FAO 2014). The global
catches of the fish stocks used for oil production have
reached its maximum limit. A future growth of the
marine aquaculture will therefore require new sources
for these fatty acids in substantial volumes, and micro-
bial oils have been proposed as a solution (Olsen 2011).
This will represent a large-volume market but with far
lower prices than for the current human products.

DHA synthesis in thraustochytrids

In oleaginous yeast, phototrophic microalgae, and bacteria
(e.g., Rhodococcus spp.), saturated fatty acids dominate in
the storage lipids, mainly C16:0 but also C14:0 and C18:0
(Alvarez and Steinbüchel 2002; Goold et al. 2015; Wang
2015). The only known oleaginous microorganisms that
produce LC-ω3-PUFA as a major part of their storage lipids
are thraustochytrids, the closely related labyrinthulids, and the
heterotrophic dinoflagellate C. cohnii. However, EPA and
DHA frequently occur in the membrane lipids of marine
microorganisms, both bacteria and microalgae (Mühlroth
et al. 2013; Valentine and Valentine 2004).

The thraustochytrids use a standard fatty acid synthase
(FAS) enzyme complex for synthesis of the shorter, saturated
fatty acids, mainly C14:0 and C16:0 (Hauvermale et al. 2006).
The thraustochytrids also express some desaturases and
elongases, since low levels of C16:1, C18:1, C18:2,
arachidonic acid (ARA), EPA, and other unsaturated fatty
acids can be found (Yokoyama and Honda 2007; Yokoyama
et al. 2007). Although proven in only a few strains, it is likely
that all high-level DHA-producing strains use the PKS
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pathway as the main generator of DHA. In this pathway, DHA
is synthesized by successive elongation steps with malonyl-
CoA, similar to those carried out by FAS, but omitting the
removal of the double bond introduced from malonyl-CoA
in most of the cycles, thereby saving reducing power
(NADPH) and eliminating the need for molecular
oxygen and NADPH required for the desaturases. The
pathway is not fully unraveled, but hypothetical models have
been proposed (Fig. 2) (Metz et al. 2001; Ratledge 2004). The
PKS pathway also generates DPA (C22:5,ω6), in the order of
10 % of the fatty acids (Chaisawang et al. 2012; Hauvermale
et al. 2006; Matsuda et al. 2012). This indicates some
plasticity early in the DHA biosynthesis pathway allowing
for the synthesis of C6:0 instead of the usual C6:1
intermediate. When new two-carbon units are added to C6:0
following the same set of reactions as shown in Fig. 2, the
result will be DPA.

FAS and PKS use the same precursors, acetyl-CoA and
NADPH (Fig. 1). Reducing power in the form of NADPH is
assumed to be limiting for lipid accumulation (Ratledge
2014). Malic enzyme (ME) is a main generator of NADPH
for fatty acid synthesis in most, but not all, studied oleaginous
microorganisms (Dulermo et al. 2015; Garay et al. 2014;
Ratledge 2014). In order for ME to act as an NADPH
generator for FA synthesis, it has been proposed that the
enzyme has to form an integrated complex with the
ATP:citrate lyase enzyme (ACL) and the FAS complex to
ensure a direct channeling of acetyl-CoA into fatty acids
(Ratledge 2002). It is not known whether the PKS in
thraustochytrids would require a specific ME. ME activity
has been demonstrated in cell-free extracts of thraustochytrids
(Chaisawang et al. 2012; Chang et al., 2013b; Ren et al. 2013;
Ren et al. 2009; Song et al. 2013). In time course studies, the
activity of ME increased rapidly at the initiation of

Fig. 1 Metabolic network for the
biosynthesis of DHA, squalene,
steroids, and carotenoids from
glucose and glycerol. DHA is
produced by the PKS pathway
(see Fig. 2), while squalene,
steroids, and carotenoids are
produced via the mevalonate
pathway (Sun et al. 2014).
Dashed arrows indicate multiple
enzymatic steps, and dashed, grey
arrows in addition indicate
reactions where energy carriers
have been omitted
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triacylglycerol (TAG) accumulation and continued to increase
in parallel with the lipid accumulation (Ren et al. 2009; Song
et al. 2013). The first NADPH-generating enzyme of the pen-
tose phosphate pathway, glucose-6-phosphate dehydrogenase
(G6PD), had its maximum activity during the active cell
growth. However, more than 50 % of the maximum activity
was still maintained at the end of the lipid accumulation phase
(Ren et al., 2009, 2013). In a study by Song et al. (2013) using
Aurantiochytrium sp. SD116, the FAS was inhibited by
supplementing the growth medium with valeric acid
(pentanoic acid) added continuously as pH control. Despite
far less total lipids when valeric acid was added, the DHA
concentration was unaffected (20 g/l at the end in both cases).
The ME activity was significantly lower than in the control,
but when the supply of valeric acid was terminated, the ME
activity and the synthesis of C16:0 and other FAS products
were restored. This study indicated that the measured ME
activity was linked to the FAS, and the authors suggested
that PKS does not depend on ME for NADPH generation.
However, a study by Ren et al. (2009) supports a role of ME
in DHA production in Schizochytrium sp. HX-308. Addition
of malic acid in the rapid lipid accumulation phase increased
the fraction of DHA of total fatty acids (TFAs) from 35 to
60 % and from ~8 to ~15 % of the biomass. The TFA content

of the biomass increased from ~23 to ~26 %, meaning that the
synthesis of other fatty acids was reduced.

Generally, oleaginousmicroorganisms accumulate lipids as
TAGs at conditions where an essential nutrient, often nitrogen,
is limiting cell division and organic carbon is in excess. The
underlying mechanisms have been extensively reviewed by
Ratledge (2004) and Ratledge and Wynn (2002), mainly
based on studies on yeasts and filamentous fungi. Briefly,
nitrogen limitation leads to a low level of AMP, reduced
activity of the AMP-dependent isocitrate dehydrogenase of
the tri-carboxylic acid (TCA) cycle, and accumulation of
citrate, which is transported to the cytosol. ATP:citrate lyase
splits citrate to oxaloacetic acid and acetyl-CoA, thereby
providing a continuous supply of the fatty acid precursor
acetyl-CoA in the cytosol. This enzyme has been found in
all oil-accumulating microorganisms investigated, including
the thraustochytrids (Chaisawang et al. 2012; Chang et al.,
2013b; Janthanomsuk et al. 2015; Ren et al. 2009). Few
thorough studies on the initiation of lipid accumulation in
thraustochytrids have been reported. However, from studies
where a defined nitrogen source has been used, it is evident
that lipid accumulation is initiated when N is depleted
(Jakobsen et al. 2008; Janthanomsuk et al. 2015; Qu et al.,
2013b; Ren et al. 2010). When grown on media with a high N
content supplied as yeast extract or peptones, TAGs
accumulate also when N is still available (Chang et al.,
2013a; Chang et al. 2014; Huang et al. 2012). Any
explanations were not discussed by the authors but could be
that the depletion of the most easily utilized amino acids and
concomitant reduction in growth rate onsets the lipid accumu-
lation, despite still high concentrations of nitrogen in the
medium. Also, in continuous cultures with N as the growth-
limiting compound, lipid accumulation occurred (Ethier et al.
2011; Ganuza and Izquierdo 2007). Phosphorus (P) limitation
also initiated TAG accumulation in thraustochytrids (Jakobsen
et al. 2008; Ren et al. 2013), but the effect of P limitation on
DHA synthesis and lipid accumulation is far less studied than
the effects of N limitation.

In fermentation studies where N was completely depleted,
the lipid production rates decreased 1–2 days (20–50 h) after
onset of the TAG accumulation. The production rates of the
FAS products decreased at an earlier stage than the DHA
production rates, thereby increasing the fraction of DHA of
the total fatty acids towards the end of the fermentation
(Chaisawang et al. 2012; Jakobsen et al. 2008; Li et al.
2015; Ren et al. 2010). A similar reduction in lipid accumu-
lation rates in oleaginous fungi was shown to be due to
inactivation of ME, and varying stability of ME was assumed
to determine the maximum lipid levels obtained in different
species and strains (Ratledge and Wynn 2002). In a study
where high concentrations of yeast extract and peptone were
fed continuously, no reduction in production rates occurred
(Huang et al. 2012). In other studies where nitrogen was

 

Fig. 2 Alternative pathways for DHA biosynthesis. a The FAS pathway
followed by elongation and desaturation. Only the ω3 pathway to DHA
is depicted, while the branching point to the ω6 pathway is indicated. b
The PKS pathway (Metz et al. 2001; Ratledge 2004). The number of
NADPH needed at each step, or sequence of steps, is displayed to the left
of the arrows, while the enzyme activities involved are indicated to the right.
KS ketoacyl synthase;KR ketoreductase;DH dehydratase;DH/i bifunctional
dehydratase and trans-cis isomerase, the isomerasemay alsomove the double
bond; ER enoyl reductase; Δ desaturase, the number indicates which bond
(counted from the carboxyl end) is desaturated; and ELO elongase, a multi-
functional enzyme with KS, KR, DH, and ER activities
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supplied during the lipid accumulation phase, also oxygen
was limiting (see below), complicating the data interpretation.
Lower DHA fraction of TFA during the lipid accumulation
phase than during exponential growth has often been observed
(Chaung et al. 2012; Ren et al. 2014a, b). This can, at least
partly, be explained by phospholipids (PLs) as the dominating
lipid class during exponential growth with nitrogen in excess,
since the PLs have a higher DHA fraction than the storage
lipids (Fan et al. 2007; Qu et al. 2013a; Ren et al. 2014a).
During exponential growth with N in excess, PLs are the
dominating or only lipid class, constituting in the order of
10 % of CDW of thraustochytrids. The PLs constitute a
decreasing fraction of the total lipids (TLs) during the lipid
accumulation phase. At TL contents above 60 % of CDW,
neutral lipids, dominated by TAGs, constituted 90–95 % of
the TL (Fan et al. 2007; Ren et al. 2014a; Yaguchi et al. 1997).

The fatty acid yields on the carbon source are generally
not reported but can be calculated to 0.29 g/g glucose in
the lipid accumulation phase after N depletion in the study
by Chaisawang et al. (2012). This is close to the theoret-
ical yield, which is approximately 0.3 g/g glucose
(Ratledge, 2014).

Other parameters influencing the DHA levels
and production rates

Reduced oxygen supply, resulting in zero dissolved oxygen
(DO) in the medium, has been shown to increase the relative
fraction of DHA of TFA but also to a certain extent of the
fraction of the biomass. A direct effect of oxygen limitation
is that the content of unsaturated fatty acids produced by the
oxygen-dependent desaturases is decreased, thereby
increasing the relative fraction of the other fatty acids
(Jakobsen et al. 2008). More importantly, low oxygen transfer
rate (OTR) also reduced the fraction of the FAS products of
TFA, thereby increasing the fraction of DHA. This was more
evident the lower the OTR (Chang et al. 2014; Jakobsen et al.
2008; Qu et al. 2011; Ren et al. 2010) and indicates that the
FAS activity is more affected by the oxygen supply than the
PKS activity.

Results from experiments where the temperature was
reduced within a range where the cell yields and lipid contents
were not significantly affected (between 15 - 20 and 30 °C)
indicate increasing DHA fractions with decreasing
temperatures. For instance, the DHA fraction of TFA in
Aurantiochytrium mangrovei Sk-02 increased from 29 to
42 % in the late lipid accumulation phase when the
temperature was decreased from 30 to 12 °C; however, the
DHA content of the cell mass was the same (~12 %) since the
TFA content (mainly C16:0) of CDW decreased at lower
temperatures (Chodchoey and Verduyn 2012). Several other
studies also show a higher DHA fraction at lower tempera-
tures but with smaller effects and not always clear trends. The

temperature effect was even more evident for DPA than for
DHA but with an opposite response. The DPA fraction of
TFA, as well as the cell mass, decreased with decreasing
temperature (Chodchoey and Verduyn 2012; Taoka et al.
2009; Unagul et al. 2005; Zeng et al. 2011). Hence, the
synthesis of the two PKS products seems to react differently
to temperature.

In order to maintain the maximum lipid accumulation rate,
the concentration of the carbon source should be above 15–
20 g/l. When the concentration drops below this level, for
instance, towards the end of fermentations, the rates decrease.
This effect was also evident when the carbon source was
added by pulsing, allowing the concentration to decrease to
~5 g/l (Qu et al. 2013a). Limiting the carbon source by slow
feeding gave similar, or slightly reduced, lipid contents of
CDW as obtained with carbon in excess, however with
reduced lipid production rates (Janthanomsuk et al. 2015;
Qu et al. 2013a). At decreasing feeding rates, the production
rates of the FAS products decreased more than the DHA
production rates, resulting in a higher DHA fraction of the
fatty acids.

Summary of the main factors affecting the DHA
production rates

Total lipid contents of the cell mass above 80 % (Li et al.
2015) and DHA contents above 80 % of TFA (Huang et al.
2012) have been reported. However, such extremes have
never been obtained simultaneously. The variations in DHA
fraction of TFA observed when oxygen transfer rates and
feeding strategies (N, P, and C) are changed seem to a larger
degree to be caused by variations in the production rates for
the fatty acids generated by FAS than the DHA production
rates. In order to improve the DHA productivity, factors
specifically increasing the rates of the PKS need to be
identified. For a comparison of reported effects, the specific
productivity (qP) of DHA related to the Bfat-free^ cell mass
have been calculated (Table 1). The highest qP values were
obtained when very high concentrations of complex nitrogen
sources were applied. When nitrogen is available during the
lipid accumulation phase, new synthesis of the rate-limiting
enzymes is possible, and high enzyme activities can be
maintained throughout the fermentation. However, more
direct comparisons of different strategies for N supply, using
the same strain, are needed. The stability of ME is assumed to
be important to maintain a high lipid production rate in yeast
and fungi. However, for thraustochytrids, it is yet unclear
whether FAS and PKS use the same ME for NADPH
generation, if they have their specific MEs, or even if the
NADPH for PKS is generated by other enzymes. More
knowledge about the number of MEs and possible associa-
tions with the two enzyme complexes will be provided by
genome analyses. The distribution of the carbon flow between
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the two pathways will also be affected by theKm values for the
enzymes belonging to the respective systems. No such studies
have been reported.

The overall volumetric productivity of the processes has
not been emphasized in the sections above. However, the
highest reported DHA productivities in the scientific literature
are 7–8 g/l day. These were obtained with Schizochytrium sp.
S31 at 150 g/l CDW (Chang et al., 2013a) and with
Aurantiochytrium limacinum SR21 at 88 g/l CDW (Li et al.
2015). In a patent, 13 g/l day at 190 g/l CDW has been
reported (Bailey et al. 2003).

Squalene production in thraustochytrids

Applications of squalene and market prospects

Some thraustochytrids, in particular some species belonging
to the genus Aurantiochytrium, produce squalene in quantities
of more than 30% of the CDW. Squalene is an intermediate in

the biosynthesis of sterols like cholesterol and ergosterol (Fig.
1) and is widespread in nature. In the livers of deep-sea sharks,
it may constitute more than 80% of the oil (Bakes and Nichols
1995). Squalene is extensively used as an excipient in phar-
maceutical emulsions for the delivery of vaccines, drugs, and
other medicinal substances. It improves the immune
system and is therefore used as a protective agent in cancer
treatment, and it is also used as a hydrating and antioxidant
agent in cosmetics (Huang et al. 2009; Reddy and Couvreur
2009). The squalene market is currently growing and is
expected to reach 4000 t and a value of USD 177 million by
2019 (www.marketsandmarkets.com). The shark liver oil has
been the traditional source for squalene, but the uncontrolled
killing of these animals has caused growing environmental
concerns. Combined with governmental regulations, it has
restricted the growth of this segment. Alternative squalene
sources include vegetable oils, where the highest quantities
are found in amaranth and olive oils, on average 7–8 % (w/w)
and 1 %, respectively (Popa et al. 2015). Due to the higher
demand of processing plants when extracting squalene from

Table 1 Specific productivities of DHA and C14-C18 fatty acids based on Bfat-free^ cell dry weight, approximate values calculated from data
presented in the cited references

Strain C source
(in excess)

N source and
concentration (g/l)a

N supply during lipid
accumulation

Dissolved oxygen qp [mg/(g h)] Reference

DHA C14–C18

Thraustochytrium sp.
ONC-T18

Glucose MSG + YE (8 + 2) No NA 6.3 – Burja et al. (2006)

Schizochytrium sp. S31b Glycerol YE (14) No DO = 0, 0.6 vvm,
450 rpm

7.3 5.1 Chang et al. (2013b)

Schizochytrium sp. S31b Glycerol YE (50) NH3 as pH control DO = 0, 0.6 vvm,
700 rpm

9.1 12.7 Chang et al. (2013a)

A. limacinum SR21 Glycerol YE + Pep (4 + 4) Feeding of YE + Pepc DO = 50 % 21 – Huang et al. (2012)

A. limacinum SR21 Glucose MSG + YE (45 + 30) No DO = 0 17 – Li et al. (2015)

A. limacinum SR21 Glycerol CSL (5) Continuous culture DO = 50 % 3.8 7.7 Ethier et al. (2011)

Schizochytrium G13/2S Glucose MSG (4) Continuous culture – 7 7.5 Ganuza and Izquierdo
(2007)

Aurantiochytrium sp.
T66

Glycerol MSG (22) No DO = 30 % 3.3 8.7 Jakobsen et al. (2008)

Schizochytrium sp.
HX-308

Glucose MSG (22) No NA 6 – Qu et al. (2013b)

Schizochytrium sp.
HX-308

Glucose MSG (22) No NA 6 7 Ren et al. (2014a)

Aurantiochytrium sp.
B-072

Glucose MSG (8) No NA 23d 85d Chaisawang et al.
(2012)

Aurantiochytrium sp.
B-072

Glucose (NH4)2SO4 (5) NH3 as pH control DO = 30 % 50–55d 85d Janthanomsuk et al.
(2015)

The values refer to the period with highest production rates during the lipid accumulation. Fat-free dry weight is calculated as CDW minus TFA if not
otherwise stated

NA data not available
aMSG mono-sodium glutamate, YE yeast extract, Pep peptone
bDHA fraction and calculated fat-free CDW based on TL, not TFA
cA solution of 20 g/l YE + 20 g/l Pep was fed continuously
d Calculated by the cited authors as mmol/(g h). Recalculated to mg/(g h) by using the molecular masses of DHA and C16:0, respectively
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vegetable oils compared to shark livers, the potential of
biotechnological production in microbial cell factories has
attracted increasing attention (Ghimire et al. 2016).

Squalene-producing strains and reported production data

Squalene is produced from farnesyl diphosphate (FPP) via the
mevalonate pathway (Fig. 1). The enzymes preceding FPP
have not been mapped in thraustochytrids. However, several
enzymes related to squalene and sterol synthesis have been
shown to be expressed in Aurantiochytrium sp. SD116,
including sterol 24-C-methyltransferase, cycloartenol
synthase, cholesterol transport protein, and squalene synthe-
tase (Ma et al . 2015). The squalene synthase of
Aurantiochytrium sp. KRS101 has been produced
recombinantly and shown to catalyze the conversion of two
molecules of FPP into squalene in the presence of NADPH
and Mg2+ (Hong et al. 2013b).

The highest reported squalene levels so far are 32 and 20%
of CDWand were obtained with the strains Aurantiochytrium
spp., Yonez5–1 and 18 W-13a (Table 2). In strain 18 W-13a,
squalene constituted 69 % of TL and in Yonez5–1 ~94 %
(Nakazawa et al., 2012, 2014). The kinetics of the accumula-
tion is not known, as the first sampling was made when the
maximum level of biomass, total lipids, and squalene already
was reached (Kaya et al. 2011). Also, strains primarily
selected for their TAG and/or DHA contents have been shown
to produce high levels of squalene, up to 6.6 % of TL or 3.3 %
of the cell mass (Hoang et al. 2014; Qu et al. 2013a). In A.
mangrovei PQ6 (formerly classified as Schizochytrium
mangrovei PQ6), squalene was accumulated during the lipid
accumulation phase, but faster than the increase in lipids, and
reached a maximum of 33 mg/g of CDW (6 % of TL) and
1.0 g/l after 4 days (Hoang et al. 2014). In contrast,
Schizochytrium sp. CCTCC M209059 produced relatively

high amounts of squalene in the growth and early lipid
accumulation phase, comprising 38 % of TL (30–40 % TL
of CDW) and 11 % of CDW (~3 g/l). The TL continued to
increase to 70 %, but the squalene content decreased in actual
concentrations (g/l), and had disappeared at the end of the
TAG accumulation phase (Ren et al. 2014a). The reported
volumetric productivities are in the order of 0.2–1.4 g/l day
(Table 2). The cell dry weights for the two strains accumulat-
ing 20–30 % squalene of CDW were only 3.4 and 6 g/l,
respectively, indicating that a considerable potential for im-
proved productivities if the cell density can be increased.

In conclusion, thraustochytrids are promising candidate
production organisms for squalene. However, more work is
needed on strain selection and studies of the production
kinetics. For instance, to which degree the squalene produc-
tion is growth associated or related to the lipid accumulation
seems to vary between strains. A strain accumulating high
levels with high volumetric productivities would be the
selection for a process targeting squalene as the main product,
while squalene associated with the biomass residues after oil
extraction could be a valuable co-product to DHA production.

Thraustochytrids as carotenoid producers

Application of carotenoids and market prospects

Thraustochytrids are often pigmented and have been found to
synthesize carotenoids (Aki et al. 2003; Burja et al. 2006;
Raghukumar 2008; Singh et al. 2014). Carotenoids are a
diverse group of natural pigments, mainly produced by plants
and also by some microorganisms. The carotenoids can be
divided into xanthophylls and carotenes. The two groups have
similar molecular structures, but xanthophylls contain oxygen,
while carotenes are purely hydrocarbons. The commercially

Table 2 Squalene levels and productivities in high producing thraustochytrids

Strain CDW
(g/l)

Squalene
(mg/g CDW)

Squalene
(g/l)

Squalene
(g/l day)

Lipid
(g/l)

Va (l) Time
(day)

Reference

Aurantiochytrium sp.
18 W-13a

6.5 198 1.3 0.32 3.9 0.2 4 Kaya et al. (2011)

Aurantiochytrium sp.
Yonez 5–1

3.4 318 1.1 0.27 1.1 0.2 4 Nakazawa et al.
(2014)

A. mangrovei PQ6 30 33 1.0 0.25 15 15 4 Hoang et al. (2014)

A. mangrovei PQ6 31 33 1.0 0.25 16 100 4 Hoang et al. (2014)

Schizochytrium sp.
CCTCC M209059b

25 11 0.3 0.18 8 1000 1.5 Ren et al. (2010)

Schizochytrium sp.
CCTCC M209059b

50 84 4.3 1.4 21 7 3 Ren et al. (2014a)

a Culture volume
bData derived from graphs in the cited reference
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most important carotenoids are the xanthophylls astaxanthin,
cantaxanthin, lutein, and zeaxanthin and the carotenes β-
carotene and lycopene. The main application of carotenoids
is as colorant in food and feed but with an increasingmarket in
nutrition, pharmaceuticals, and cosmetics (Berman et al.
2015). The dominating carotenoid products in both quantities
and value are chemically synthesized astaxanthin and
cantaxanthin for aquaculture feed. Astaxanthin is the econom-
ically most important carotenoid globally, with a market size
of above 350 million USD. In 2010, the global market for
carotenoids was reported to be 1200 million USD and with
an estimated annual growth of 2.3 % (Cutzu et al. 2013). In
2014, the Global Information (http://www.giiresearch.com/
report/bc199439-global-market-carotenoids.html) reported
the market value to 1500 million USD, with an estimate to
reach 1800 million USD in 2019, indicating an annual growth
rate of 3.9 %.

Today, most carotenoids are either chemically synthesized
(e.g., astaxanthin, β-carotene, and cantaxanthin) or obtained
from plant extracts. Up to now, microbially produced
carotenoids have not been cost competitive with the
chemically synthesized products, thus only serving higher-
price, niche applications (Schmidt et al. 2011).

Carotenoid-producing strains and reported production
data

Carotenoids, both xanthophylls and carotenes, are synthesized
by the mevalonate pathway via the common intermediate
lycopene (Fig. 1). No studies on the involved enzymes and
genes in thraustochytrids have been reported.

A Thraustochytrium strain-denoted ONC-T18 was found
to produce β-carotene and the xanthophylls astaxanthin,
zeaxanthin, cantaxanthin, phoenicoxanthin, and echinenone,
with total levels in the order of 30 μg/g CDW (Armenta et al.
2006; Burja et al. 2006). Higher carotenoid levels were
reported for Thraustochytrium CHN-1, which produced
160 μg/g astaxanthin and 450 μg/g total carotenoids
(Carmona et al. 2003), while Aurantiochytrium sp. KH105
produced 1.5–3.4 mg/g total carotenoids depending on media
and cultivation conditions, with astaxanthin levels up to
~1.4 mg/g (Aki et al. 2003; Yamasaki et al. 2006). Highest
carotenoid levels so far are reported for the strain
Thraustochytriidae sp. AS4-A1 (Ulkenia sp.), producing up
to 40 mg/g astaxanthin or 4 % of CDW. The cell densities
were 8–12 g/l and the astaxanthin concentrations 0.30–
0.45 g/l after 6 days. The astaxanthin production followed
the DHA accumulation profile with the maximum concentra-
tion obtained somewhat later than the maximum DHA con-
centration (Quilodran et al. 2010). Interestingly, recombinant
expression of the Vitreoscilla hemoglobin protein resulted in
ninefold increased astaxanthin content in Aurantiochytrium
sp. SK4 under microaerobic conditions, and this engineering

approach also positively affected cell growth and PUFA pro-
duction (Suen et al. 2014).

The maximum reported astaxanthin level of 4 % of CDW
by thraustochytrids is far higher than the 6–7 mg/g obtained
by the yeast Phaffia rhodozyma (Schmidt et al. 2011), and in
the same order as for the phototropic microalgae
Haematococcus pluvialis, both used for commercial
production of astaxanthin. Thraustochytrids are therefore
highly interesting production organisms for this carotenoid
and for a simultaneous production of DHA and astaxanthin
for salmon feed. Due to the low cell densities, the reported
volumetric productivities are yet low for thraustochytrids. If
high-cell-density fermentations can be developed, it is not
unlikely that also the volumetric productivities will exceed
the productivities reported for other potential production
organisms. Further, current progress in development of
genetic tools and genome sequencing of thraustochytrids
should open for engineering of thraustochytrids as future
production hosts for a range of carotenoids, utilizing the
knowledge generated from the ongoing engineering efforts
on other microorganisms, such as the yeasts P. rhodozyma
and Xanthophyllomyces dendrorhous (Schmidt et al. 2011;
Gassel et al. 2013).

Available genome sequences and tools
for engineering of thraustochytrids

The scarcity of thraustochytrids genome data has so far limited
the identification of targets for strain development. A partial
genome of a thraustochytrid (QPX) identified as a parasite on
the hard clam quahog has been published (Garcia-Vedrenne et
al. 2013). More recently, the genome sequence of a good
DHA producer Schizochytrium sp. CCTCC M209059 was
published (Ji et al. 2015). Draft genome data of two
thraustochytrids, A. limacinum SR21 and S. aggregatum
ATCC 28209, are available from the Joint Genome Institute
(JGI; http://genome.jgi.doe.gov/), and a genome scale
metabolic model of A. limacinum SR21 was recently built
and analyzed for DHA production (Ye et al. 2015). A few
transcriptome studies of thraustochytrids have also been
published (Ma et al. 2015; Rubin et al. 2014).

However, even if more genome sequences now are
becoming available, efficient methods for gene transfer are
still scarce for thraustochytrids. To date, there are only 12
thraustochytrid strains, belonging to 4 different genera, which
have been genetically manipulated, and only a few methods
have been successfully employed for delivering transgenes
into thraustochytrid cells. Except for one published study,
where the authors established Agrobacterium-mediated
transformation for Schizochytrium sp. (Cheng et al. 2012),
electroporation or particle bombardment using linear DNA
appear to be the choice (Table 3), but the reported methods
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do not necessarily work for any thraustochytrid strain.
However, other methods that have been successfully applied
for photosynthetic microalgae may be applicable in
thraustochytrids as well. Kim et al. (2014) reported that
Chlamydomonas reinhardtii with an intact cell wall could be
transformed by the use of positively charged aminoclay
nanoparticles, and last year a bacterial conjugation-based
method was established that directly transfers episomes from
Escherichia coli to the diatoms Phaeodactylum tricornutum
and Thalassiosira pseudonana with high transformation
efficiency (Karas et al. 2015). These novel approaches might
open new opportunities for thraustochytrid transformation.
Recently, Sun et al. (2015) demonstrated that the cre/loxP
system could be utilized to generate markerless mutations in
A. limacinum, and this might enable the construction of strains
with several mutations.

Besides the DNA delivery method, the selection method
and the control of gene expression need to be taken into
consideration when establishing genetic toolkits for
thraustochytrids. Only a limited range of selection markers
has been employed to select thraustochytrid transformants
(Table 3). The concentrations needed for growth inhibition
are strain dependent, indicating that the resistance to antibiotic
selection of thraustochytrids need to be tested on a case-by-
case basis (Cheng et al. 2011; Lippmeier et al. 2009; Suen et
al. 2014). It has also been reported that mutating the gene
encoding ribosomal protein L44 (P56E) renders
Aurantiochytrium sp. KRS101 cycloheximide resistant
(Hong et al. 2013a). In addition, it has been demonstrated that
the enhanced fluorescence protein (EGFP) can be functionally
expressed in A. limacinum, T. aureum, and Schizochytrium sp.
(Cheng et al. 2012; Sakaguchi et al. 2012; Sun et al. 2015). In
order to control transgene expression, promoters from highly
expressed endogenous genes are often used. Table 3 also
summarizes which promoters were used for controlling
transgene expression in the cited studies.

The methods described above have mainly been used to
elucidate the role of enzymes related to fatty acid synthesis,
yet to a lesser degree for strain improvement. This will change
when genome sequences now become available, enabling
identification of targets for genetic engineering. In parallel
with the efforts in sequencing, there is a need to further
develop genetic toolkits.

Future prospects

Despite more than 20 years of research onDHA production by
thraustochytrids, basic knowledge of biochemistry, genetics,
and regulation of the synthesis is still lacking. Of particular
importance for future strain and process improvements is the
understanding of how the two main pathways used for fatty
acid synthesis is regulated and how higher rates of the PKS

pathway can be obtained. The few reported studies on
squalene and carotenoids indicate a high production potential
of these compounds. However, the information about the
production kinetics is scarce, for instance, to which degree
the production is growth associated or related to the lipid
accumulation. The genome sequences that now are becoming
available will help to generate hypotheses that can be verified
experimentally by various omic analyses, biochemical studies
of enzyme activities, and the use of labeled substrates. This
will open for a system-level metabolic engineering for strain
improvement.

DHA-rich oils produced by thraustochytrids are already
commercialized for the human market. Production of DHA
for other, lower-price markets, such as feed ingredients, as
well as the production of squalene and carotenoids, will
depend on the availability and price development for the
current feedstocks for these products. Squalene and caroten-
oids could also be added-value co-products from a potential
future large-volume production of DHA as a fish feed
ingredient and thereby improve the process economy.
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