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Abstract L-Rhamnose isomerase (L-RI, EC 5.3.1.14), cata-
lyzing the isomerization between L-rhamnose and L-
rhamnulose, plays an important role in microbial L-rhamnose
metabolism and thus occurs in a wide range of microorgan-
isms. It attracts more and more attention because of its broad
substrate specificity and its great potential in enzymatic pro-
duction of various rare sugars. In this article, the enzymatic
properties of various reported L-RIs were compared in detail,
and their applications in the production of L-rhamnulose and
various rare sugars including D-allose, D-gulose, L-lyxose, L-
mannose, L-talose, and L-galactose were also reviewed.

Keywords L-Rhamnose isomerase . Rare sugar . D-Allose .
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Introduction

L-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose isom-
erase reversibly catalyzing the isomerization between L-rham-
nose and L-rhamnulose. L-RI exists in a wide range of micro-
organisms due to its important role in L-rhamnose metabolism.
L-RI exhibits very broad specificity toward various aldoses and

ketoses and thus displays a great potential in biological produc-
tion of many expensive rare sugars (Leang et al. 2004b). Rare
sugars are defined by International Society of Rare Sugars as
monosaccharides and their derivatives existing in nature in very
limited quantities (Izumori 2002). Recently, plenty of literatures
have focused on the unique physiological effects and medical
potential of rare sugars, and they are proven to be of paramount
significance in the food industry, nutraceuticals, pharmaceuti-
cals, and other applications. D-Tagatose (Kim 2004), D-psicose
(Mu et al. 2012), and some polyols have been formally ap-
proved by US Food and Drug Administration (FDA) as
Generally Recognized As Safe (GRAS) and allowed to be used
in food and medical industries.

Microbial L-RI has been used for enzymatic production of
D-allose and various L-monosaccharides. D-Allose, a C3 epi-
mer of D-glucose, has been proven to be of potential medical
benefits, including cryoprotective (Sui et al. 2007), anti-
oxidative (Nakamura et al. 2011), anti-hypertensive (Kimura
et al. 2005), immunosuppressant (Hossain et al. 2000), anti-
inflammatory (Gao et al. 2013), anti-tumor (Malm et al.
2015), and anti-cancer activities (Indo et al. 2014). L-form
monosaccharides attract increasing attention because they
can be potentially used as important starting materials to syn-
thesize many high-value pharmaceutical compounds (Ahmed
2001). L-Sorbose has been used as the industrial precursor for
chemical synthesis of L-ascorbic acid for decades
(Pappenberger and Hohmann 2014) and was used as a sub-
strate for synthesis of the potential glycosidase inhibitor 1-
deoxygalactonojirimycin (Furneaux et al. 1993). L-Ribose is
an important precursor for the synthesis of L-nucleoside ana-
logs (Hu et al. 2011).

Although L-RI displays great potential for use in produc-
tion of rare sugars, there is still no available literature
reviewing the recent studies of L-RIs. In this work, all the
reported microbial L-RIs are compared in detail, and the
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biotechnological production of various rare sugars by L-RI is
reviewed.

Role in microbial sugar metabolism

L-Rhamnose is an important component of mycobacterial cell
walls of some microorganisms (Southard et al. 1959). The
anabolism and catabolism of L-rhamnose have been studied.
It is normally generated by microorganism through D-fructose
and D-mannose metabolism (Kanehisa and Goto 2000). L-RI
plays a major role in microbial catabolism of L-rhamnose.
Three structural genes are involved in L-rhamnose metabolism
in Escherichia coli, including rhaA, rhaB, and rhaD, encoding
L-RI, L-rhamnulose kinase (EC 2.7.1.5), and L-rhamnulose-1-
phosphate aldolase (EC 4.1.2.19), respectively (Egan and
Schleif 1993; Moralejo et al. 1993; Power 1967). L-RI cata-
lyzes L-rhamnose to L-rhamnulose firstly; L-rhamnulose is fur-
ther phosphorylated by L-rhamnulose kinase; and finally, L-
rhamnose-1-phosphate is hydrolyzed by L-rhamnulose-1-
phosphate aldolase to dihydroxyacetone phosphate and L-
lactaldehyde (Fig. 1). The former product enters tricarboxylic
acid (TCA) cycle for glycolysis. In E. coli, L-lactaldehyde is
converted to L-lactate by lactaldehyde dehydrogenase (EC
1.2.1.22) under aerobic conditions, while it is reduced to L-1,
2-propanediol by propanediol oxidoreductase (EC 1.1.1.77) to
be transported extracellularly (Baldoma and Aguilar 1988).

Comparison of various L-RIs

So far, L-RI has been characterized from E. coli (Takagi and
Sawada 1964), Lactobacillus plantarum (Domagk and Zech
1966), Pseudomonas sp. strain LL172 (Bhuiyan et al. 1997b),
Pseudomonas stutzeri (Leang et al. 2004b; Leang et al.
2004c), Bacillus pallidus Y25 (Poonperm et al. 2007),
Thermoanaerobacterium saccharolyticum NTOU1 (Lin
et al. 2010), Thermotoga maritima ATCC 43589 (Park et al.
2010), Caldicellulosiruptor saccharolyticus ATCC 43494
(Lin et al. 2011), Bacillus halodurans ATCC BAA-125
(Prabhu et al. 2011), Mesorhizobium loti Tono (Takata et al.
2011),Dictyoglomus turgidumDSMZ 6724 (Kim et al. 2013),
Bacillus subtilis ATCC 23857 (Park 2014), and B. subtilis str.
168 (Bai et al. 2015). The enzymatic properties of the different
L-RIs are listed in Table 1.

Comparison of the amino acid sequences

The comparison of amino acid sequences of various microbial
L-RIs was shown in Table S1. Based on the comparison data,
the L-RIs could be divided into two groups. Group I members,
including L-RIs from E. coli, B. haloduransATCCBAA-125,
B. subti l is str. 168, T. saccharolyt icum NTOU1,
C. saccharolyticus ATCC 43494, and B. pallidus Y25 exhib-
ited 40–80 % amino acid residue identity with each other.
Group II members, including L-RIs from P. stutzeri, M. loti
Tono, and D. turgidum DSMZ 6724 also displayed 40–80 %
identity with each other. However, interestingly, relatively low
identity (only 15–25 %) was shown between groups I and II
members (Table S1). In addition, the phylogenetic tree of L-
RIs also provided two regions with groups I and II members
(Fig. 2). Multiple sequence alignment of various L-RIs was
shown in Fig. S1. Although the reported L-RIs showed much
difference in the residue sequence with each other, especially
between groups I and II, there were still some residues that are
completely identical in all of the displayed sequences. The
crystal structures of L-RIs from E. coli (Korndorfer et al.
2000), B. halodurans ATCC BAA-125 (Doan et al. 2010),
and P. stutzeri (Yoshida et al. 2007) have been determined
and released in Protein Data Bank (PDB) database with no.
of 1D8W, 3UXI, and 2I57. The available structural informa-
tion suggested that L-RI catalyzes the isomerization by a
metal-mediated hydride-shift mechanism, like D-xylose isom-
erase. According to the E. coli L-RI structure, two metal ions
were observed. One was Bstructural^ metal to help sub-
strate binding, coordinated by Glu234, Asp267, His294,
and Asp334, and the other was Bcatalytic^ metal to help
the hydride shift, coordinated by Asp294 and His262
(Korndorfer et al. 2000). It was found that these six
residues were completely conserved in all reported L-
RIs (Fig. S1).Fig. 1 Microbial catabolism of L-rhamnose
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Effect of metal ions

In general, L-RIs require Mn2+ or Co2+ as a divalent metal
cofactor for activation (Table 1). The three-dimensional struc-
tures of both E. coli (Korndorfer et al. 2000) and P. stutzeri L-
RI (Yoshida et al. 2007; Yoshida et al. 2010) reveal the clear
existence of metal-binding sites and bound metals, and the
mechanism of aldose-ketose isomerization by L-RI has been
proposed as a metal-mediated hydride-shift biocatalysis pro-
cess based on the reported structure information.

Effect of pH

The L-RIs from B. haloduransATCC BAA-125 (Prabhu et al.
2011), C. saccharolyticus ATCC 43494 (Lin et al. 2011),
T. saccharolyticum NTOU1 (Lin et al. 2010), and
B. pallidus Y25 (Poonperm et al. 2007) showed pH optima
at neutral pH (7.0), and others showed pH optima at slightly
alkaline side up to pH 9.0 (Table 1). However, for practical
applications, aldose isomerases are expected to have slightly
acidic pH optima, because acidic pH conditions may reduce
non-enzymatic browning reaction leading to the unwanted
byproducts (Friedman 1996). Many researches have focused
on the isolation of acidic aldose isomerase and ketose epim-
erases or the molecular modification to reduce the pH optima
of these enzymes, such as D-glucose isomerase (Bhosale et al.
1996), L-arabinose isomerase (Fan et al. 2015; Xu et al. 2014),
and D-psicose epimerase (Zhang et al. 2015).

Effect of temperature

A major consideration for the practical use of biotransforma-
tion is the development and improvement of the satisfied en-
zymes (Polizzi et al. 2007; Plou and Ballesteros 1999).
Reaction at high temperatures can enhance the solubility of
substrates and products, provide a higher reaction rate, and
reduce the microbial contamination (Mozhaev 1993).

As shown in Table 1, most of the L-RIs show highest ac-
tivities at relatively high temperatures (not less than 60 °C);
however, significant difference of thermostability is seen
among different sources of L-RIs. The one from M. loti
Tono retains 70 % of initial activity after incubation at 50 °C
for 1 h (Takata et al. 2011). The ones from B. pallidus Y25
(Poonperm et al. 2007) and B. subtilis str. 168 (Bai et al. 2015)
show half-lives at 65 °C of 1 and 6 h, respectively. The one
from B. halodurans ATCC BAA-125 can retain >90 % of
activity after 15 h of incubation at 60 °C but only shows
half-lives at 70 and 80 °C of 25 and 5 min, respectively
(Prabhu et al. 2011). The one from B. subtilis ATCC 23857
has a half-life of approximately 2 h at 70 °C (Park 2014). By
comparison, the ones from some thermophiles exhibit very
good thermostabili ty (Table 1). The half-lives of
D. turgidum L-RI at 75, 80, and 85 °C are 28, 12.7, andT
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4.5 h, respectively (Kim et al. 2013). The one from
T. maritima ATCC 43589 has a half-life of 773 h at 75 °C
(Park et al. 2010). The one from C. saccharolyticus ATCC
43494 is strongly stable at 80 and 85 °C and exhibits a half-
life of 65 min at 90 °C (Lin et al. 2011).

Substrate specificity and kinetics

L-RI has recently attracted much attention due to its wide
substrate specificity toward various aldoses and ketoses and
its potential applications for production of various rare sugars
(Tables 2 and 3). All the reported L-RIs showed the optimum
subs t ra t e as L- rhamnose , and among them, the
C. saccharolyticus L-RI had the highest specific activity
(380 U mg−1) toward L-rhamnose. L-Lyxose was the second
favored substrate of the reported L-RIs because L-lyxose had
similar configuration with L-rhamnose, and the enzyme from
T. saccharolyticum NTOU1 showed much higher specific ac-
tivity (130 U mg−1) toward L-lyxose than other L-RIs.

E. coli L-RI was specific for L-rhamnose, L-lyxose, and L-
mannose (Korndorfer et al. 2000) while it showed null activity
toward D-allose and D-ribose, but other reported L-RIs had
broader specificity including D-allose and D-ribose (Table 2).
From the crystal structure information, both E. coli
(Korndorfer et al. 2000) and P. stutzeri (Yoshida et al. 2007)
L-RIs showed highly conserved amino acid residues involved
in the interactions between the protein and the O1, O2, and O3
of the L-rhamnose, which were responsible for the metal-
binding and catalytic mechanism, while significant structural
differences were found in the recognition of the atoms at 4, 5,
and 6 positions of the substrate, which were responsible for
the substrate specificity. In E. coli L-RI, Val53, Leu63, Ile67,
and Phe336 created a unique hydrophobic pocket to recognize
the substrate and it thus led to the narrow substrate specificity
(Korndorfer et al. 2000). The residues of P. stutzeri L-RI in-
volved in the interactions with substrate at 4, 5, and 6 positions
(Yoshida et al. 2007) were interestingly very highly conserved
compared to Astragalus missouriensis D-xylose isomerase
(Jenkins et al. 1992), which had relatively loose substrate rec-
ognition and was able to isomerize a wide variety of
substrates.

The comparison of kinetic parameters of various reported
L-RIs was shown in Table 3. The L-RI from B. subtilis str. 168
exhibited the lowest Km (0.49 mM) toward L-rhamnose (Bai
et al. 2015); however, the enzyme from C. saccharolyticus
ATCC 43494 showed the highest catalytic efficiency (kcat/
Km) toward L-rhamnose, which reached 100.32 mM−1 s−1

(Lin et al. 2011). In addition, the kinetic parameters toward
various substrates significantly varied among various reported
L-RIs (Table 3).

Biotechnological applications of L-RI for production
of rare sugars

Production of D-allose from D-psicose

As mentioned above, the rare sugar D-allose attracts increasing
attention because of its physiological effects and commercial
interest. D-Allose can be produced from another rare sugar D-
psicose, which is easily produced from D-fructose by ketose 3-
epimerase (Mu et al. 2012). Bioconversion of D-psicose to D-
allose can be catalyzed by D-galactose-6-phosphate isomerase,
D-ribose-5-phosphate isomerase, and L-RI (Mu et al. 2015).
Lactococcus lactis D-galactose-6-phosphate isomerase effi-
ciently converts D-psicose to D-allose and D-altrose (Park et al.
2007b). The reported D-allose-producing D-ribose-5-phosphate
isomerases include the ones from Clostridium thermocellum
(Park et al. 2007a), Clostridium difficile (Yeom et al. 2010),
Thermotoga maritime (Yeom et al. 2010), and Thermotoga
lettingae TMO (Feng et al. 2013), and they generate no
byproduct but only D-allose from D-psicose.

The biological production of D-allose was first reported
using L-RI from P. stutzeri LL172 (Bhuiyan et al. 1997b).
The immobilized whole cells of P. stutzeri were used to con-
vert D-psicose to within 20 days, with the conversion yield of
40 % (Bhuiyan et al. 1998). D-Allose production was also
performed by the recombinant P. stutzeri L-RI, which was
immobilized by cross-linking with glutaraldehyde and L-ly-
sine; however, it produced 25 % D-allose together with 8 %
D-altrose as byproduct from D-psicose after bioconversion and
ethanol crystallization (Menavuvu et al. 2006). Large-scale

Fig. 2 A phylogenetic tree of the
already identified L-RIs with
known GenBank accession
number. The tree was generated
by the neighbor-joining method
using ClustalW software. The
amino acid substitution per
position was indicated by scale
bar. The bootstrap values were
indicated by the numbers on each
clade. The GenBank numbers of
various enzymes were shown
after eachmicrobial source of L-RI
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production of D-allose from D-psicose was performed using a
continuous column bioreactor containing the recombinant
P. stutzeri L-RI immobilized on BCW-2510 Chitopearl beads.
When 50 % (W/W) D-psicose was applied to the column, ap-
proximately 30 % D-psicose was isomerized to D-allose for
17 days but still with a very small amount of byproducts
(Morimoto et al. 2006).

Enzymatic production of D-allose from D-psicose has also
been studied using the L-RIs from B. pallidusY25 (Poonperm
et al. 2007), T. saccharolyticum NTOU1 (Lin et al. 2010),
C. saccharolyticus ATCC 43494 (Lin et al. 2011), and
B. subtilis str. 168 (Bai et al. 2015), and they produce D-allose
without any byproduct, with maximal conversion yield of 35,
34, 33, and 37.5 %, respectively.

Enzymatic production of D-gulose from D-sorbose

D-Gulose has been produced from D-sorbose by both the free
(Leang et al. 2004b) and the immobilized P. stutzeri L-RI
(Bhuiyan et al. 1999), with the same of conversion yield of
10 %.

Enzymatic production of L-sugars

L-Rhamnulose

L-Rhamnulose (6-deoxy-L-sorbose) is a precursor of the straw-
berry aroma furaneol and has been used in the flavor industry
(Hecquet et al. 1996). Most of L-RIs show the optimal substrate
as L-rhamnose producing L-rhamnulose. Free L-RI from
B. pallidus Y25 produces L-rhamnulose from L-rhamnose with
a turnover ratio of 45 % (Poonperm et al. 2007). L-Rhamnulose
has also been continuously produced by immobilized L-RI
from D. turgidum DSMZ 6724 in a packed bed bioreactor,
and an average of 130 g L−1 L-rhamnulose can be produced
from 300 g L−1 L-rhamnose, with a productivity of 78 g L−1 h−1

and a conversion yield of 43 % (Kim et al. 2013).

L-Lyxose

The recombinant P. stutzeri L-RI catalyzed the isomerization
of L-xylose to L-xylulose and L-lyxose, with the final equilib-
rium between L-xylose/L-xylulose/L-lyxose of 61:35:4 (Leang
et al. 2004b); however, the equilibrium ratio was 26:53:21
when the same enzyme was used in immobilized form using
L-xylulose as substrate (Granstrom et al. 2005). The
immobilized recombinant P. stutzeri L-RI produced 4.06 g
L−1

L-lyxose and 4.94 g L−1
L-xylose from 19.2 g L−1

L-
xylulose (Granstrom et al. 2005). Unlike P. stutzeri L-RI, the
ones from B. subtilis ATCC 23857 (Park 2014) and
T. maritimaATCC 43589 (Park et al. 2010) produced L-lyxose
from L-xylulose without any byproduct, and the final equilib-
rium ratio between L-lyxose and L-xylulose was 40:60 andT
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45:55, respectively. The B. subtilis ATCC 23857 L-RI pro-
duced 40 g L−1

L-lyxose from 100 g L−1
L-xylulose (Park

2014), and the one from T. maritima ATCC 43589 produced
225 g L−1

L-lyxose from 500 g L−1
L-xylulose (Park et al.

2010).

L-Mannose

The enzymatic production of L-mannose from L-fructose was
first studied using immobilized P. stutzeri L-RI with turnover
yield of 30 % (Bhuiyan et al. 1997a). Recently, L-mannose
production was also reported using free L-RIs from B. subtilis
ATCC 23857 and T. maritima ATCC 43589. Twenty-five
grams per liter of L-mannose was produced from 100 g L−1

L-fructose by 15 U mL−1 B. subtilis L-RI after 80 min (Park
2014), while 175 g L−1 L-mannose was produced from 500 g
L−1

L-fructose by 100 UmL−1 T. maritima L-RI after 5 h (Park
et al. 2010).

L-Talose

Enzymatic production of L-talose from L-tagatose was per-
formed by P. stutzeri L-RI immobilized on Chitopearl beads
BCW 2603 (Bhuiyan et al. 1999) and M. loti L-RI
immobilized on BCW 2510 (Takata et al. 2011), and both
could convert L-tagatose to L-talose with production yield of
12 %. P. stutzeri L-RI produced L-galactose as byproduct
(Leang et al. 2004b), while M. loti L-RI produces no
byproduct but only L-talose from L-galactose (Takata et al.
2011).

L-Galactose

Leang et al. reported the production of L-galactose from L-
tagatose by P. stutzeri L-RI immobilized on BCW 2510, and
the conversion ratio was 60:30:10 (L-tagatose/L-galactose/L-
talose) at equilibrium. In addition, the authors also performed
the L-galactose from L-sorbose by two reactions catalyzed by
D-tagatose 3-epimerase followed by P. stutzeri L-RI, with an
overall yield of 7.5 % L-galactose obtained from L-sorbose
(Leang et al. 2004a).
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