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Abstract A comprehensive understanding of genotype-
phenotype links in bacteria is the primary theme of bacterial
functional genomics. Transposon sequencing (Tn-seq) or its
equivalent methods that combine random transposon muta-
genesis and next-generation sequencing (NGS) represent a
powerful approach to understand gene functions in bacteria
on a genome-wide scale. This approach has been utilized in a
variety of bacterial species to provide comprehensive infor-
mation on gene functions related to various phenotypes or
biological processes of significance. With further improve-
ments in the molecular protocol for specific amplification of
transposon junction sequences and increasing capacity of next
generation sequencing technologies, the applications of Tn-
seq have been expanding to tackle questions that are important
yet difficult to address in the past. In this review, we will
discuss the technical aspects of different Tn-seq methods
along with their pros and cons to provide a helpful guidance
for those who want to implement or improve Tn-seq for their
own research projects. In addition, we also provide a compre-
hensive summary of recent published studies based on Tn-seq
methods to give an updated perspective on the current and
emerging applications of Tn-seq.

Keywords Transposon sequencing (Tn-seq) . Functional
genomics . Bacteria . Gene functions . Next-generation
sequencing

Introduction

One of the major goals in bacterial genetics is to understand
the genetic mechanisms underlying the phenotypes of interest.
Among various approaches to reveal the underlying genetic
mechanism(s) of a phenotype, the most common initial step is
to identify the genetic factors involved in or responsible for
expression of the phenotype. Traditionally, the gene discovery
process has been a rate-limiting step that slows down the en-
tire process of understanding the mechanism. Transposon mu-
tagenesis has been one of the major tools that have contributed
significantly to gene discovery in bacteria mainly through
loss-of-function screening. However, the necessity to assess
the phenotype of each mutant individually required consider-
able amount of labor and time thus limiting the total number of
mutants that could be screened. As interest in high-throughput
applications has increased, the methods that allow comprehen-
sive screening of a large number of mutants have been devel-
oped and progressed significantly over the past two decades to
accelerate the screening process, including signature-tagged
mutagenesis (STM) (Mazurkiewicz et al. 2006) followed by
microarray-based footprinting of transposon mutants (Sassetti
and Rubin 2002) and more recently, transposon sequencing
(Tn-seq) (Barquist et al. 2013a; van Opijnen and Camilli
2013). The Tn-seq method is the most recent addition to the
transposon tool box, aided mainly by the development of
high-throughput NGS technologies. Since the first reports on
the development of Tn-seq in 2009 (Gawronski et al. 2009;
Goodman et al. 2009; Langridge et al. 2009; van Opijnen et al.
2009), various modifications have been made and applied to
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facilitate gene discovery in diverse bacterial species. With this
more comprehensive approach, high-resolution functional
screening of the whole genome can be performed routinely
in a small laboratory for various bacterial species, providing
remarkably rich information on gene functions for almost ev-
ery single gene, including both protein-coding genes and non-
coding genes, involved in a wide range of biological process-
es. In this review, we will discuss the recent development in
Tn-seq methods and its expanding applications from a rather
straightforward fitness profiling, in vitro or in vivo, to imple-
mentation of novel experimental designs for discovery of bac-
terial factors involved in more specific biological processes.

Transposon mutagenesis

Transposons are genetic elements that can move from one
genomic location to another. This Bmobile nature^ of transpo-
sons has been harnessed by microbial geneticists for conve-
nient use of transposons as powerful tools for random muta-
genesis in bacteria (Hayes 2003). For Tn-seq analysis, Tn5
and mariner transposons have been used most frequently
among others due to their simple procedures, broad-host
range, and well-characterized near-random nature of those
particular transposons (Barquist et al. 2013a). There are vari-
ous ways to deliver the transposon of choice into the cells for
transposon mutagenesis (Maloy 2007). These include the
methods based on phage delivery systems (Santiago et al.
2015; Sassetti et al. 2001), plasmid delivery systems (de
Lorenzo and Timmis 1994; Martínez-García et al. 2011),
in vivo mutagenesis by electroporation of transposon-
transposase complex (Goryshin et al. 2000), and in vitro mu-
tagenesis using a purified transposase enzyme followed by
natural transformation (Hendrixson et al. 2001; Reid et al.
2008). For more details, readers are encouraged to retrieve
the corresponding references.

Development of Tn-seq methods

The basic and critical step common to all Tn-seq methods and
its variations is to amplify transposon junction sequences in an
insertion mutant pool specifically but comprehensively with-
out bias as much as possible (Barquist et al. 2013a; van
Opijnen and Camilli 2013). Once transposon junction se-
quences are amplified, they are sequenced in depth by next-
generation sequencing (NGS) to obtain a quantitative profile
of all transposon insertions in the library. From the collected
DNA sequence data, the DNA sequence of each read is used
to precisely locate each transposon insertion in the genome
and accordingly, the number of DNA sequence reads originat-
ing from the same insertion serve as a measure of relative
abundance of the corresponding transposon mutant in the mu-
tant pool. When Tn-seq profiles of a library are quantitatively
compared with an appropriate normalization and statistical

method between before and after a selection, the genetic fac-
tors that are required for optimal growth or survival under the
selection process can easily be identified on a genomic scale.

Since the first versions of Tn-seq methods were reported
(Gawronski et al. 2009; Goodman et al. 2009; Langridge et al.
2009; van Opijnen et al. 2009), several variations on the meth-
od have been described (Christen et al. 2011; Dawoud et al.
2014; Gallagher et al. 2011; Khatiwara et al. 2012; Klein et al.
2012). These variations differ mainly in the manner in which
specific amplification of the transposon junction sequences is
accomplished. More specifically, these methods employ dif-
ferent strategies to attach the common primer-binding sites to
transposon-flanking regions allowing PCR amplification to
occur between the binding sites for the transposon-specific
primer and the common primer-binding sites on the
transposon-flanking regions. The common strategies for am-
plification of transposon junction sequences used in different
Tn-seq methods termed in various names, including INSeq
(Goodman et al. 2009), Tn-seq (van Opijnen et al. 2009),
TraDIS (Langridge et al. 2009), Tn-seq circle (Gallagher
et al. 2011), and HITS (Gawronski et al. 2009) are summa-
rized in (Febrer et al. 2011) (see Fig. 2 in Febrer et al. (2011)
for comparative graphical illustration of the different
strategies).

Approaches based on C-tailing are the recent technical ad-
ditions to current Tn-seq methods. The C-tailing procedure
uses terminal transferase activity to add poly C tails to 3′
end of either single-stranded or double-stranded DNA.
When this reaction is performed in the presence of the mixture
of dCTP and dideoxy CTP (ddCTP) at a certain ratio, the
average lengths of the C-tail can be efficiently controlled
(Lazinski and Camilli 2013). This approach was adopted to
attach C-tails to the 3′ ends of randomly sheared gDNA of a
transposon insertion library. The C-tails served subsequently
as a binding site for poly G primer to amplify transposon
junction sequences in conjunction with a transposon-specific
primer (Klein et al. 2012). Additional research based on the
same Tn-seq method further established the robustness of the
method (Carter et al. 2014; Kamp et al. 2013; McDonough
et al. 2014; Shan et al. 2015; Valentino et al. 2014). Recently,
our lab developed a convenient protocol based on single prim-
er extension of transposon junction sequences using a
transposon-specific primer. The single-stranded DNA frag-
ments thus synthesized are subsequently C-tailed using a ter-
minal transferase. The resulting C-tailed transposon junction
fragments can thus be easily amplified with transposon-
specific primer and poly G primer (Dawoud et al. 2014).

Amore recently developed Tn-seq strategy, termed random
barcode transposon-site sequencing (RB-TnSeq), is based on
incorporating random DNA barcodes into the transposon and
utilizing them for fitness profiling in place of transposon junc-
tion sequences (Wetmore et al. 2015). This RB-TnSeqmethod
simplifies the steps to prepare the PCR library because the
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random DNA barcodes located internally inside the transpo-
son can be easily PCR-amplified with two universal primers
flanking the barcode region. Consequently, this simplified
PCR step increases the throughput of mutant fitness profiling
significantly. However, it requires additional steps of random
barcode tagging of transposon before construction of a mutant
library and initially establishing a database for insertion-
barcode pairs (Wetmore et al. 2015).

One issue associated with a transposon mutant library gen-
erated using a suicide delivery plasmid is that a significant
portion of the mutants could be pseudo-transposon mutants
that result from integration of the transposon delivery plasmid
into the chromosome.When this type of library is used for Tn-
seq analysis, a large number of sequence reads are from trans-
poson junctions in the delivery vector rather than true trans-
poson insertions in chromosome or plasmid of the host cell,
resulting in a waste of valuable sequence reads. Santiago et al.
(2015) recently described a simple strategy to address this
issue by incorporating two recognition sites for a rare-
cutting restriction endonuclease (e.g., NotI) on both sides of
one inverted repeat (IR) from which the transposon junction
sequences are obtained. The genomic DNA from the library
are digested with the rare-cutting restriction enzyme, and the
resulting small fragments can be efficiently removed by size
fractionation before the next step for preparation of the Tn-seq
amplicon library.

In Table 1, different Tn-seqmethods are grouped according
to the strategies used to accomplish amplification of transpo-
son junction sequences accompanied by descriptions of their
characteristics.

Comparison of Tn-seq methods

All of the Tn-seq methods that have been described until now
have been used successfully to identify genes important for a
wide range of biological processes of interest, supporting their
utility as a functional genomics tool. However, the sensitivity
of the gene discovery can be greatly influenced by the com-
prehensiveness and quantitative accuracy of the resulting Tn-
seq profiles. It is expected that any bias occurring during the
preparation of Tn-seq library would negatively influence the
accuracy of the resulting Tn-seq profile, leading to false pos-
itive or false negative results. There are four theoretical or
practical considerations for an ideal Tn-seq method as
discussed in detail in the following sections. The potential
pros and cons of the currently existing Tn-seq methods based
on these criteria are listed in Table 1.

Potential bias in Tn-seq library preparation The most crit-
ical requirement for Tn-seq is minimum bias during Tn-seq
library preparation. Theoretically, this type of bias can occur
during the preparation of the PCR template or PCR amplifi-
cation. In the BTn-seq circle^ method, the physically sheared

genomic DNA fragments are ligated to an adaptor, digested by
restriction enzyme, denatured, and circularized through
oligonucleotide-mediated ligation (Gallagher et al. 2011).
Therefore, the variable lengths of the fragments can cause bias
in the ligation reaction, and the efficiency of ligation itself
would be critical in preparing a template library well
representative of the transposon mutant pool. However,
Gallagher et al. (2015) recently compared the Tn-seq circle
method (Gallagher et al. 2011) with the Tn-seq method based
on C-tailing (Klein et al. 2012) by analyzing the same geno-
mic DNA from a complex transposon library of Acinetobacter
baumannii with the two Tn-seq methods (Gallagher et al.
2015). These two methods provided remarkably similar lists
of essential genes, suggesting both methods are robust, and
the potential bias, if existed, was insignificant. Bias in the final
Tn-seq library could also happen during the PCR amplifica-
tion step due to variable lengths of the PCR products being
amplified. In this aspect, only the methods based on the use of
the Type IIS restriction enzymes (restriction enzymes that
cleave outside of their recognition sequence to one side) and
RB-TnSeq (Goodman et al. 2009; Khatiwara et al. 2012; van
Opijnen et al. 2009; Wetmore et al. 2015) can avoid this issue,
since all other methods produce PCR products of variable
lengths. The Tn-seq method based on nested arbitrary PCR
raises concerns for additional bias in PCR amplification due to
the nature of primer binding occurring at lower annealing
temperatures (Christen et al. 2011). With nested arbitrary
PCR, the amplification efficiency could largely be dependent
on the nucleotide sequences of the transposon-flanking re-
gions. It is expected that a certain portion of insertions may
not allow amplification of transposon junction sequences at
all. However, in this particular research, a highly saturating
Tn5 library of Caulobacter crescentus was used, focusing
only on essential gene discovery (Christen et al. 2011).
Since gene essentiality can be assessed only with the informa-
tion on insertion sites without relying on quantitative informa-
tion on each insertion mutant in the library (Hutchison et al.
1999), potential bias in Tn-seq library preparation may not
have been a major obstacle in essential gene discovery
(Christen et al. 2011).

Quantities of genomic DNA Many Tn-seq methods involve
physical shearing during the preparation of the Tn-seq
amplicon library. Physical shearing of genomic or
metagenomics DNA is a step commonly used to prepare a
DNA fragment library for NGS analysis (Knierim et al.
2011). The random nature of physical shearing makes it an
attractive choice because it helps to generate a bias-free frag-
ment library. Although effective, it often requires an optimi-
zation step, a relatively large quantity of starting DNA mate-
rials, and equipment (e.g., sonicator) to perform this step. For
the Tn-seq methods that involve physical shearing, the
amount of starting DNA (per sample) ranged from 3 to 6 μg
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(Gallagher et al. 2011; Langridge et al. 2009; Wong et al.
2011). On the contrary, the methods that begin with the PCR
to amplify or extend transposon junctions directly from the
template DNA require much less amount of starting DNA.
In the method based on nested arbitrary PCR (Christen et al.
2011), 1 μl of a bacterial culture (OD 0.1) was directly used as
a template, and our lab routinely use 50–100 ng of genomic
DNA as a template for the Tn-seq method based on linear
PCR followed by C-tailing and PCR (Dawoud et al. 2014;
unpublished).

For most Tn-seq applications, collecting a large quantity of
bacterial cells representing the entire mutant population is not
an issue. However, in certain circumstances where the surviv-
ing mutants are recovered from infected host tissues to form a
recovered mutant pool, the number of bacterial cell survivors
(thus their genomic DNA) can be a limiting factor for
performing a physical shearing step, especially when the pro-
cedure should be repeated for optimization or due to a mis-
take. The recovered library can be amplified by bacterial cul-
tivation, but this step may introduce artifacts resulting from
differences in mutant in vitro growth rates.

Applicability to any transposon elements Most Tn-seq
methods are universally applicable to a mutant library con-
structed by any type of transposon elements. However, the
Tn-seq methods that utilize Type IIS restriction enzymes
(MmeI or BsmFI) require the presence of the restriction sites
at the end(s) of the transposon (Goodman et al. 2009;
Khatiwara et al. 2012; van Opijnen et al. 2009). This require-
ment limits this type of Tn-seq methods only to certain trans-
posons. For example, an MmeI site could only be created in
themariner transposon that happened to carry sequence in the
inverted repeat region that closely matched the MmeI site ex-
cept for one nucleotide (Goodman et al. 2009; van Opijnen
et al. 2009). Therefore, these methods cannot be applied to
any other transposon elements and thus is not applicable to an
existing transposon library that is constructed based on wild
type mariner transposon or other transposon elements. In the
case of RB-TnSeq, the use of barcode regions located within
the transposon instead of transposon junction sequences for
quantitative profiling of transposon mutants provides multiple
advantages (Wetmore et al. 2015). However, it also requires
the use of a modified transposon carrying random barcodes
within the transposon for library construction.

Precise genome mapping The length of transposon junction
sequence reads should be sufficiently long to allow precise
genome mapping of the reads and thus precise determination
of the insertion sites. For most Tn-seq methods, the length of
transposon junction reads can be adjusted by choosing and
purifying an appropriate range of PCR products. The lengths
of the Tn-seq amplicons are uniformly fixed to a relatively
short length only for the methods based on the use of Type

IIS restriction enzymes (Goodman et al. 2009; Khatiwara et al.
2012; van Opijnen et al. 2009). The question then becomes
how long should the transposon junction sequences be to
serve this purpose? This can be estimated. For example, based
on a computer simulation analysis, minimum lengths of 16 bp
would be required for unambiguous genome mapping for
98 % of the reads when the genome of Bacteroides
thetaiotaomicron was used for the test (Goodman et al.
2009). This fact suggests that the majority of the reads from
the Tn-seq method based on MmeI, which produces 16 bp
sequence reads, would be sufficient for precise genome map-
ping (Goodman et al. 2009; van Opijnen et al. 2009).
However, Tn-seq method based on the use of BsmFI restric-
tion enzyme suffers from short reads of 11 to 12 bp, for which
approximately 50 % of the reads would have to be discarded
due to the inability to achieve unambiguous genome mapping
(Khatiwara et al. 2012).

Applications of Tn-seq methods

With continuously increasing read numbers for Illumina se-
quencing (which currently provides approximately 3.0×108

reads per lane on HiSeq2500), Tn-seq analysis provides ex-
traordinary opportunities for gene discovery at an accelerated
rate to address various biological questions that were impos-
sible to answer in the past before the development of Tn-seq
methods. We have highlighted some of the interesting trends
in Tn-seq applications in the following sections.

Essential genes One of the first applications of global trans-
poson mapping data was to discover essential genes of the
bacterium Mycoplasma genitalium (Hutchison et al. 1999).
An essential gene is defined as the gene that is essential for
growth or survival under the optimal growth condition.
Therefore, an essential gene set would be expected to change
depending on how the optimal condition was initially defined.
Conventionally, however, essential genes refer to the genes
required for growth or survival of a bacterium in the standard
rich media commonly used for routine culture of the bacterial
species. When global transposon mapping data became avail-
able, essential genes could be identified conceptually by the
genomic regions that contain no or very few transposons. By
the subtractive nature of the approach for essential gene dis-
covery, the accuracy of prediction would be further enhanced
by higher level of genome saturation via transposon inser-
tions. With the Tn-seq method, much higher levels of genome
saturation can be accomplished, and therefore, Tn-seq data
obtained from various bacterial species under standard growth
media have provided high quality data for essential gene dis-
covery. The complete set of essential genes, termed Bessential
genome^ has been defined by Tn-seq data for numerous bac-
terial species, including Burkholderia pseudomallei (Moule
et al. 2014), Campylobacter jejuni (Gao et al. 2014),
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Pseudomonas aeruginosa (Lee et al. 2015), and Streptococcus
pyogenes (Le Breton et al. 2015), and one archaeal species,
Methanococcus maripaludis (Sarmiento et al. 2013).

In most studies on essential gene discovery using Tn-seq,
viable transposon mutants are usually recovered from a single
nutrient-rich condition, and the resulting Tn-seq data is used to
identify essential genes. However, in a more recent study, Lee
et al. (2015) studied the essential genes in Pseudomonas
aeruginosa in six different media and identified 352 general
and 199 condition-specific essential genes. This approach al-
lows discernment of Bessential genes^ specific to different
growth conditions from truly essential genes and to define
core essential genes that are commonly required for viability
under multiple growth conditions.

Conditionally essential genes (in vitro conditions)
Conditionally essential genes should be considered as an ex-
tension of the essential genes in the sense that conditionally
essential genes are required for growth or survival only under
the condition of the interest other than the standard media. Of
special interest, for example, would be defining a bacterial
gene set conditionally required for growth or survival during
specific environmental niches related to the life cycle of the
species. For a bacterial pathogen, it would be particularly im-
portant to understand which genes are essential to overcome
the stressors or immune defenses in the host. By comparing
the genetic requirements for growth under different in vitro
conditions with the genes required for in vivo growth or sur-
vival in the host, the unknown selective pressures that bacte-
rial pathogens encounter in specific host niches can be identi-
fied (Khatiwara et al. 2012; Merrell and Camilli 2002; van
Opijnen and Camilli 2012). More recently, the potential link
between the metabolic capacity of a pathogen and its virulence
has been suggested as a critical factor for expression of path-
ogenic phenotypes (Rohmer et al. 2011). Metabolic genes that
enable a pathogen to utilize a nutrient uniquely present in a
host niche would play an important role during infection in the
host tissues. For example, Griffin et al. (2011) used Tn-seq to
define a set of genes in Mycobacterium tuberculosis that are
required for in vitro utilization of cholesterol as a sole carbon
source. Comparison of the result of this study with previously
identified genes inM. tuberculosis required for in vivo surviv-
al during mouse infections (Sassetti and Rubin 2003) demon-
strated that 10 % of the genes specifically required for bacte-
rial growth in vivo are also required for the utilization of
cholesterol in vitro. Until recently, a large portion of Tn-seq
studies for gene discovery have focused on screening and
characterizing conditionally essential genes under in vitro
conditions, largely due to the simplicity of the experimental
design, the lack of problems associated with bottlenecks that
would occur in animal infection studies, and the resulting in-
depth insights that can be gained from the comprehensive sets

of genes identified. An extensive list of Tn-seq studies on
conditionally essential genes is shown in Table 2.

Genes required for in vivo fitness in the host Genome-wide
identification of bacterial virulence genes required for in vivo
fitness during host infection using Tn-seq is an extremely
valuable approach in understanding complex mechanisms of
virulence. Such applications of Tn-seq for virulence gene dis-
covery using various pathogen-host infection models has been
steadily increasing over the years, leading to identification of
numerous previously known as well as unknown virulence
factors (Table 2). In some animal infection models, however,
this approach involving a complex library is not feasible due
to the bottlenecks that cause stochastic removal of bacterial
cells during establishment of infection (van Opijnen and
Camilli 2013). In such cases, multiple transposon libraries of
smaller sizes can be used to identify in vivo fitness factors
(Chaudhuri et al. 2013). One emerging research area of inter-
est is the comparative analysis of in vivo fitness factors in
multiple hosts. Chaudhuri et al. (2013) screened the same
collection of Salmonella enterica Typhimurium Tn5 mutants
for mutants with reduced gut colonization in three different
hosts, chickens, pigs, and calves, and identified a core set of
virulence genes as well as host-specific virulence factors.
More recently, Weerdenburg et al. (2015) used a similar com-
parative analysis to identify the factors of a broad-host-range
pathogenMycobacterium marinum that are important for sur-
vival in phagocytic cells of five different host species. Finally,
Tn-seqmethod has also been applied to understand the genetic
mechanisms associated with Vibrio fischeri’s symbiotic colo-
nization of the light organ of squid (Brooks et al. 2014).

Small RNA genes Initially, the focus of Tn-seq application
was to identify protein-coding genes important for fitness.
Although some small RNA (sRNA) (e.g., GlmZ in
Escherichia coli) was identified by a phenotypic screening
of transposon mutants (Kalamorz et al. 2007), the general
applicability of Tn-seq for comprehensive discovery of
sRNA genes remained uncertain. However, several Tn-seq
studies have demonstrated that Tn-seq can actually be very
effective in identifying conditionally essential sRNA genes
(Barquist et al. 2013b; Christen et al. 2011; Mann et al.
2012; Zhang et al. 2012). The challenge in analyzing sRNA
genes lies simply in the fact that sRNA genes are much small-
er than protein-coding genes, thereby reducing the chance to
be hit by a transposon, and sRNA knockout mutants usually
do not exhibit strong phenotypes (Sharma and Vogel 2009).
The utility of Tn-seq in identification of sRNA genes is very
significant for high-throughput analysis of sRNA genes in
bacteria. Previously, the main approach for sRNA discovery
was through detection of sRNA transcripts either by tran-
scriptome analysis (microarray or RNA-seq) or by cloning
of reverse transcribed RNA transcripts (RNomics) (Sharma
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and Vogel 2009). Alternatively, RNA chaperone Hfq protein
was used as a bait to capture sRNA transcripts-associated Hfq
protein (Sharma and Vogel 2009). However, these approaches
seldom reveal critical information regarding biological func-
tions of the sRNAs. To understand sRNA functions, it requires
a time-consuming downstream analysis for individual sRNAs
(Sharma and Vogel 2009). However, Tn-seq analysis provides
the means to identify sRNA genes comprehensively and also
valuable insights on the sRNA functions. Two studies using
Tn-seq have identified sRNA genes required for growth in
rich media for Caulobacter crescentus (Christen et al. 2011)
and Mycobacterium tuberculosis (Zhang et al. 2012). More
interestingly, Tn-seq analysis has been used in mouse models
of colonization to reveal the contribution of the sRNAs in
Streptococcus pneumoniae to fitness in vivo (Mann et al.
2012). Collectively, these studies demonstrate the general util-
ity of Tn-seq for global discovery of essential as well as con-
ditionally essential sRNA genes.

Additional genetic elements and features: promoters, op-
erons, and domains For most Tn-seq analysis, the focus of
the research is usually on identification of essential genes or
conditionally essential genes, whether it is protein-coding
genes or noncoding sRNA genes. Usually, no additional at-
tempts have been made to find more information beyond ge-
netic requirements of the genes. However, Christen et al.
(2011) demonstrated that a small change in the design of the
transposon itself can provide additional in-depth information
beyond genetic requirements. In their study, a Tn5 transposon
containing a strong xylose-inducible promoter facing outward
was used to construct a genome-saturation library of
Caulobacter crescentus. When the mutants were recovered
in the presence of the inducer and analyzed for insertions by
Tn-seq, the comparative analysis of the insertion groups in
two different orientations allowed the identification of the
promoter regions of essential genes, the operons with essential
functions, and the domains accountable for the essentiality of
the corresponding genes (Christen et al. 2011).

Genetic interaction mapping One powerful approach to
tackle functional organization of the genes related to a certain
phenotype is to examine genetic interactions among multiple
gene products (Dixon et al. 2009). In general, when a double
mutant that shows a significant deviation in fitness compared
with the expected multiplicative effect of combining two sin-
gle mutants, it is considered a genetic interaction. Negative
genetic interactions refer to a more severe defect in fitness
than expected. In extreme cases where the cell is not viable
due to mutations in two nonessential genes, it is regarded as a
synthetic lethality. Positive interactions refer to double mu-
tants with a less severe fitness defect than expected. Genetic
interaction networks can reveal unexpected functional depen-
dencies between genetic loci (i.e., epistasis, wherein the

phenotypic effects of mutation in one gene are modified by
one or more other genes). For example, negative genetic in-
teractions often result from loss-of-function mutations in pairs
of genes in parallel or compensatory pathways that impinge
on a common essential process. Conversely, positive interac-
tions can occur between genes in the same pathway if the loss
of one gene alone inactivates the pathway such that loss of a
second gene confers no additional defect. Genetic interaction
networks can be explored by performing Tn-seq analysis in a
wild-type strain and its mutant strain counterpart with deletion
in a gene of interest (query gene) and comparing the resulting
profiles (van Opijnen et al. 2009). This approach was applied to
determine genetic interactions in Streptococcus pneumoniae
(van Opijnen et al. 2009; van Opijnen and Camilli 2012).
Similar genetic interaction mapping based on the use of a
microarray-based transposon tracking method was employed
previously to uncover genetic interactions important for
in vivo fitness ofMycobacterium tuberculosis during infection
in mice (Joshi et al. 2006) and for motility of E. coli (Girgis
et al. 2007) with a focus on a selected set of query genes.

In a more recent study to understand how trans-translation
by transfer-messenger RNA (tmRNA) encoded by ssrA is
dispensable in Caulobacter crescentus, Feaga et al. (2014)
used Tn-seq method to identify gene(s) that are synthetically
lethal with ssrA gene deletion by performing Tn-seq with
himar1 transposon libraries in wild-type and ΔssrA back-
grounds, and found that ArfB is a functional homolog of
tmRNA that can also release nonstop ribosomes. Genetic in-
teraction mapping can also be performed using an inhibitor
that blocks a specific pathway. In a study by Santa Maria et al.
(2014), a natural product tunicamycin was used to selectively
inhibit TarO, the first enzyme in the wall teichoic acid (WTA)
pathway of Staphylococcus aureus. They selected a mariner
transposon library in the presence and absence of
tunicamycin, and the resulting Tn-seq profiles were compared
to identify genes that affect survival in the presence of
tunicamycin thus implicating their products in WTA-related
activities (SantaMaria et al. 2014). These studies illustrate that
Tn-seq has general applicability in mapping genetic interac-
tions for diverse bacterial species (Table 2).

Novel genetic factors involved in specific biological pro-
cesses One interesting aspect for Tn-seq application is the
development of novel screening strategies that allow
genome-wide identification of genetic factors involved in spe-
cific biological processes of significance for the bacterial spe-
cies. These applications require fairly sophisticated experi-
mental designs and optimized experimental conditions to
identify the target genes precisely. Some of the examples in-
clude identification of genetic factors responsible for (1) Vi
capsule expression in Salmonella enterica Typhi (Pickard
et al. 2013), (2) immunity against killing by Type VI protein
secretion system (T6SS) inVibrio cholerae (Dong et al. 2013),
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and (3) in vivo-specific induction of xds gene encoding a
secreted exonuclease in Vibrio cholerae (McDonough et al.
2014). For some bacterial pathogens, the genetic factors re-
quired to proceed through specific stages in host-pathogen
interactions, such as adhesion (de Vries et al. 2013) or inva-
sion to host cells (Gao et al. 2014), have been identified using
Tn-seq. More examples of these types of studies are shown in
Table 2.

Discovery of adaptive mutations Before the development of
Tn-seq methods, microarray-based footprinting methods were
developed to quantitatively track mutants in a complex trans-
poson library (Sassetti and Rubin 2002). One of the unique
applications of the microarray-based method was to identify
adaptive mutations that contribute to selectable phenotypic
variations (Goodarzi et al. 2009). With current NGS technol-
ogies, genome sequencing of both wild-type and evolved
strains can be easily used to reveal genetic differences (e.g.,
mutations) between the two strains. However, distinguishing
adaptive mutations from neutral mutations is a challenging
and labor-intensive process. Goodarzi et al. (2009) described
a method termed ADAM (array-based discovery of adaptive
mutations) that employs parallel, genome-wide linkage anal-
ysis to simultaneously identify all mutated loci with direct
contributions to fitness. Although it has not been realized
yet, it is quite conceivable that the Tn-seq method could be
used in place of a microarray-based transposon mapping ap-
proach to advance the strategy currently used in ADAM to
identify adaptive mutations at a higher resolution.

Conclusions and perspectives

With the comprehensiveness and sensitivity of Tn-seq, it has
emerged as a method of choice to explore genotype-
phenotype relationships in bacteria on a genomic scale.
Since initial developments of the method in 2009, several
variations on Tn-seq have been described with ever increasing
applications in numerous bacterial and archaeal species where
an efficient random transposon mutagenesis system can be
established. The major driving force behind the development
of Tn-seq was NGS technologies, more specifically Illumina
sequencing. The ability to sequence hundreds of millions of
fragments in parallel is the crucial component that provides
the comprehensiveness and sensitivity characteristic of Tn-seq
methods. With continuous improvements on current NGS
platforms (especially increasing read numbers of Illumina se-
quencing technology), it is expected that the ability to se-
quence more reads at a reduced cost will occur in the near
future (Watson 2014). This will be an advantage in further
enhancing the capacity of Tn-seq methods by increasing (1)
the number of samples to be analyzed, (2) read depth, or (3)
the saturation level of an insertion library.

Although over 70 research articles based on Tn-seq
methods have been published within the past 6 years, there
are still immense chemical or stress conditions encountered by
microorganisms that remain to be explored using straightfor-
ward applications of Tn-seq under the corresponding in vitro
conditions. For example, the 1144 chemical genomic assays
have been performed with the collection of yeast deletion
mutants (Hillenmeyer et al. 2008). There has been an increas-
ing number of Tn-seq studies using animal infectionmodels to
identify in vivo survival genes. Once such a study is done for a
given pathogen using a standard animal infection model under
Bstandard^ condition, the next logical stepwould be to use Tn-
seq to understand bacterial genes required for in vivo coloni-
zation or survival of the pathogen that would be dependent on
the altered host conditions. The altered host conditions could
be contributed by genetic factors (e.g., different strains of
mice, or transgenic animals) or environmental factors (e.g.,
modified gut microbiota, co-infection, diets, age, stress, gen-
der etc.) as exemplified in several studies shown in Table 2
(Carter et al. 2014; Goodman et al. 2009; Wong et al. 2013;
Wu et al. 2015; Zhang et al. 2013). Knowing the genetic
factors required only under specific host or environmental
conditions would be extremely helpful in revealing the mech-
anisms by which the pathogens cope with the dynamically
changing microenvironments in the host. Until now, most
Tn-seq studies have been conducted to study bacterial species,
and only one study was reported in which archaeal species
was studied using a Tn-seq method (Sarmiento et al. 2013).
Since any haploid microorganisms with an appropriate inser-
tional mutagenesis system can be analyzed by Tn-seq, the
method could be applied to the study of more archaeal species
and even haploid yeast strains in the future.
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