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Abstract Spider silk fibers have a sophisticated hierarchical
structure composed of proteins with highly repetitive se-
quences. Their extraordinary mechanical properties, defined
by a unique combination of strength and extensibility, are
superior to most man-made fibers. Therefore, spider silk has
fascinated mankind for thousands of years. However, due to
their aggressive territorial behavior, farming of spiders is not
feasible on a large scale. For this reason, biotechnological
approaches were recently developed for the production of re-
combinant spider silk proteins. These recombinant proteins
can be assembled into a variety of morphologies with a great
range of properties for technical and medical applications.
Here, the different approaches of biotechnological production
and the advances in material processing toward various appli-
cations will be reviewed.
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Introduction

Spider silks represent a class of fibers with a unique combina-
tion of strength and flexibility which leads to an outstanding
toughness (Gosline et al. 1999). In comparison to one of the
strongest man-made fibers, Kevlar, spider silk can absorb
three times more energy before breaking (Roemer and
Scheibel 2007). Therefore, it is not surprising that ancient
Australian aborigines and New Guinean natives utilized spi-
der silk as fishing lines, fishing nets, head gear, and bags
(Lewis 1996). Further, until WorldWar II, spider silk was used
for crosshairs in optical devices like microscopes, telescopes,
and guns because of its extremely small diameters (thickness
of 1/40 of a human hair) (Gerritsen 2002; Lewis 1996). By
using cobwebs to stanch bleeding wounds, the ancient Greeks
unknowingly observed further extraordinary characteristics of
this material, like high biocompatibility and low immunoge-
nicity (Altman et al. 2003; Gerritsen 2002; Vollrath et al.
2002). However, the first scientific studies to unravel its bio-
medical properties were not started until 1710, when it was
shown that a spider’s web is able to stop bleeding in human
wounds and also supports the wound healing (Bon 1710).
Two centuries later, Otto G. T. Kiliani investigated spider silk
as suture material for surgery (Kiliani 1901).

As illustrated by the long history of spider silk use, the
outstanding properties of natural spider silk have been well-
known for a long time; however, scientifically, the material
attained intensive interest of researchers only in the last de-
cades. The combination of mechanical performance, biode-
gradability, and ambient processing conditions of the under-
lying proteins makes spider silk a highly desirable material for

Elena Doblhofer and Aniela Heidebrecht contributed equally to this
work.

* Thomas Scheibel
thomas.scheibel@bm.uni-bayreuth.de

1 Lehrstuhl Biomaterialien, Fakultät für Ingenieurswissenschaften,
Universität Bayreuth, 95440 Bayreuth, Germany

2 Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth,
Universitätsstraße 30, 95440 Bayreuth, Germany

3 Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG),
Universität Bayreuth, Universitätsstraße 30,
95440 Bayreuth, Germany

4 Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB),
Universität Bayreuth, Universitätsstraße 30,
95440 Bayreuth, Germany

5 Bayreuther Materialzentrum (BayMAT), Universität Bayreuth,
Universitätsstraße 30, 95440 Bayreuth, Germany

Appl Microbiol Biotechnol (2015) 99:9361–9380
DOI 10.1007/s00253-015-6948-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-015-6948-8&domain=pdf


applications from biomaterials to high-performance industrial
fibers (Rising 2014; Vollrath and Knight 2001).

Spider silk structure

Female orb weaving spiders can produce up to six different
types of silk, with each one produced in a specialized gland
that provides the name of the corresponding silk type (Fig. 1).
Every silk type has to fulfill a certain task either in the struc-
ture of the web, the protection of the offspring, or the wrap-
ping of prey. Additionally, a silk-like glue, produced in a sev-
enth gland, is deposited on the web for prey capture. The most
frequently investigated silk type is the dragline silk, used to
build frame and radii of an orb web. It also is used as the
lifeline of the spider and is therefore easy to obtain by forced
silking (Andersen 1970; Blackledge and Hayashi 2006;
Denny 1976; Heim et al. 2009; Vollrath 2000). Similar to
many biological materials, the outstanding (mechanical)

performance of spider silk is based on its hierarchical structure
(Brown et al. 2012; Keten and Buehler 2008; Munch et al.
2008; Smith and Scheibel 2013; Sponner et al. 2007).
Dragline spider silk fibers exhibit a core-shell structure with
proteinaceous fibrils in the core and a three-layered shell of
minor ampullate (Mi) silk, glycoproteins, and lipids. While
the lipid part of the shell is only loosely attached to the core
and does not substantially contribute to the mechanical per-
formance of the fiber, the glyco-layer adheres directly and is a
mediator between the fiber and its environment (Sponner et al.
2007). In this context, the shell is thought to be relevant for
protection against environmental damage and microbes
(Sponner et al. 2007). However, the determinant of the ex-
traordinary mechanical characteristics of spider silk is the pro-
teins which form the core of the fiber. The protein core of
dragline silk is composed of two classes of spider silk proteins
(spidroins): the highly ordered, hydrophobic spidroin I (Sp1),
poor in proline residues, and the less ordered, hydrophilic,
proline-rich spidroin II (Sp2), each with a molecular mass of

Fig. 1 Schematic overview of the
different types of silk produced by
female orb weaving spiders
(Araneae); each silk type
(highlighted in red) is tailored for
a specific purpose as depicted
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around 300 kDa (Heim et al. 2009; Xu and Lewis 1990)
(Ayoub et al. 2007; Hinman and Lewis 1992; Xu and Lewis
1990). As they originate from the major ampullate gland,
these proteins are also called major ampullate spidroins
(MaSp). All MaSps comprise a highly repetitive core domain
(up to 100 repeats of highly conserved sequence motifs, with
40 to 200 amino acids each) flanked by short (around 100–
150 amino acids each) nonrepetitive (NR) terminal domains
(Fig. 2). Upon fiber assembly, the gain and arrangement of
secondary structure elements of the spidroins is responsible
for the extraordinary mechanical properties of the fiber. Poly-
alanine stretches fold into β-sheets, forming hydrophobic
crystallites responsible for a high tensile strength
(Kummerlen et al. 1996; Lewis 1992; Simmons et al. 1996);
31-helices formed by hydrophilic glycine-rich regions (GGX-
motif, where X represents tyrosine, leucine, glutamine) are
reflecting the elastic part (Kummerlen et al. 1996); and type
II β-turns made of proline-rich GPG motifs are important for
the reversible extensibility of a spider silk fiber (Hinman and
Lewis 1992).While the latter sequencemotif is only present in
MaSp2, the first two motifs are ubiquitous (Ayoub et al. 2007;
Hayashi et al. 1999; Hinman et al. 2000; Hinman and Lewis
1992; van Beek et al. 2002). All these motifs are repeated
several dozen times within a single spidroin core domain.
The nonrepetitive terminal motifs which flank the core do-
main have an α-helical secondary structure arranged in a
five-helix bundle. These domains are responsible for control-
ling the storage of the spidroins at high concentrations in the
spinning duct (Motriuk-Smith et al. 2005), and they also have
an important function during the initiation of fiber formation
upon their controlled dimerization and structural arrangement
(Challis et al. 2006; Eisoldt et al. 2010, 2011; Hagn et al. 2010,
2011; Hedhammar et al. 2008; Heidebrecht et al. 2015;
Huemmerich et al. 2004b; Rising et al. 2006)

Biotechnological production of recombinant spider
silk proteins

Unfortunately, it is not possible to produce large quantities of
spider silk for applications by farming. This is due to the
territorial and cannibalistic behavior and lower quality as well
as quantity of silk produced by captive spiders (Craig et al.
2000; Fox 1975; Madsen et al. 1999; Vollrath and Knight
1999). Therefore, biotechnological production of the underly-
ing spidroins was pursued to enable applications for spider
silks.

Recombinant spidroin production has been conducted
using a range of organisms including bacteria (Teule et al.
2009), tobacco plants (Menassa et al. 2004), yeast
(Fahnestock and Bedzyk 1997), silk worms (Teule et al.
2012), goats (Steinkraus et al. 2012), insect cells
(Huemmerich et al. 2004b), and mammalian cells (Lazaris
et al. 2002). Each of these host systems has advantages and
disadvantages. To begin with, short fragments of unmodified
spider silk genes were expressed in a variety of hosts. It turned
out that spider silk genes were unstable or the mRNA folded
into undesirable secondary structures. Further, rearrange-
ments, translation pauses, and problems with PCR amplifica-
tion arose due to the highly repetitive character of the genes
and the infidelity of template realignment during primer an-
nealing (Fahnestock and Irwin 1997; Fahnestock et al. 2000).
Additionally, host-derived differences in codon usage, prob-
lems with expression of repetitive sequences in various hosts,
and insufficient Gly- and Ala-tRNA pools led to only limited
success concerning the recombinant production of natural spi-
der silk proteins.

To overcome these hurdles, several synthetic genes were
designed encoding proteins that resemble the key features of
the natural spider silk proteins. Since the gram-negative en-
terobacterium Escherichia coli is relatively simple, has a well-
known genetic composition, and has the capability of fast,
high-density cultivation, recombinant protein expression in
E. coli allows for inexpensive, large-scale production
(Sørensen and Mortensen 2005). Likewise, several ap-
proaches of recombinant spider silk-like protein production
were successful in E. coli (for an overview, see Heidebrecht
and Scheibel 2013).

In addition to E coli, yeast or insect cells have been used to
express spider silk constructs with the advantage of the latter
of being genetically more closely related to spiders. However,
the spidroins produced in these systems showed a quite low
solubility (Heim et al. 2009; Huemmerich et al. 2004b). Other
hosts such as plants and mammalian cells have been used, too,
but showed mostly low expression levels (Barr et al. 2004;
Hauptmann et al. 2013; Lazaris et al. 2002).

Finally, transgenic animals were tested as hosts to produce
recombinant spidroins in secreted body fluids. The presumed
advantage of this approach would be the ease of purification

Fig. 2 Schematic structure of major ampullate spidroins including
recurring amino acid motifs and the corresponding secondary structure.
X: predominantly tyrosine, leucine, glutamine, alanine and serine
residues. NTD amino-terminal domain, CTD carboxy-terminal domain

Appl Microbiol Biotechnol (2015) 99:9361–9380 9363



upon secretion into the milk or urine of the respective animal
(Heim et al. 2009; Karatzas et al. 1999). However, it turned
out that the purification was more difficult than thought due to
contamination with animal-based secreted proteins. Given the
fact that the generation of transgenic animals is far more com-
plex and time consuming than that of bacteria or yeast, this
approach has been rarely used in the past (Heim et al. 2009;
Xu et al. 2007). For example, recombinant spider silk-
EGFP fusion proteins were produced using BmN cells
and larvae of silkworms as a host organism, but the pro-
tein yield was low due to the insolubility of the recombi-
nant spider silk proteins (Zhang et al. 2008). In a more
successful approach, chimeric proteins containing se-
quences of spider silk proteins and silkworm fibroin were
designed, including either a H-chain promoter (Kuwana
et al. 2014; Teule et al. 2012; Zhu et al. 2010) or a sericin
promoter (Wen et al. 2010) locating the chimeric
silkworm/spider silk proteins in the core or the sericin
shell of the fiber. In both cases, silkworms spun fibers
with mechanical properties exceeding that of silkworm
silk, but they did not reach the properties of natural spider
silk (Teule et al. 2012; Wen et al. 2010). Production of
designed short spider silk proteins (50 kDa) resembling
MaSp1 and MaSp2 of Nephila clavipes in goat milk was
also successful, while expression of their partial comple-
mentary DNA (cDNA) in transgenic mice was not possi-
ble likely due to errors in protein synthesis (Perez-
Rigueiro et al. 2011; Xu et al. 2007).

Based on the experience throughout the last three decades,
E. coli has been established as the host system of choice, given
the balance of quality of the silk produced with the scalability
of the approach.

BTo spin^: artificial spider silk fibers

Due to the abovementioned, outstanding mechanical and
biomedical properties of spider silk fibers, great efforts
have been made to employ these fibers in different tech-
nical as well as biomedical applications. For instance,
functional recovery of nerve defects was successfully per-
formed in rats and sheep by using natural spider silk fi-
bers as a guiding material (Allmeling et al. 2008; Radtke
et al. 2011). Further, native spider dragline silk, directly
woven onto steel frames, was used as a matrix for three-
dimensional skin cell culture (Wendt et al. 2011). Since
natural spider silk fibers are not available at large scale as
mentioned above (see section BBiotechnological produc-
tion of recombinant spider silk proteins^), different ap-
proaches have been tested to produce artificial spider silk
fibers during the last two decades, which will be
discussed in greater detail below.

The natural spinning process

In order to successfully establish a man-made spider silk spin-
ning process, it is at first necessary to understand the natural
one. Natural spider silk fiber spinning is a highly complex
process involving a number of parameters in a highly regulat-
ed environment as exemplarily demonstrated in Fig. 3 for the
assembly of major ampullate spidroins. Epithelial cells cover-
ing the tail and the ampulla of the major ampullate silk gland
produce the spidroins and secrete them into the lumen. There,
the spidroins are stored in a soluble state at high concentra-
tions (up to 50% (w/v)) in the presence of sodium and chloride
ions. Analysis of major ampullate silk glands by polarized
microscopy revealed a liquid-crystal behavior of the spinning
dope (Knight and Vollrath 1999; Viney 1997), whereas
in vitro experiments showed micellar-like structures both of
which are not mutually exclusive (Eisoldt et al. 2010; Exler
et al. 2007; Heidebrecht et al. 2015). The combination of the
presence of chaotropic ions (stabilizing soluble protein struc-
tures) and a pre-assembly of the spidroins enables their storage
at concentrations as found in the ampulla of the spinning
gland. From the ampulla, the spinning dope passes into an
S-shaped tapered duct, which is lined by a cuticular intima
layer. In addition to supporting the duct and protecting the
epithelial cells, this layer is hypothesized to function as a
hollow fiber dialysis membrane, enabling the dehydration of
the spinning dope (Vollrath and Knight 1999). During travel-
ing of the spinning dope through the spinning duct, sodium
and chloride ions are replaced by the more kosmotropic po-
tassium and phosphate ions inducing salting-out of the pro-
teins (Knight and Vollrath 2001; Papadopoulos et al. 2007).
Additionally, acidification (from pH 7.2 to 5.7; Kronqvist
et al. 2014) takes place triggered by carbonic anhydrase
(Andersson et al. 2014), which has a contrary structural effect
on the terminal domains. Upon acidification, glutamic acid
residues of the amino-terminal domain are sequentially pro-
tonated, leading to structural rearrangements of the domain
enabling dimerization in an antiparallel manner (Rising and
Johansson 2015). In contrary to the stabilizing effect of the pH
reduction on the amino-terminal domain, the carboxy-
terminal one is destabilized upon acidification. In addition to
the pH-induced destabilization, the presence of phosphate
ions initiates the exposition of hydrophobic areas within the
C-terminal domain initiating the parallel alignment of the as-
sociated two core domains (Eisoldt et al. 2010, 2012; Hagn
et al. 2010). Based on the parallel (carboxy-terminal domains)
and antiparallel (amino-terminal domains) orientation of the
terminal domains, an endless spidroin network is achieved.
Finally, water resorption via the cuticular intima layer and
shear stress, resulting from the tapering of the spinning duct
and the pulling of the fiber from the spider’s abdomen, lead to
the final alignment of the spidroins followed by solidification
of the fiber (Fig. 3) (Hagn et al. 2011; Hardy et al. 2008).
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Artificial fiber spinning

Commonly used artificial spinning processes are not like the
natural silk spinning one. Typical processes out of solution are
wet spinning, dry spinning, and electrospinning. In wet spin-
ning, a polymer solution is extruded into a coagulation bath,
where the polymer precipitates and the fibers are formed. For
dry spinning and electrospinning, the polymers are solvated in
an organic solvent and extruded into the air. Whereas fiber
formation in dry spinning relies solely on the fast evaporation
of the organic solvent, in electrospinning, the polymer solu-
tion is extruded into an electrostatic field. This field yields
repulsive forces in the extruded solution, leading to eruption
of a thin jet that is stretched toward the collector (i.e., counter
electrode); as the solvent evaporates, a solid fiber is formed
(Greiner and Wendorff 2007; Smit et al. 2005). This fiber is
randomly deposited onto the collector, which results in a non-
woven mat (Teo and Ramakrishna 2006). In theory, wet

spinning, dry spinning, and electrospinning are suitable
methods for spider silk fiber spinning, since organic as well
as aqueous spinning dopes can be used. In practice, dry spin-
ning has been shown to be so far not suitable for silk fiber
production, since spinning a silk fiber out of an organic solu-
tion results in mechanically unstable fibers (unpublished re-
sults), while dry spinning from an aqueous solution could not
be achieved since this spinning technique relies on a highly
volatile solvent for fast fiber formation. Therefore, so far, only
wet spinning and electrospinning have been successfully
employed for producing artificial spider silk fibers.

Dope preparation

The first step toward the production of artificial spider silk
fibers is to solve the spidroins. Therefore, often an organic
solvent is used exhibiting strong hydrogen bonding properties
in order to guarantee good solvent-protein interactions. A

Fig. 3 Overview of natural and
artificial spinning processes
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disadvantage, especially for biomedical applications, of or-
ganic spinning solutions is their putative toxicity. However,
a high spidroin solubility enables the production of highly
concentrated spinning dopes, which simplifies fiber formation
(Um et al. 2004). With the objective of high protein solubility,
many research groups have used the organic solvent 1,1,1,3,3,
3-hexafluoro-2-propanol (HFIP). In HFIP, spidroin concentra-
tions ranging from 10 to 30 % (w/v) can easily be achieved
(Adrianos et al. 2013; An et al. 2011; Brooks et al. 2008; Lin
et al. 2013; Teule et al. 2007; Xia et al. 2010), with the highest
reported spidroin content of 45–60 % (w/v) (Albertson et al.
2014). One advantage of HFIP as solvent for spidroins is its
volatility. Therefore, HFIP is commonly used for spinning
processes which rely on a fast evaporation of the solvent such
as electrospinning (Bini et al. 2006; Lang et al. 2013; Stephens
et al. 2005; Wong Po Foo et al. 2006; Zhu et al. 2015). In
addition to HFIP, formic acid (FA) has been used as an organic
solvent of spidroins (Peng et al. 2009).

Seidel et al. (1998, 2000) dissolved dragline silk of
N. clavipes in HFIP, produced a film out of the reconstituted
spidroins, and then solved this film again in HFIP to a con-
centration of 2.5 % (w/w) in order to use it as a spinning dope
for wet spinning. Dopes made of reconstituted spidroins did
not form fibers in the otherwise commonly used methanol and
isopropanol coagulation baths, but only in acetone coagula-
tion baths (Seidel et al. 1998).

At first glance, using an organic solvent to gain solutions
with a high protein concentration seems to be beneficial for
spinning, but good protein-solvent interactions and, therefore,
high protein solubility may also prevent protein assembly.
Further, if artificial spider silk fibers are to be used for medical
applications like suture materials, health risks caused by toxic
solvents have to be avoided. Additionally, organic waste dis-
posal in industrial processes is highly regulated and expen-
sive; thus, the application of organic solvents is not favorable
for scale-up processes. In order to avoid organic solvents,
three approaches have been used to produce highly concen-
trated aqueous spidroin solutions: (1) spidroin self-assembly
in aqueous buffers (Exler et al. 2007; Grip et al. 2009;
Heidebrecht et al. 2015; Stark et al. 2007; Teule et al. 2007),
(2) concentration of a diluted aqueous spidroin solution
(Arcidiacono et al. 2002; Heidebrecht et al. 2015), and (3)
direct solvation at high spidroin concentrations (Bogush
et al. 2009; Jones et al. 2015). Protein concentrations typically
used for spinning fibers out of aqueous solutions range
from 10 to 30 % (w/v) (Arcidiacono et al. 2002; Bogush
et al. 2009; Exler et al. 2007; Heidebrecht et al. 2015;
Jones et al. 2015; Lazaris et al. 2002), and the highest
concentration achieved so far has been 30 % (w/v)
(Bogush et al. 2009). When spidroins are purified by a
precipitation step such as salting-out or lyophilization,
high spidroin purities are gained, but the spidroins also
have to be resolved afterwards.

Heidebrecht et al. (2015) used the strong denaturant
guanidinium thiocyanate for spidroin solvation, followed by
its removal using dialysis against a 50-mM Tris/HCl buffer
(pH 8.0). Additionally, 100 mM NaCl was added to the dial-
ysis buffer in order to stabilize the spidroins in solution.
Subsequent dialysis against a phosphate-containing buffer in-
duced a liquid-liquid phase separation of the spidroin solution
into a low-density phase and a self-assembled, high-density
phase. Such phosphate-induced self-assembly of spidroins in
solution resulted in spidroin concentrations ranging between 9
and 11 % (Heidebrecht et al. 2015). Alternatively, spinning
dopes were produced by concentrating the protein solution
using either ultrafiltration or dialysis against the hygroscopic
polyethylene glycol (PEG) (Arcidiacono et al. 2002;
Heidebrecht et al. 2015). In this approach, the spidroin mole-
cules are forced into a highly concentrated solution and they
cannot self-assemble. However, these spinning dopes are
prone to aggregation and are less stable than self-assembled
spinning dopes (Heidebrecht et al. 2015). The third approach
to achieve highly concentrated aqueous spinning dopes is the
direct solvation of spidroins in a medium suitable for spinning.
Jones et al. (2015) added a solution containing 0.1 %
propionic acid and 10 mM imidazole to spidroins in a glass
vial and used sonication and subsequent heating in a micro-
wave oven until complete spidroin solvation (Jones et al.
2015). The spidroin suspension was heated up to 130 °C for
more than 48 h, indicating the high energy input that is needed
to directly solve a spidroin at high concentration.

Wet spinning

Extrusion of the spinning dope into monohydric alcohols,
such as methanol, ethanol, or isopropanol with the exemption
of reconstituted spider silks which have to be spun into ace-
tone as mentioned above, initiates fiber formation through
dehydration of the spidroins. This technique results in single
fibers with a diameter in the micrometer range. An advantage
of wet spinning over other techniques such as electrospinning
is the rather Bslow^ fiber formation, which allows a high de-
gree of alignment of the proteins during spinning. This align-
ment enables the formation of a structural hierarchy necessary
to produce fibers with superior mechanical properties. Wet
spinning allows the use of different spinning dopes, ranging
from inorganic or aqueous solutions to dispersions and liquid
crystalline phases, and thus can be used for any polymer/bio-
polymer. Variation of the spinning dope and the composition
of the coagulation bath influence fiber properties, allowing the
production of fibers with tunable mechanical properties. One
disadvantage of wet spinning is the necessity to remove the
solvent or coagulation bath residues after spinning, which re-
quires at least one washing step resulting in a longer and
therefore more expensive process compared to dry spinning
(Jestin and Poulin 2014).
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Besides 100 % of methanol or isopropanol (Adrianos et al.
2013; Albertson et al. 2014; An et al. 2011; Jones et al. 2015;
Zhu et al. 2010), mixtures of water with monohydric alcohols
are often used as coagulation baths (Arcidiacono et al. 2002;
Bogush et al. 2009; Heidebrecht et al. 2015; Lazaris et al.
2002; Teule et al. 2007; Xia et al. 2010). The addition of water
to the coagulation bath slows down the coagulation rate of
spidroins, and water works as a plasticizer for the fibers,
which renders them less brittle and prevents clogging of the
spinneret (Lin et al. 2013).

Posttreatment, such as drawing the spun fibers in air or
inside a bath, is applied to improve the fibers’ mechanical
properties. Poststretching of spun fibers has been shown to
induce a higher β-sheet content (An et al. 2011) and to align
the β-sheet crystals along the thread axis (Heidebrecht et al.
2015). In contrast to the coagulation bath, the poststretching
bath needs to contain water because of its plasticizing features
for the fibers, which enables the proteins to rearrange and align
along the fiber axis. The absence of water results in brittle
fibers. An overview of recombinant spider silk fiber wet spin-
ning and posttreatment conditions is given in Table 1.

Electrospinning

Electrospinning of recombinant or reconstituted spider silk
protein solutions is possible using an electric field of 4–
30 kV with a distance of 2–25 cm between the electrodes
(i.e., the capillary tip and the collector) (Bini et al. 2006;
Bogush et al. 2009; Lang et al. 2013; Peng et al. 2009;
Stephens et al. 2005; Wong Po Foo et al. 2006; Yu et al.
2014; Zhou et al. 2008; Zhu et al. 2015). Parameters influenc-
ing the fiber properties (e.g., fiber diameter) of nonwoven
mats mostly depend on the properties of the spinning dope,
such as the viscosity, surface free energy, protein concentra-
tion, and the solvent’s intrinsic electrical conductivity and per-
meability (Greiner et al. 2006). In contrast to wet spinning,
electrospinning of comparatively low protein concentrations
of 2–6% (w/v) (Bini et al. 2006; Leal-Egana et al. 2012;Wong
Po Foo et al. 2006; Yu et al. 2014; Zarkoob et al. 2004) also
yields fibers, but higher protein concentrations of 10–30% (w/
v) (Bogush et al. 2009; Lang et al. 2013; Leal-Egana et al.
2012; Peng et al. 2009; Stephens et al. 2005; Zhou et al. 2008;
Zhu et al. 2015) are more commonly used. In general, increas-
ing the spidroin concentration in the dope leads to an in-
creased fiber diameter and a reduction of bead formation, the
latter being an unwanted side effect of electrospinning (Lang
et al. 2013; Leal-Egana et al. 2012). Structural analysis of
nonwoven mats electrospun from HFIP using Fourier-
transformed infrared spectroscopy (FTIR) with subsequent
Fourier self-deconvolution (FSD) revealed a low β-sheet con-
tent (~15 %) (Lang et al. 2013). The electric field interacts
with the hydrogen bond dipoles of the protein, stabilizing α-
helical segments and thus inhibiting β-sheet formation

(Stephens et al. 2005). Instead of a solid collector, water- or
organic solvent-based coagulation baths can be used to collect
the spun micro- and nanofibers. In general, the latter approach
has the advantage of including a posttreatment within the
spinning process. Yu et al. used a coagulation bath containing
90 % (v/v) of organic solutions (acetone or methyl alcohol) as
a collector; however, SEM images showed inhomogeneous
fibers containing many beads (Yu et al. 2014). Posttreatment
of electrospun fibers with organic solvents or alcohols is nec-
essary in order to render the spun α-helical fibers water insol-
uble (i.e., inducingβ-sheet formation) (Lang et al. 2013; Leal-
Egana et al. 2012; Slotta et al. 2006). Immersing the fibers into
alcohol baths resulted in fused intersections of single fibers
(Bini et al. 2006), giving the fibers a Bmolten^ appearance.
Therefore, instead of immersing the fibers, Leal-Egana et al.
(2012) and Lang et al. (2013) exposed them to methanol or
ethanol vapor to render the fibers water insoluble with keeping
their original morphology.

Other spinning methods

Besides wet spinning and electrospinning, recombinant spider
silk fibers were produced using microfluidic devices
(Rammensee et al. 2008). Such devices mimic some aspects
of the natural spinning process, such as ion exchange, pH
change, and elongational flow conditions. Since only low or
medium protein concentrations were used, high flow rates
were necessary to induce fiber assembly. Shear forces can also
be applied by hand-drawing fibers from pre-assembled
spidroins out of aqueous solutions (Exler et al. 2007; Teule
et al. 2007). The gained fibers show similar properties as those
produced by wet spinning. However, several parameters can
be fine-tuned within the microfluidic channels which will al-
low for more sophisticated spinning processes and, therefore,
fibers, in the future.

Transgenic silkworms producing silkworm/spider silk
composite fibers

One elegant way to Bartificially^ spin spider silk fibers is to
use transgenic, naturally fiber-producing animals. Silkworms
are naturally able to produce and spin silk proteins and they
can be genetically modified. Transgenic silkworms were
engineered to produce silkworm fibroin/spider silk composite
fibers with a spider silk content of 0.4 to 5 % (w/w) (Kuwana
et al. 2014; Teule et al. 2012). Importantly, the mechanical
properties of silkworm silk (toughness 70 MJ m−3; Gosline
et al. 1999) are inferior to those of spider silk (toughness
167MJm−3; Heidebrecht et al. 2015), and since the composite
material merges the properties of both silks, the mechanical
properties of hybrid silkworm/spider silk fibers will always be
inferior to those of spider silk. In 2000, Tamura et al.
succeeded in a stable germline transformation of the silkworm
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Bombyx mori using a piggyBac-derived vector (Tamura et al.
2000). PiggyBac is a transposon discovered in the lepidopter-
an Trichoplusia ni (Cary et al. 1989), and vectors based hereon
are able to transpose into B. mori chromosomes enabling silk-
worm transformation with various genes encoding fibrous
proteins (Tamura et al. 2000). In general, to create transgenic
silkworms producing chimeric silkworm/spider silk, genes
were designed encoding synthetic spider silk-like sequences,
B. mori fibroin sequences as well as a B. mori promoter,
targeting the foreign protein production to the silk gland.
Subsequently, these genes were cloned into a piggyBac-based
vector which was then injected into B. mori eggs. Silk fibroin
fibers are composed of three proteins, namely fibroin heavy
chain (H-chain), fibroin light chain (L-chain), and
fibrohexamerin protein (fhx/P25) (Kojima et al. 2007), and
they are covered by a sericin layer (Wen et al. 2010). Just like
spidroins, silk fibroins consist of a highly repetitive region
which is flanked by nonrepetitive amino- and carboxy-
terminal domains. Since the H-chain is believed to be mainly

responsible for the mechanical properties of the silk (Kojima
et al. 2007), fibroin H-chain genes were modified with spider
silk sequences for improved properties (Kuwana et al. 2014;
Teule et al. 2012; Zhu et al. 2010). Kuwana et al. (2014)
generated three transgenic silkworm strains using a Japanese
commercial silkworm strain (C515), two of which contained
cDNA of major ampullate spidroins of the spider Araneus
ventricosus, flanked by the amino- and carboxy-terminal do-
mains of the B. mori fibroin H-chain gene. The third strain
consisted of a plasmid coding for enhanced green fluorescent
protein (EGFP), in order to simplify the analysis of the spun
cocoons, subcloned in between the amino- and carboxy-
terminal domains of the H-chain gene. After creating trans-
genic silkworms carrying the modified genes using the
piggyBac-based vector system, the silkworms produced the
modified H-chain/spider silk protein in the silk gland. In the
silkworm’s gland, the modified H-chain protein dimerized
with the fibroin L-chain and was subsequently spun into a
cocoon containing the spider dragline protein (Kuwana et al.

Table 1 Overview of wet-spinning conditions used for generating recombinant spider silk fibers

Spinning dope Max. protein
concentration [%]

Coagulation bath Posttreatment Source

Aqueous

160 mM or 1 M urea, 10 mM
NaH2PO4, 1 mM Tris, 20 mM
NaCl, 10 mM or 100 mM
glycine, pH 5.0

25 (after ultrafiltration) MeOH/H2O mixture N/A Arcidiacono et al. (2002)

60 % NaNCS, 20 % acetate
solution, mix ratio 8:2 or 10 %
LiCl in 90 % formic acid (FA)

30 96 % EtOH 1st draw: 92 % EtOH
2nd draw: 75 % EtOH

Bogush et al. (2009)

50 mM Tris/HCl, pH 8.0 or 50 mM
Na-phosphate buffer, pH 7.2

17 IPA/H2O mixture IPA/H2O mixture Heidebrecht et al. (2015)

0.1 % propionic acid, 10 mM
imidazole; microwaved

12 100 % IPA 1st draw: 80 % IPA
2nd draw: 20 % IPA

Jones et al. (2015)

PBS 28 MeOH/H2O
mixture

1st draw: MeOH
2nd draw: H2O

Lazaris et al. (2002)

Organic

HFIP (5 % v/v added to dope
prior to spinning)

15 100 % IPA 80 % IPA Adrianos et al. (2013)

HFIP (evaporation of HFIP
prior to spinning)

60 100 % IPA 85 % IPA, 60 °C Albertson et al. (2014)

HFIP 30 100 % IPA 75 % IPA An et al. (2011)

HFIP 12 IPA N/A Brooks et al. (2008)

HFIP 10 100 mM ZnCl2,
1 mM FeCl3
in H2O

1st draw: air
2nd draw: 50–70 %

EtOH

Lin et al. (2013)

HFIP (addition of 15 %
water prior to spinning)

30 90 % IPA N/A Teule et al. (2007)

HFIP 15 (10 % silkworm
fibroin and 5 % spider
silk-like protein)

MeOH 1st: 3 h incubation in
MeOH

2nd: drawing in
distilled H2O

Zhu et al. (2010)

HFIP 20 90 % MeOH 90 % MeOH Xia et al. (2010)

MeOH methanol, EtOH ethanol, IPA isopropyl alcohol, PBS phosphate buffered saline, HFIP 1,1,1,3,3,3-hexafluoro-2-propanol, N/A not applicable
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2014). Transgenic efficiencies of the strains were 20.0 % for
the EGFP-containing strain and 16.7 and 22.6 %, respectively,
for the strains containing the spider silk cDNA. Cocoons of
the EGFP-transgenic silkworms showed green fluorescence,
indicating that the EGFP protein is folded in its functional
structure after spinning, suggesting that the spider silk protein
may also be present in the cocoon fibers in its natural struc-
ture. The maximum amount of the modified H-chain/spider
silk protein against the total fibroin was estimated at 0.4–
0.6 % (w/w) (Kuwana et al. 2014) and 2-5 % (w/w) (Teule
et al. 2012).

Alternatively, the sericin promoter has been used to target
spider dragline silk proteins toward the outer sericin layer of
the silk fiber (Wen et al. 2010). Whereas the breaking strain of
the composite fiber was similar to that of natural spider silk
fibers, the breaking stress and toughness were increased com-
pared to that of natural silkworm silk, but the average values
were still well below those of natural spider silk fibers (Teule
et al. 2012). Theoretically, a breaking stress of cocoon silk
equal to that of spider dragline silk could be achieved if the
spidroin content was raised to 5–8 % (Kuwana et al. 2014),
but this has not been shown experimentally, yet.

Properties of reconstituted vs. recombinant fibers

In order to establish processing technologies for gaining bio-
mimetic spider silk fibers, two research groups used
reconstituted Nephila spp. dragline silk for fiber spinning
(Seidel et al. 2000; Shao et al. 2003). The best performing
fibers, in terms of mechanical properties, were obtained by
drawing the fibers in air after spinning, soaking them in water,
and then drawing them in air again. These fibers exhibited a
strength of 320 MPa, a Young’s modulus of 8 GPa, and an
extensibility of 100 % (Seidel et al. 2000). In comparison to
natural dragline fibers, these fibers were much more extensi-
ble, but had a lower strength. Hand-drawn fibers of
reconstituted Nephila edulis dragline silk yielded fibers
showed natural dragline-like extensibility (10–27 %) and
Young’s modulus (6 GPa), but a breaking strength (100–
140 MPa) that was well below that of the natural dragline
fibers (Shao et al. 2003). Generally, achieving man-made fi-
bers with a breaking stress in the regime of natural spider silk
fibers seems to be the greatest challenge. Since the amount of
natural and, therefore, also reconstituted, spider silk is quite
limited due to the facts as mentioned above, the generation of
recombinant (i.e., artificial) silk fibers is the only meaningful
route toward large-scale applications. In several attempts, ex-
tensibility (1.2–302 %) and Young’s modulus (0.04–21 GPa)
of artificial spider silk fibers have been highly variable,
reaching lower as well as higher values in comparison to nat-
ural spider silk fibers (24% and 8 GPa). On the other hand, the
strength even of the best performing fibers achieved values far

below those of natural spider silk fibers. The highest strength
(660 MPa) was achieved by silkworm/spider silk composite
fibers, but since these fibers were only extensible up to 19 %
(Wen et al. 2010), the toughness was far below that of natural
spider silk fibers. In comparison, the highest strength
(508 MPa) of recombinant spider silk fibers was achieved
by wet spinning of proteins with a molecular weight of
285 kDa containing only amino acid motifs based on the core
domain of natural spidroins (Xia et al. 2010). The highest
toughness (189 MJ m−3), on the other hand, was observed
with fibers wet-spun from a self-assembled aqueous spinning
dope of a 134-kDa protein containing all three functional do-
mains: the highly repetitive core domain as well as the helical
amino- and carboxy-terminal domains (Heidebrecht et al.
2015).

Tensile testing of electrospun, recombinant fibers also
showed, not surprisingly, inferior mechanical properties in
comparison to those of natural spider silk fibers (Bogush
et al. 2009; Zhu et al. 2015). But in this case, mechanics can
be neglected, since electrospun fibers are commonly applied
as nonwoven meshes used for biomedical or for filter applica-
tions without the need of nature-like mechanical properties. In
this context, biocompatibility is the more important feature of
spider silks. In general, fibers produced from both
reconstituted and recombinant spidroins exhibited good bio-
medical properties. For instance, fibers electrospun from
reconstituted A. ventricosus major ampullate spidroins re-
vealed a very low degradation rate and showed a good bio-
compatibility with PC 12 cells (Yu et al. 2014). Cell attach-
ment and proliferation experiments of BALB/3T3 mouse fi-
broblasts on nonwoven meshes spun from recombinant
spidroins showed cell alignment along individual fibers as
well as a protrusion of filopodia/lamellipodia through the in-
terstitial space between the fibers (Leal-Egana et al. 2012).
Electrospinning of recombinant spidroins hybridized with
the cell binding sequence RGD even induced the differentia-
tion of bone marrow-derived, human mesenchymal stem cells
(hMSCs) to osteogenic outcomes (Bini et al. 2006). Also, self-
assembled recombinant spidroin fibers implanted subcutane-
ously in rats did not show any negative systemic or local
reactions (Fredriksson et al. 2009), suggesting these fibers to
be biocompatible. Additionally, fiber bundles thereof seem to
support the formation of vascularized tissue formation, since
already 1 week after implantation, new capillaries and
fibroblast-like cells formed in the center of such fiber bundles
(Fredriksson et al. 2009).

BNot to spin^: artificial assembly morphologies

Recombinant spider silk proteins can be processed into more
than fibers; other morphologies such as particles, foams, films,
or hydrogels can also be fabricated, all of which have a high

Appl Microbiol Biotechnol (2015) 99:9361–9380 9369



application potential (Hardy and Scheibel 2010; Hermanson
et al. 2007; Slotta et al. 2008; Spiess et al. 2010a, b).
Processing of recombinant spider silk proteins in aqueous so-
lutions can be triggered by changes in the pH value, amount
and type of additives (e.g., potassium phosphate, alcohols, or
polymers), mechanical shear, or temperature changes.
Alternatively, organic solvents such as HFIP or FA can be
used; however, the choice of solvent has a significant impact
on structure formation. While aqueous processing leads main-
ly to particle and hydrogel formation, water-soluble films are
mainly produced using fast-evaporating organic solvents.
Here, posttreatment procedures with agents, like potassium
phosphate or monohydric alcohols (methanol, ethanol,
isopropanol), are necessary to render the films insoluble in
water (Exler et al. 2007; Huemmerich et al. 2004a, b;
Lammel et al. 2008; Numata et al. 2010; Rammensee et al.
2008; Rising 2014; Scheibel 2004; Slotta et al. 2007; Spiess
et al. 2010b).

Particles

Spidroin particles are produced in a simple, aqueous process
by the addition of high concentrations of kosmotropic salts,
like potassium phosphate, and fast mixing. This procedure
results in solid particles with high β-sheet content, a smooth
surface (Hofer et al. 2012; Lammel et al. 2008; Slotta et al.
2008), and particle sizes between 250 nm and 3μmdepending
on the mixing intensity, protein concentration, and the con-
centration of kosmotropic salts (Lammel et al. 2008; Slotta
et al. 2008; Spiess et al. 2010a). Using ionic liquids instead
of aqueous buffers and high potassium phosphate concentra-
tions to induce phase separation and nucleation in the protein
solution or ultrasonication for particle production allowed en-
hanced size control and a reduced polydispersity index (Elsner
et al. 2015; Lucke et al. 2015). eADF4(C16) (engineered
Araneus diadematus fibroin 4) particles show a brush-like
outer layer with protruding protein strands and a thickness of
30–50 nm covering a solid inner core (Helfricht et al. 2013).
Importantly, no posttreatment with dehydrating agents is nec-
essary to obtain water-insoluble particles, since the β-sheet
content is high after the salting-out process (Slotta et al.
2008). Further, it has been shown that particles made of re-
combinant spider silk proteins exhibit an extraordinary me-
chanical stability when analyzed in dry state. In a swollen,
hydrated state, these particles exhibited a different mechanical
behavior: the elastic modulus was three orders of magnitude
lower (E modulus dry, 0.8±0.5 GPa; E modulus hydrated,
2.99±0.90 MPa). Further, when dry, the particles deformed
in a plastic response, and when hydrated, they showed a re-
versible, elastic deformation behavior. In both states, dry and
hydrated, the mechanical properties were dependent on the
molecular weight of the spidroin: The higher the molecular

weight, the better the mechanical stability (Neubauer et al.
2013).

Particles made of recombinant spider silk proteins are suit-
able for a large variety of applications. Due to their enhanced
mechanical properties, these particles can be used, for exam-
ple, as filler for composite materials. Additionally, due to their
favorable properties in a physiological environment (nontox-
ic, biodegradable, etc.), these particles could be used as car-
riers of different substances, for example in drug delivery. Silk
particles retain their properties for a limited period of time in
the human body before they gradually decompose into degra-
dation products which can be eliminated (Altman et al. 2003;
George and Abraham 2006; Liu et al. 2005; Müller-Herrmann
and Scheibel 2015).

Uptake and release studies of small molecules with model
drugs showed that these types of molecular entities can be
incorporated either by diffusion or by coprecipitation of both
the spidroin and the drug substance. While the latter increased
the loading efficiency of the particles, it did not significantly
influence the release rate. Importantly, drugs can be only load-
ed into spidroin particles if there is no electrostatic repulsion.
In this context, only positively and neutrally charged drugs
can be loaded onto negatively charged spider silk protein par-
ticles, such as those made of eADF4(C16) (Blüm and
Scheibel 2012; Doblhofer and Scheibel 2015; Lammel et al.
2011). Since protein design allowed the production of posi-
tively charged spider silk proteins, particles made thereof were
also able to uptake negatively charged small molecules as well
as large oligonucleotides (Doblhofer and Scheibel 2015).

One important justification for the use of silk-based drug
delivery vehicles is the ability to design the underlying pro-
teins for a specific target, for example uptake by a specific cell
type. Previous investigations showed that, in general, nega-
tively charged spider silk particles have a low uptake efficien-
cy by mammalian cells. Therefore, cell penetrating peptides
(CPP) as well as an Arg8-TAG or a RGD sequence were
engineered to the N- and C-termini of eADF4(C16). The pres-
ence of CPP increased the number of incorporated particles in
HeLa cells; however, the mechanism behind the increased
uptake was surprisingly mainly the particle’s surface charge,
not the presented surface peptide (Elsner et al. 2015).

Films

The first studies on films made of spider silk proteins were
reported in 2002 by Chen et al. where the salt-controlled struc-
tural conversion of natural spider silk proteins obtained from
the major ampullate gland of Nephila senegalensiswas inves-
tigated (Chen et al. 2002). Films made of recombinant spider
silk proteins first gained attention in 2005 where it was shown
that these spider silk-like proteins undergo a similar structural
conversion from random coil to β-sheet rich. Recombinantly
produced engineered spider silk protein films turned out to be
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transparent and chemically stable under ambient conditions,
depending on their processing (Huemmerich et al. 2006;
Slotta et al. 2006; Spiess et al. 2010b). Twomajor components
determine the properties of these films: the molecular structure
including the secondary structure and intermolecular as well
as intramolecular interactions as well as the macroscopic
structure reflecting the material’s interface with the environ-
ment (Spiess et al. 2010a).

Depending on the solvent, spider silk proteins in solution
adopt mainly an α-helical or random coil conformation which
is often maintained in as-cast films (Borkner et al. 2014; Slotta
et al. 2006). These as-cast films are water soluble, as men-
tioned above, due to the weak intermolecular interactions of
spider silk proteins in an α-helical conformation. Upon con-
version of the protein structure toward a β-sheet-rich structure
by using agents like kosmotropic salts or alcohols, water va-
por, or temperature annealing, films can be rendered chemi-
cally more stable and thereby water insoluble (Huemmerich
et al. 2006; Slotta et al. 2006; Spiess et al. 2010b). This is an
important quality, as most potential applications of recombi-
nant spider silk films involve interaction with a humid envi-
ronment. Structural control over synthetic recombinant spider
silk proteins is also given by the variation of the amino acid
sequence toward a higher number ofβ-sheet forming building
blocks, and with the control of the β-sheet portion, mechani-
cal properties can be predetermined (Rabotyagova et al. 2009,
2010). While the terminal domains of spider silk proteins play
an important role in the fiber spinning process, no significant
influence of the nonrepetitive regions could be observed dur-
ing the film casting from organic protein solutions.
Nevertheless, as-cast films made of recombinant spider silk
proteins containing the NR regions are slightly more chemi-
cally stable than those without, though there are no disulfide
bridges present (Slotta et al. 2006). Besides chemical stability,
the β-sheet content also determines the mechanical properties
of a film. With increasing β-sheet content, elastic modulus
and strength increase, and there is a loss of elasticity. High
amounts of β-sheets, therefore, can be correlated with stiff-
ness and brittleness in silk films (Spiess et al. 2010b).
However, as the content of β-sheets can be adjusted by the
posttreatment conditions upon varying incubation times of the
films in alcohols or posttreatment with water/alcohol mixtures
at various ratios lead to a varying β-sheet content, this is not a
challenge for tailoring films to specific applications (Spiess
et al. 2010a). The water content in silk films plays also an
important role; due to its softening effect, it can work
as a plasticizer. Another possibility to overcome the
brittleness of silk films is to add plasticizers like glyc-
erol. It was reported that glycerol can alter the intermo-
lecular interactions of silk proteins in a film and, there-
fore, is able to enhance the films’ elasticity. The addi-
tion of 40 % w/w glycerol to an eADF4(C16) film
yielded a 10-fold increased elasticity, but also going

along with a 10-fold decrease of the elastic modulus
and a slight decrease in strength (Lawrence et al.
2010; Spiess et al. 2010a).

Spider silk protein films can be envisioned for various
applications; however, they are especially promising for
use in the biomedical field due to their biocompatibility
which has been demonstrated in vitro and in vivo
(Allmeling et al. 2006, 2008; Gellynck et al. 2008a, b;
Hakimi et al. 2010; Vollrath et al. 2002). Conceivable
applications are materials for a controlled substance re-
lease at a specific site of action in the human body,
biomedical sensors, and cell-supporting scaffolds (Hardy
et al. 2013; Minoura et al. 1995; Sofia et al. 2001;
Vendrely and Scheibel 2007). It is possible, for example,
to directly integrate substances (e.g., drugs) into silk
films or to load these substances into microparticles that
are then embedded in or coated with a silk layer amena-
ble for delayed release (Wang et al. 2007, 2010).
Biomedical or biochemical sensors can be fabricated by
covalent binding of biologically active compounds to the
silk proteins (Lawrence et al. 2008; Spiess et al. 2010b).
Cell adhesion on recombinant spider silk protein scaf-
folds was shown to be very weak (Baoyong et al.
2010); therefore, chemical or genetic coupling of specific
functional groups, for example components of the extra-
cellular matrix, and modification of the surface hydrophi-
licity have been employed to influence the cellular re-
sponse to a film’s surface concerning adhesion, prolifer-
ation, and differentiation (Bini et al. 2006; Karageorgiou
et al. 2004; Wohlrab et al. 2012a). As mentioned above,
the function of silk films can be also partly controlled by
the macroscopic structure they adopt. Changing the sur-
face morphology by patterning or partial roughening of a
film under different posttreatment conditions can lead to
a deviating behavior of cells thereon (Bauer et al. 2013;
Borkner et al. 2014). The hydrophilicity of the film sur-
face can easily be affected by the choice of the template
for drop-cast films (Wohlrab et al. 2012b). The influence
of the template’s surface hydrophilicity can be dimin-
ished by spin coating of spidroin solutions, since the
duration of solvent evaporation determines the rearrange-
ment of silk protein molecules within the films, and their
interaction with the underlying substrate and the film
properties are in this case determined by the utilized
solvent (Metwalli et al. 2007; Wohlrab et al. 2012b).
Applications of films made of silk protein in the medical
field include coatings for medical devices (Bettinger and
Bao 2010; Kim et al. 2010; Zeplin et al. 2014a, b) and
skin grafts (Baoyong et al. 2010; Jiang et al. 2007).

In the context of biomedical applications, it is important to
mention that recombinant spider silk protein films undergo
partial degradation in the presence of wound proteases
(~10 %) in a timescale of 15 days, which is in the range of
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the initial phase of wound healing (Müller-Herrmann and
Scheibel 2015).

Hydrogels

Hydrogels are three-dimensional polymer networks that ab-
sorb over 95 % (w/w) of water (Knight et al. 1998; Lee and
Mooney 2001; Rammensee et al. 2006; Schacht and Scheibel
2011; Shin et al. 2003). Their porous structure and mechanical
properties make them candidates for applications in tissue
engineering, drug delivery, or as functional coatings
(Rammensee et al. 2006). The mechanical properties of a spe-
cific hydrogel are determined by the properties of its individ-
ual constituents, and many different polymers, synthetic and
natural ones, have been utilized to form hydrogels. Spidroin
hydrogels are built upon self-assembly of nanofibrils by a
mechanism of nucleation-aggregation followed by a
concentration-dependent gelation in whichβ-sheet-rich spider
silk fibrils become entangled to build a stable three-
dimensional network (Hu et al. 2010; Rammensee et al.
2006; Schacht et al. 2015; Schacht and Scheibel 2011; Slotta
et al. 2008). Spider silk proteins can be processed into stable
hydrogels in a controlled manner by adjusting the protein
concentration, pH, temperature, ion composition, and concen-
tration (Jones et al. 2015; Schacht and Scheibel 2011; Vepari
and Kaplan 2007). Each of these inputs influences the
hydrogel’s morphology, mechanical properties, and pore size.
In particular, increasing the protein concentration and increas-
ing the addition of chemical crosslinkers lead to an increase in
mechanical strength, accompanied by a decrease in pore sizes
(Schacht and Scheibel 2011). It has been recently shown that
recombinant spidroin hydrogels, like many biopolymer
hydrogels, show a viscoelastic behavior with stress changes
proportional to the linear increasing strain (Mackintosh et al.
1995). In the special case of eADF4 hydrogels, the elastic
behavior dominates over the viscous behavior, with low-
viscosity flow behavior, good form stability, and a shear thin-
ning effect, allowing their use as bioink in a biofabrication
setup. Eukaryotic cells were embedded within the hydrogel
prior to printing with a bioplotter and they survived for at least
7 days after printing. The addition of cells did not consider-
ably influence the print-ability of the spider silk protein gels
(Schacht et al. 2015).

Foams and sponges

Foams are defined as material containing small bubbles
formed on or in a liquid. To produce foams made of spidroin
solutions, gas bubbles remain stable when using a high protein
concentration, and the foam is established upon drying. In
comparison, sponges are, like foams, three-dimensional po-
rous scaffolds, but differ in their production technique and
their mechanical properties. Sponges can be produced by

gas foaming, lyophilization, or using porogens. It has been
shown for silkworm silk fibroin that porogens like sodium
chloride and sugar can be used to produce sponges with de-
fined pore sizes due to silk β-sheet formation around the
porogen. Therefore, the pores are the size of the porogen in
case of organic protein solutions and 80–90 % of the size of
the porogen in aqueous solutions (Kim et al. 2005). As a
consequence, it is even possible to produce pore size gradients
by stacking porogens with different diameters (Kim et al.
2005; Nazarov et al. 2004; Vepari and Kaplan 2007). Foams
and sponges are both qualified for cell culture applications due
to the ability of good transportation of nutrients and metabolic
waste through the material in combination with a good struc-
tural and mechanical stability (Kluge et al. 2008). While a
number of studies on silkworm silk fibroin foams and sponges
have been published, spider silk protein foams and sponges
remain largely unexplored. Widhe et al. showed in 2010 that
their recombinant miniature spider silk protein 4RepCTcan be
processed into foams which stay microscopically stable in a
cell culture medium. The surface of these foams showed het-
erogeneous pores with diameters between 30 and 200 μm.
However, in this pore size range, foams lack a characteristic
surface topography which influences cell adhesion (Widhe
et al. 2010).

Concerning spider silk sponges, Jones et al. developed a
method in which hydrogels were frozen in an aqueous medi-
um and subsequently thawed, resulting in a highly elastic,
three-dimensional morphology. Such sponges could uptake
water to the extent of hydrogels as well as maintain their form
upon compression and drying. That is, the effect of dehydra-
tion was completely reversible by the addition of water. The
high elasticity of these sponges is based on a lower content of
stiffening β-sheet crystals and a higher amount of the elastic
random coil and helical structures in comparison to other spi-
der silk scaffolds (Jones et al. 2015).

Composite materials including spider silk

Composites provide the opportunity to produce materials with
extraordinary properties by complementation of at least two
different kinds of materials. In this context, natural as well as
recombinant spider silk materials can play a role due to their
outstanding mechanical and biocompatible properties. In
some studies, naturally spun spider dragline silks were used
to assemble composites with inorganic nanoparticles to rein-
force the fibers. Recently, it was shown that feeding spiders
with carbon nanotubes or graphene dispersions led to carbon-
reinforced silk threads (Lepore et al. 2015). Despite that, most
approaches to enhance mechanical strength of spider dragline
silk were employed after collection of the silk by forced
silking. Dragline silk was used as template for the insertion
of zinc (Zn), titanium (Ti), and aluminum (Al) by multiple
pulsed vapor-phase infiltration (MPI). This treatment
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increased the toughness of the spider silk fibers by almost 10-
fold and the E moduli of the fibers from 9.7 to 68 GPa, in the
best case (Lee et al. 2009).

Spider silk composite production allows not only to in-
crease its mechanical strength but also to extend the range of
applications. Dragline silk fibers, for instance, were incubated
in chloroauric acid to assemble gold nanoparticles on their
surface with the goal of producing water and methanol vapor
sensors with a response time of about 10 s and 150-fold
change of conductivity. Their supercontraction behavior in
the presence of water and methanol vapor led to a change in
the distance of the gold nanoparticles and, therefore, altered
the electrical conductivity of the fibers (Hardy and Scheibel
2010; Singh et al. 2007). Electrical conductivity was also in-
troduced into spider silk fibers by deposition of amine-
functionalized multiwalled carbon nanotubes (MWCNT) onto
their surface. In this study, additionally, an increase in me-
chanical strength was observed for the composite fibers. The
combination of properties allowed an extended application of
the material in various technical approaches (Steven et al.
2013). The accumulation of calcium carbonate or hydroxyap-
atite (HAP) on naturally spun fibers enabled producing new
scaffolds for bone tissue engineering or building blocks for
bone replacement materials (Cao and Mao 2007; Mehta and
Hede 2005). In the case of hydroxyapatite deposition, oriented
crystal growth was obtained being consistent with the orien-
tation of β-sheet crystals in the silk fibers (Cao and Mao
2007). In another approach, naturally spun spider silk was
solubilized in FA for electrospinning. By mixing the resulting
protein solution with a poly(D,L-lactic acid) (PDLLA) FA so-
lution and subsequent electrospinning, nonwoven meshes
with core-shell structured fibers with a diameter range of
about 90–1000 nm were produced. The size of the fibers
was tuned by the weight ratio of the two material components
in the spinning solution (Zhou et al. 2008).

Recombinant spider silk proteins have been used in blends
with polycaprolactone (PCL) and thermoplastic polyurethane
(TPU) to cast films with a higher elasticity than nonblended
spider silk protein films. Good cell adhesion, proliferation,
and the possibility to incorporate drugs in these composite
films endorse them as candidates for implant coatings or as
scaffolds for tissue engineering (Hardy et al. 2013). Another
filler material used in spider silk protein films were carbon
nanotubes. Composite films made of recombinant spider silk
proteins and single-walled carbon nanotubes led to excellent
mechanical properties as a result of the transfer of stress in the
matrix to the filler and of the potential for extensive reorgani-
zation of the matrix at applied high stress (Blond et al. 2007).

Blended dopes of recombinant spider silk with collagen or
gelatin have also been used for electrospinning processes. The
resulting composite nonwoven meshes were predominantly
used in tissue engineering. Electrospinning of a mixture of
spider silk proteins and collagen led to unidirectional, partially

crosslinked fiber scaffolds usable in stem cell differentiation
and in neural tissue engineering. Collagen-dominant scaffolds
were found to provide unique structural, mechanical, and bio-
chemical cues; stem cells were directed to neural differentia-
tion, and the development of long neural filaments along the
fibers was facilitated. These neural tissue-like constructs are
promising candidates for transplantation in cellular replace-
ment therapies for neurodegenerative disorders such as
Alzheimer’s or Parkinson’s disease (Sridharan et al. 2013;
Zhu et al. 2015). Tubular scaffolds made of a blend of recom-
binant spider silk proteins and gelatins, supported by a poly-
urethane outer layer, were produced to be used in tissue-
engineered vessel grafts (TEVG). The morphological and me-
chanical characterization of the tubular structures showed
strong similarities with the structure of native arteries, both
in strength and elasticity. The appearance of RGD sequences
in spider silk used for this purpose supported the growth of
adult stem cells, yielding a higher cellular content prior to
prospective implantation than without the cellular recognition
sequence (Zhang et al. 2014).

Modification of recombinant spider silk proteins with spe-
cific binding motifs for HAP (Huang et al. 2007), titanium
dioxide, germania, and gold could be assembled into various
morphologies and provided the control of organic-inorganic
interfaces and composite structural features (Belton et al.
2012; Foo et al. 2006; Mieszawska et al. 2010). Silica binding
sequences (e.g., R5 from Cylindrotheka fusiformis) were used
to control silica particle formation and assembly on the sur-
faces of spider silk films, fibers, and particles. Mineral phase
formation, morphology, chemistry, and, therefore, composite
properties could be influenced by varying the processing con-
ditions or by sequence alteration. Silica is a critical
osteoconductive element, which can be processed under am-
bient conditions, and has the potential to control the tissue
remodeling rate, making this composite a possible scaffold
for bone regeneration. Studies with humanmesenchymal stem
cells (hMSCs) attached to silica/silk films showed upregula-
tion of osteogenic gene markers at high silica contents (Belton
et al. 2012; Foo et al. 2006; Mieszawska et al. 2010).

Summary and outlook

Biotechnological production of spider silk proteins and their
processing into diverse morphologies (Fig. 4) allow for appli-
cations in textile, automotive, and biomedical industries.
Concerning the production of artificial spider silk fibers, sig-
nificant progress has been made in the last years. Since
reconstituted spider silk fibers did not show nature-like me-
chanical properties after spinning, various techniques for bio-
technological production (i.e., proteins, transgenic animals,
etc.) have been investigated to gain proteins enabling fibers
with such features. Regarding the biotechnological production
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and artificial fiber spinning, great progress was made by ana-
lyzing the natural spinning process and the role of the amino-
and carboxy-terminal domains. Inclusion of the nonrepetitive
terminal domains into the recombinantly produced spider silk
proteins and wet spinning these proteins into fibers resulted in
a toughness comparable to that of natural fibers. This empha-
sized the importance of the nonrepetitive terminal domains in
the proper alignment of the spidroins, which was neglected in
earlier trials. By fine-tuning the composition of the

recombinant proteins and the spinning process, artificial spi-
der silk fibers with mechanical properties exceeding those of
the natural fibers will be likely possible in the future.

Recombinant production of spider silk proteins does not
only offer the option to mimic nature and produce fibers that
are similar to their natural counterparts, but it also enables the
production of different morphologies. These different struc-
tures are biodegradable and biocompatible just like the natural
equivalents, but still comprise new properties that lead to

Fig. 4 Design, production, and processing of recombinant spider silk proteins: from identification of the bioinformation given by the natural material
produced by a spider, to genetic design of its recombinant counterpart, to possible morphologies
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applications in both the medical and the technical field.
Particles and films/coatings have already beenwell-investigat-
ed, and this paves the way toward the first applications in drug
delivery and cell culture. On the other hand, hydrogels, foams,
and sponges require further exploration before they can be
used directly in applications. Nevertheless, in all cases, recom-
binant spider silk protein research tends to explore new tailor-
made materials by adapting the morphology’s properties to a
specific application. The potential of recombinant spider silk
proteins in different fields is thereby essentially limitless.
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