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Abstract In the last decade, attention to extreme environ-
ments has increased because of interests to isolate previously
unknown extremophilic microorganisms in pure culture and
to profile their metabolites. Microorganisms that live in ex-
treme environments produce extremozymes and extremolytes
that have the potential to be valuable resources for the devel-
opment of a bio-based economy through their application to
white, red, and grey biotechnologies. Here, we provide an
overview of extremophile ecology, and we review the most
recent applications of microbial extremophiles and the
extremozymes and extremolytes they produce to
biotechnology.
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Introduction

Biocatalysts are whole microbial cells or enzymes that can be
used in biochemical reactions of modern biotechnology. Some

of these reactions have optimized or even replaced existing
processes (Wohlgemuth, 2010; Resch et al., 2011). Interest in
biocatalysts has recently increased with the growth and devel-
opment of biotechnology as a strategy towards attaining a bio-
based economy. White (or industrial) biotechnology aims to
resolve environmental and economic concerns associatedwith
increasing energy and fuel demands and subsequent prices of
petroleum-based products. It uses biocatalysts to convert re-
newable resources, such as wastes and byproducts, into fine
chemicals, biopolymers, biomaterials, and biofuels. Grey (or
environmental) biotechnology applies biocatalysts to
bioremediate contaminated sites, while red (or medical/phar-
maceutical) biotechnology exploits microorganisms to pro-
duce pharmaceuticals. To date, the majority of enzymes on
the market are of bacterial or fungal origin, while few are
derived from archaea, most of which have been produced by
mesophilic microorganisms which are often inhibited under
the extreme conditions of many industrial processes. Thus, the
search for new sources of isolation, experimental procedures,
and analytical methods is recently growing to identify robust
biocatalysts. Specifically, extremophiles are receiving increas-
ing attention; several have been obtained in pure culture, their
genomes analyzed, and their enzymes characterized by either
academic or industrial laboratories (Cárdenas et al., 2010;
López-López et al 2014; Yildiz et al., 2015).

Extremophilic microorganisms thrive in the harsh environ-
ments where other organisms cannot even survive.
Extremophiles are taxonomically widely distributed and are
a functionally diverse group (Cowan et al., 2015) that includes
thermophiles, psychrophiles, acidophiles, alkalophiles, halo-
philes, barophiles/piezophiles, metalophiles, and radiophiles.
Extremophiles have the potential to produce biomolecules of
high relevance for white, grey, and red biotechnological sec-
tors. These microorganisms produce extremophilic enzymes
(extremozymes) and protective organic biomolecules
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(extremolytes) that convey characteristics for survival in ex-
treme environmental conditions. Here, we present an over-
view of the potential applications of these microorganisms
and their products in biotechnology. We briefly describe the
ecology of extremophilic prokaryotes and review the most
recent reports on the application of extremozymes and
extremolytes derived from extremophilic and extremotolerant
microorganisms in various biotechnological processes.

Ecology and classification of extremophiles

Extremophiles are organisms that have adapted to thrive in
ecological niches that are uninhabitable to others, for example,
deep-sea hydrothermal vents, hot springs, solfataric fields,
soda lakes, inland saline systems, solar salterns, hot and cold
deserts, environments highly contaminated with nuclear waste
or heavy metals, as well as lithic or rock environments.
Psychrophiles are extremophiles that are adapted to extreme
cold, and halophiles describe those that thrive in the presence
of high salt concentrations; each type of microorganism uses
different survival strategies to be successful in their environ-
ment (Oren 2013; De Maayer et al., 2014). Psychrophilic pro-
karyotes are widespread among bacteria and archaea and can
be found within the genera Alteromonas, Halobacterium,
Shewanella , Psychrobacter, Pseudoalteromonas ,
Arthrobacter, Colwellia, Gelidibacter, Marinobacter,
Psychroflexus , Pseudomonas , Methanolobus , and
Methanococcoides (De Maayer et al., 2014). In addition to
adaptations for acidic environments, acidophiles are also typ-
ically adapted to environments with high temperatures, high
salinity, or heavy metal concentrations because these condi-
tions often co-occur, for example, in areas of acid drainage
(Cárdenas et al., 2010; Navarro et al., 2013; Dopson and
Holmes, 2014). Meanwhile, alkalophiles thrive in alkaline
environments such as gypsum-based soils or soda lakes and
are often halophiles. They encompass bacteria from different
genera including among others Bacillus, Halomonas, and
Pseudomonas (Sarethy et al., 2011) as well as archaea belong-
ing to the generaHalalkalicoccus,Halobiforma,Halorubrum,
Natrialba, Natronococcus, and Natronorubrum (Bowers and
Wiegel, 2011). Deep-sea and deep subsurface environments
host piezophiles (barophiles), a group of extremophiles that
produce compatible solutes and polyunsaturated fatty acids
and formmultimeric and antioxidant proteins that enable them
to survive under extremely high hydrostatic pressures
(Kawamoto et al., 2011; Zhang et al., 2015). Most piezophiles
are psychrophilic Gram-negative bacterial species that belong
to the genera Shewanella, Psychromonas, Photobacterium,
Colwellia, Thioprofundum, and Moritella, but some are ar-
chaea derived and can be found among the genera
Thermococcus, Sulfolobus, and Pyrococcus (Zhang et al.,
2015). Adaptation to high concentrations of heavy metals

(otherwise essential as trace elements) allows metalophiles
to thrive in metal-polluted sites (Johnson, 2014; Orell et al.,
2013). Metalophiles are also acidophiles and include both
bacteria from the genera Acidithiobacillus, Leptospirillum,
Alicyclobaci l lus , Acidiphi l ium , Acidimicrobium ,
Ferrimicrobium, and Sulfobacillus and archaea from the gen-
era Ferroplasma, Acidiplasma, Sulfolobus, Metallosphaera,
and Acidianus (Johnson, 2014; Dopson and Holmes, 2014).
In environments of high oxidative stress and radiation (UV,
gamma, and X-rays), radiophiles thrive because of their ability
to repair extensive DNA damage. Radiophiles are found
among various microbial groups and species including bacte-
ria from the genera Deinococcus, Bacillus, Rubrobacter, and
Kineococcus, and the family Geodermatophilaceae and
cyanobac te r ia inc luding the genera Nostoc and
Chroococcidiopsis (Brim et al., 2003; Gtari et al., 2012;
Bagwell et al., 2008; Gabani and Singh 2013).

Potential applications
of extremophilic/extremotolerant biocatalysts

Owing to their unique enzymatic features and physiological
properties, the potential biotechnological applications of
whole-cell extremophilic biocatalysts range from the bioreme-
diation of toxic pollutants from water and/or sediments to the
production of biomolecules for medical and industrial pur-
poses. Because of their adaptation to high concentrations of
heavy metals, metalophiles/acidophiles are currently being
used for bioremediation and biomining (Navarro et al.,
2013; Johnson 2014; Orell et al., 2013), while radiophiles
are suited for application in the management of nuclear
waste-polluted environments (Brim et al., 2003; Appukuttan
et al., 2006). Applications can also be envisaged in agriculture
where desert bacterial extremophiles that are able to cope with
low water activity conditions can be used to improve the man-
agement of water by plants under drought stress (Marasco
et al., 2012; Rolli et al., 2015).

In addition to entire microbial cells, extremozymes are en-
zymes that have developed molecular mechanisms (Hough
and Danson 1999) of adaptation to extreme physico-
chemical conditions that have relevant applications as
biocatalysts in industrial biotransformation processes. En-
zymes produced by psychrophiles have been shown to display
high catalytic efficiency in the detergent and food industries
and for the production of fine chemicals (Cavicchioli et al.,
2011). Karan et al. (2013) reported on the purification and
characterization of β-galactosidase from the cold-adapted
haloarchaeon Halorubrum lacusprofundi. This enzyme was
overexpressed in the model haloarchaeon, Halobacterium
sp. NRC-1, and was shown to be active in high-salinity envi-
ronments (with maximal activity in either 4 M NaCl or KCl)
across a wide temperature range (−5 to 60 °C). Its
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functionality is conserved in the presence of 10–20 % (v/v)
organic solvents, including methanol, ethanol, n-butanol, and
isoamyl alcohol, suggesting its suitability for the synthesis of
oligosaccharides under low water activity and cold
temperatures.

The industrial potential for halophilic enzymes resides in
their ability to be active and stable under low water activity
and, in many cases, also in the presence of organic solvents
(Raddadi et al., 2013; Datta et al., 2010). Examples of
these extremozymes include polysaccharide-hydrolyzing en-
zymes of high relevance for the hydrolysis of cellulose,
xylan, and starch (Raddadi et al., 2013; Bhalla et al.,
2013; Du et al., 2013; Elleuche et al., 2014). For example,
the extremotolerant cellulases produced by Paenibacillus
tarimensis L88, an isolate obtained from the Sahara Desert
in southern Tunisia, have been shown to have high func-
tionality across a broad pH range (3.0 to 10.5), at high
temperatures (80 °C) and high salt concentrations (up to
5-M NaCl) (Raddadi et al., 2013). Carboxymethyl cellulase
activity has been detected in the presence of 40 % (v/v) 1-
butyl-3-methylimidazolium chloride or 20 % (w/v) 1-ethyl-
3-methylimidazolium acetate ionic liquids and was main-
tained after exposure to organic solvents, detergents, heavy
metals, and even under high alkalinity. Paenibacillus
tarimensis is an optimal candidate for the production of
cellulases with promising applications in detergent, textile,
and pulp and paper industries; it also has potential for
simultaneous ionic liquid treatment and saccharification of
lignocellulose in biorefinery processes (Raddadi et al.,
2013). Some halophilic enzymes are lipolytic, such as li-
pases and esterases, such that they have the ability to hy-
drolyze long-chain acylglycerols (≥C10) and short-chain
fatty esters (≤C10), respectively. These enzymes have a
wide range of applications including the production of
polyunsaturated fatty acids in the food industry or of bio-
diesel (Litchfield, 2011; Schreck and Grunden, 2014). For
example, lipase from the halophilic bacterium Idiomarina
sp. was shown to be highly active under a variety of harsh
conditions including in the presence of organic solvents and
high salt concentrations. Its application for biodiesel pro-
duction from Jatropha oil in free or immobilized forms
resulted in 80 and 91 % yields, respectively (Li et al.,
2014).

Bacterial alkalophiles are mainly exploited for the pro-
duction of enzymes that are widely applied in the deter-
gent and laundry industries (Sarethy et al., 2011). Al-
though the biotechnological potential of piezophiles is still
poorly explored (Abe and Horikoshi, 2001; Mota et al.,
2013; Lamosa et al., 2013), they may be valuable to the
food industry in processes that require high pressures
(Zhang et al., 2015). Moreover, piezophilic bacteria could
be a source of essential fatty acids like, for example,
omega-3-polyunsaturated fatty acids since these

compounds are produced by the bacteria to stabilize the
cell membrane under high pressure (Zhang et al., 2015).

Enzymes produced by radiotolerant microorganisms have
been shown to be resistant to other stresses. For example,
Shao et al. (2013) characterized lipases from the radiation-
tolerant bacterium Deinococcus radiodurans expressed in
Escherichia coli. Purified enzymes showed preference for
short-chain esters, three of which were thermostable and
retained their activities in the presence of surfactants and or-
ganic solvents.

Thermozymes are extremozymes produced by
thermophilic and hyperthermophilic microorganisms.
These enzymes are also often able to tolerate
proteolysis and harsh conditions like the presence of
denaturing agents and organic solvents as well as high
salinity. Benefits of using thermozymes include reduced
risk of contamination, lower viscosity, and higher
solubility of substrates. Toplak et al. (2013) identified
a gene coding for a subtilase termed proteolysin in the
Gram-positive, anaerobic, thermophilic bacterium
Coprothermobacter proteolyticus. By functionally ex-
pressing the gene into E. coli, the enzyme could be
purified and identified as highly thermostable in the
presence of organic solvents and detergents with a high
level of activity across a wide pH range at high tem-
peratures (up to 80 °C), making it a suitable candidate
for application to thermophilic organic solid waste deg-
radation (Toplak et al., 2013). This subtilase is a mem-
ber of the serine protease family produced by Bacillus
strains including the largest group of commercial pro-
teolytic enzymes extensively used in food, textile, deter-
gent, pharmaceutical, and leather industries. In addition,
a thermostable nucleoside phosphorylase has been char-
acterized from hyperthermophilic aerobic crenarchaeon
Aeropyrum pernix K1 and has been used for the syn-
thesis of nucleoside analogues used in antiviral therapies
as an alternative to chemical synthesis (Zhu et al.,
2013). Other thermozymes also include proteases like
thermolysin used in the synthesis of dipeptides, pretaq
protease used to cleanup DNA prior to PCR amplifica-
tion, and starch-processing and DNA-processing en-
zymes (Bruins et al., 2001; Jayakumar et al., 2012).

In addition to the abovementioned extremozymes, other
enzymes are also suitable for use in further industrial pro-
cesses. For example, alcohol dehydrogenases can be used
to synthesize building blocks for the chemical industry,
such as optically active alcohols, or to synthesize cofactors
such as NAD and NADP. Meanwhile, nitrile-degrading
enzymes are of interest for the transformation of nitriles
and carbon-carbon bond forming enzymes like aldolases,
transketolases and hydroxynitrile lyases are useful in or-
ganic synthesis (Resch et al., 2011 Chen et al., 2009;
Egorova and Antranikian, 2005; Demirjian et al., 2001).
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Extremolytes and their biotechnological applications

Extremolytes are organic compounds that can constitute up
to 25 % of dry cell weight accumulated in microorganisms
exposed to stressful environmental conditions. Examples of
extremolytes include several compounds of polyol deriva-
tives (ectoine, hydroxyectoine, and betaine), carbohydrates
such as trehalose and the mannose derivatives
(mannosylglycerate [firoin] and mannosylglyceramide
[firoin-A]), glucosylglucosylglycerate, glucosylglycerate
(GG), and various amino acids (Borges et al., 2002;
Lentzen and Schwarz, 2006; Singh and Gabani, 2011;
Empadinhas and da Costa, 2011; Esteves et al., 2014, Alarico
et al., 2013; Lamosa et al., 2013; Bougouffa et al., 2014).
Several archaea accumulate negatively charged derivatives
of inositol and glycerol such as phosphodiesters di-myoinosi-
tol-1,1′-phosphate and α-diglycerol phosphate or cyclic 2,3-
diphosphoglycerate and trianionic pyrophosphate (Lentzen
and Schwarz, 2006; Esteves et al., 2014). Several UV
radiation-protective compounds have been isolated from
UV-resistant extremophilic bacteria, for example, scytonemin,
mycosporin- l ike amino-acids (MAAs), ectoines ,
bacterioruberin, and melanin (Singh et al., 2010; Gabani and
Singh 2013; Rastogi and Incharoensakdi, 2014).

Extremolytes have primarily been used in cosmetics and
have the potential for application to the pharmaceutical sector.
The behavior of MAAs in the presence of UV radiation make
them useful in UV-protective sunscreens in the cosmetics in-
dustry, and their potential application as preventative agents of
UV radiation-induced cancers such as melanoma has also been
suggested (de la Coba et al., 2009). In the future, MAA com-
pounds may directly be implicated as therapeutic candidates.
Scytonemin, a component in sunscreens (Soule et al., 2009),
has also been suggested as a potential candidate for the devel-
opment of a novel pharmacophore to produce protein kinase
inhibitors such as antiproliferative and anti-inflammatory drugs
(Singh and Gabani, 2011). The bacterioruberin produced by
radioresistant microbes (Halobacterium and Rubrobacter)
has been suggested to have application in preventing human
skin cancer because it participates in repairing damaged DNA
strands caused by ionizing UV radiation (Singh and Gabani,
2011). Choi et al. (2014) reported that the deinoxanthin isolat-
ed from the radioresistant bacterium D. radiodurans induced
apoptosis of cancer cells, suggesting that this carotenoid could
potentially be useful as a chemopreventive agent.

Extremolytes can also be used to stabilize macromolecules
such as proteins and nucleic acids. Protein instability is a cen-
tral challenge for administering therapeutic protein-based
medicines, particularly in aqueous formulations. Owing to
their ability to stabilize proteins in vivo and in vitro,
extremolytes offer an attractive solution for the stabilization
and storage of sensitive proteins in the absence of other pro-
tein stabilizers (Avanti et al., 2014). Moreover, extremolytes

can inhibit protein misfolding and/or aggregation and, hence,
are interesting candidates for the development of drugs for
several diseases (Ryu et al., 2008; Faria et al., 2013;
Kanapathipillai et al., 2005). For example, ectoine is currently
used in skin care products (Pastor et al., 2010) and firoin and
ectoine have recently been shown to reduce signal-dependent
events resulting from exposure to carbon nanoparticles in vitro
and in vivo, widening the fields of application for these com-
patible solutes. Such events include indeed the activation of
mitogen-activated protein kinases or the upregulation of pro-
inflammatory cytokines, apoptosis, and proliferation in lung
epithelial cells, which could lead to lung cancer, chronic ob-
structive pulmonary disease, and fibrosis (Autengruber et al
2014). Furthermore, extremolytes have the potential for appli-
cation in the food industry for the production of functional
foods, food products that have an added positive health benefit
by enhancing short-term well-being/performance ability or by
the long-term mitigation of certain diseases (Cencic and
Chingwaru, 2010). For example, in some cheeses that have
been treated with Brevibacterium linens for surface ripening
of the product, ectoine has been reported to accumulate (up to
89 mg/100 g of product) (Klein et al, 2007). Investigating
whether ectoine accumulates in other fermented food products
would be worthwhile towards evidencing extremolytes as
functional food ingredients.

Concluding remarks and perspectives

Extremophilic/extremotolerant microbes have the potential to
make a great impact on biotechnology via the compounds
they produce (i.e., extremozymes and extremolytes) that en-
able them to thrive in harsh environments. The economic po-
tential of extremozymes is considerable for their application to
agriculture, food and beverages and feed, pharmaceutical, de-
tergent, textile, leather, pulp and paper, and biomining indus-
tries. Although only a few extremozymes are currently being
produced and used at the industrial level, the development of
new industrial processes based on these enzymes is motivated
by important results obtained in the field of extremophile re-
search, the increasing demand of biotech industries for novel
biocatalysts, and the rapid progress of new omics techniques
such as metagenomics, proteomics, metabolomic gene-
directed evolution, and gene/genome shuffling (Egorova and
Antranikian, 2005; Ferrer et al., 2007). For example,
extremozymes have been identified in metagenomes as over-
coming bottlenecks related to the uncultivability of
extremophiles in some cases (Ferrer et al., 2007; López-
López et al 2014). To date, extremolytes have primarily been
used in pharmaceutical and cosmetic sectors. At the industrial
level, ectoine and its derivatives are produced using the
Bbacterial milking^ process (Pastor et al., 2010), and research
initiatives directed at developing additional strategies to
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improve the productivity of other compatible solutes are un-
derway. For example, genetic engineering and encapsulation
of glucosylglycerate (GG)-producing cyanobacteria in gels
that aim to concentrate and secrete extremolytes into the ex-
tracellular environment have been performed (Tan et al.,
2015). The authors report successful growth of Synechocystis
and improved production and secretion of GG in the encap-
sulating gels after salt stress.

In addition to extremozymes and extremolytes, other me-
tabolites, including exopolysaccharides (Raveendran et al.,
2015), biosurfactants, biopolymers, and peptides, from
extremophilic/extremotolerant microorganisms have great
economic-industrial potential. For example, in agriculture,
biosurfactants could substitute chemical surfactants as adju-
vants in herbicide and pesticide formulations, enhance biore-
mediation of soils, or be applied to the biocontrol of phyto-
pathogens owing to their antimicrobial activity and stimula-
tion of plant defense (Sachdev and Cameotra, 2013). More-
over, biosurfactants could improve arid-zone soil structure and
quality due to hydrophilization of soils, which improves wet-
tability, and finally to reduced water infiltration. Subsequently,
sustainable agriculture could be expanded in arid conditions.
Radiophiles produce compounds with the potential for use as
radioprotective drugs; however, because only a few studies of
these microbes have been performed, their exploitation re-
mains limited. Moreover, challenges associated with the spe-
cific nutritional needs and growing conditions of
extremophiles have made their isolation and maintenance dif-
ficult; isolation of purified extremolytes is among the limiting
factors in developing these compounds for therapeutic
purposes.

In conclusion, extremophilic/extremotolerant microorgan-
isms are sustainable resources that could be better exploited in
several biotechnological sectors towards the development of a
bio-based economy.
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