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Abstract Isolates of Aspergillus species are able to produce a
large number of secondary metabolites. The profiles of bio-
synthetic families of secondary metabolites are species specif-
ic, whereas individual secondary metabolite families can oc-
cur in other species, even those phylogenetically and ecolog-
ically unrelated to Aspergillus. Furthermore, there is a high
degree of chemo-consistency from isolate to isolate in a spe-
cies even though certain metabolite gene clusters are silenced
in some isolates. Genome sequencing projects have shown
that the diversity of secondary metabolites is much larger in
each species than previously thought. The potential of finding
even further new bioactive drug candidates in Aspergillus is
evident, despite the fact that many secondary metabolites have
already been structure elucidated and chemotaxonomic stud-
ies have shown that many new secondary metabolites have yet
to be characterized. The genus Aspergillus is cladistically
holophyletic but phenotypically polythetic and very diverse
and is associated to quite different sexual states. Following
the one fungus one name system, the genus Aspergillus is
restricted to a holophyletic clade that include the morpholog-
ically different genera Aspergillus, Dichotomomyces,
Phialosimplex, Polypaecilum and Cristaspora. Secondary
metabolites common between the subgenera and sections of
Aspergillus are surprisingly few, but many metabolites are
common to a majority of species within the sections. We call
small molecule extrolites in the same biosynthetic family
isoextrolites. However, it appears that secondary metabolites

from one Aspergillus section have analogous metabolites in
other sections (here also called heteroisoextrolites). In this
review, we give a genus-wide overview of secondary metab-
olite production in Aspergillus species. Extrolites appear to
have evolved because of ecological challenges rather than
being inherited from ancestral species, at least when compar-
ing the species in the different sections of Aspergillus. Within
the Aspergillus sections, secondary metabolite pathways seem
to inherit from ancestral species, but the profiles of these sec-
ondary metabolites are shaped by the biotic and abiotic envi-
ronment. We hypothesize that many new and unique section-
specific small molecule extrolites in each of the Aspergillus
will be discovered.

Keywords Extrolites . Heteroisoextrolites . Secondary
metabolites . Aspergillus . Chemodiversity

Introduction

The genus Aspergillus is rich in species and these species are
able to produce a large number of extrolites, including sec-
ondary metabolites, bioactive peptides/proteins, lectins, en-
zymes, hydrophobins and aegerolysins. Extrolites are
outward-directed chemical compounds from organisms that
are secreted or anchored on the cell wall or in the membrane
and accumulated. The word comes from extro (outwards di-
rected and -ite: a chemical compound. The term is ecological
rather than a metabolism term. The Aspergilli are also capable
of biotransforming extrolites from other species. A
xenoextrolite is an extrolite from another species than that in
question. Because of the production of such diverse extrolites,
many different Aspergillus species have been used in biotech-
nology, both for bulk and fine chemical production (Meyer
et al. 2010), and also for exoenzyme production, and certain
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species stand out as working horses of biotechnology, espe-
cially Aspergillus niger, Aspergillus oryzae and Aspergillus
terreus. Aspergillus species have also been used as heterolo-
gous producers of proteins and exometabolites and for biore-
mediation. Species of Aspergillus can also have negative ef-
fects and be pathogenic (Buzina 2013; Sugui et al. 2014a, b),
give health problems in buildings (Miller andMcMullin 2014)
and deteriorate other materials.

Aspergillus species produces a wide array of small mol-
ecule extrolites (secondary metabolites or specialized me-
tabolites, all abbreviated SM here), but also other bioactive
molecules such as large peptide ribotoxins and lectins. The
ribotoxins appear to be restricted to Aspergillus subgenus
Fumigati sections Fumigati and Clavati (Ng and Wang
2006; Varga and Samson 2008; Abad et al. 2010), but
bioactive peptides have also been reported from subgenus
Aspergillus, for example eurocin production by Aspergillus
montevidensis (Oeemig et al. 2012). Lectins have been
found in phylogenetically distant subgenera of Aspergillus
such as Circumdati, Nidulantes, Fumigati and Aspergillus
(Singh et al. 2014a, b). Most known extrolites are small
molecules, however, and these molecules will be empha-
sized here.

Specialized metabolites, as the name indicates, have
evolved because of ecological challenges. Species with no
competitors, such as the extromephile Xeromyces bisporus,
do not produce any specialized metabolites and there are no
gene clusters coding for such metabolites in the genome
(Leong et al. 2015). Since Aspergillus species are usually very
efficient specialized metabolite producers, we will also exam-
ine whether species in the different sections produce extrolites
that have evolved with their species based on ecology or
phylogeneny or both (Gibbons and Rokas 2013; Wisecaver
and Rokas 2015).

Taxonomy and phylogeny of Aspergillus

The classification of Aspergillus has traditionally been based
on morphology and colony colours including conidium col-
our, as was done in the latest full revision and identification-
manual of Aspergillus by Raper and Fennell (1965) (Samson
et al. 2006). A partial revision of some Aspergillus species by
Kozakiewicz (1989) was heavily based on micromorphology,
including conidium and ascospore characterization by scan-
ning electron microscopy. Taxonomic characters based on
ecophysiology, nutrition, secondary metabolites and extracel-
lular enzymes were for many years used occasionally, but
rarely incorporated into broad taxonomic schemes. However,
all these ecologically relevant taxonomic features were prom-
ising, often giving clear-cut differences between closely relat-
ed species. For example, the first use of secondary metabolites
in Aspergillus taxonomy (Frisvad 1985; Frisvad and Samson

1990; Samson et al. 1990) was promising, as was the use of
isoenzyme profiling (Cruickshank and Pitt 1990) and the use
of simple ecophysiological and nutritional characters (Klich
2002; Pitt and Hocking 2009; Samson et al. 2010). It is now
well established that profiles of small molecule extrolites are
species-specific (Larsen et al. 2005; Frisvad 2015). In addi-
tion, large molecule extrolites appear also to be species spe-
cific (Varga and Samson 2008).

Cladistic analysis of the sequences of rDNA was used by
Peterson (2000) to give an overview of potential phylogenetic
relationships between species in Aspergillus and this has later
been followed by a series of papers on sequence-based
cladification of Aspergillus species, using nucleotide se-
quences of ITS1 and 2 from rDNA, β-tubulin, calmodulin
and other genes (Geiser et al. 2007). Since analyses based
on classification of functional characters were generally in
agreement with sequence-based cladifications, a polyphasic
approach using all these characters has been proposed for
taxonomy, phylogeny, species descriptions and identifications
(Frisvad et al. 2007a, b; Geiser et al. 2007; Samson et al.
2014).

Aspergillus species have widely different sexual states
(Table 1), and it has been shown that Aspergillus fumigatus
and allied species are nearly as molecularly divergent from A.
niger and Aspergillus flavus as humans are from fish, based on
average protein sequence identity (Fedorova et al. 2008). This
is indeed reflected in the large differences between their sexual
states: The small hard lightly-coloured sclerotioid ascomata of
Aspergillus fischeri (Samson et al. 2007a, b) are very different
from the black sclerotial stromatoid ascomata, in which many
cleistothecial locules (2–8) are developing, in Aspergillus
alliaceus (Raper and Fennell 1965), A. flavus (Horn et al.
2009a), Aspergillus parasiticus (Horn et al. 2009c) or
Aspergillus nomius (Horn et al. 2009b). Furthermore,
Aspergillus sensu lato as circumscribed by Raper and
Fennell (1965) is paraphyletic, with a genus such as
Polypaecilum (dichotomomyces-morph) placed between
Aspergillus section Fumigati (neosartorya-morph) and
Aspergillus section Clavati (neocarpenteles-morph) (Varga
et al. 2007a, b, c; Houbraken and Samson 2011). With the
accepted new nomenclatural system for fungi (one fungus
one name) (Hawksworth 2011; Hawksworth et al. 2011), there
have been discussions whether we should use the genus des-
ignation Aspergillus for all species in the monophyletic clade
comprising Aspergillus sensu Raper and Fennell (1965), but
including further species with different morphologies as dic-
tated by DNA sequences (Samson et al. 2014) or to use the
established names Eurotium, Neosartorya, Emericella etc. for
distinct Aspergillus sections, as recommended by Pitt and
Taylor (2014). If the latter solution to the nomenclatural prob-
lem in Aspergillus sensu Raper and Fennell (1965) was to be
adopted, Aspergillus will have to be neo-typified, by for ex-
ample A. niger (Pitt and Taylor 2014), because Aspergillus at
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present is typified by Aspergillus glaucus and keeping the
name Eurotium will require such a neo-typification. In this
review, we have decided to follow the decision of Samson
et al. (2014) to include species of Aspergillus in the monophy-
letic clade including A. glaucus (Hubka et al. 2013) and nearly
all species accepted by Raper and Fennell (1965). This has had
the consequences that Penicillium inflatum had to be trans-
ferred to Aspergillus as Aspergillus inflatus, Aspergillus
paradoxus, Aspergillus malodoratus and Aspergillus
crystallinus had to be transferred to Penicillium as
Penicillium paradoxum, Penicillium malodoratum and
Penicillium crystallinum, Aspergillus zonatus and Aspergillus
clavatoflavus had to be excluded from Aspergillus and finally
that the species in the generaDichotomomyces, Phialosimplex,
Polypaecilum and Cristaspora had to be transferred to
Aspergillus (Houbraken and Samson 2011; Houbraken et al.
2012; Samson et al. 2014). In this system, 354 species of
Aspergillus have been accepted (Samson et al. 2014). As an
example of proper naming of the well-known species in the
former two-names for a species system A. fumigatus/
Neosartorya fumigata and Aspergillus fischerianus/
Neosartorya fischeri should now be named A. fumigatus and
A. fischeri. If the sexual state has been observed for an isolate,
the name can be more informative in calling them A. fumigatus
(neosartorya-morph) and A. fischeri (neosartorya-morph). In
two species in Aspergillus, Aspergillus monodii and
Aspergillus arxii, only the sexual state has been found, making
it difficult to recognize these species asAspergillus, and in such
cases sequencing of several house-hold genes is necessary for
correct cladification, classification and identification (Samson
et al. 2014). Several Aspergillus species have been genome
sequenced (Andersen et al. 2011; Baker 2006; Pel et al.
2007; Gibbons and Rokas 2013), and many clusters coding
for new Aspergillus secondary metabolites have been discov-
ered (Chiang et al. 2010; Brakhage 2013).

Being so different, the sections of Aspergillus could be
hypothesized to produce widely different small molecule
extrolites. Below, we will investigate whether this is the case.

Chemodiversity of Aspergillus

Chemotaxonomy based on secondary metabolites has been
very valuable in Aspergillus taxonomy, and secondary metab-
olites are often included in species descriptions (Larsen et al.
2005; Frisvad et al. 2007a, b; 2008; references in Table 1).
Independent analysis of Aspergillus species identified either
using morphology plus physiology or using DNA sequences
shows that the profile of secondary metabolites is species spe-
cific, while individual secondary metabolites may occur in
closely related species, in less closely related species within
a genus and even in completely unrelated species. Papers by
Patron et al. (2007), Khaldi et al. (2008), Schmitt and Lumsch
(2009), Ma et al. (2010), Slot and Rokas (2010), Khaldi and
Wolfe (2011), Campbell et al. (2012), Wisecaver et al. (2014)
andWisecaver and Rokas (2015) indicate that at least in some
cases horizontal gene cluster transfer is a possibility. Within a
particular section of Aspergillus, often a large number of spe-
cies share the ability to produce a given secondary metabolite.
In Aspergillus section Flavi 14 out of 24 species can produce
sterigmatocystins and 13/24 can produce aflatoxins (Fig. 1).
In the same section all species except A. avenaceus can pro-
duce kojic acid (Varga et al. 2009; 2011b).Within a section the
ability to produce a particular secondary metabolite seems to
be laterally transferred (inherited from a common ancestor).
Most secondary metabolites from Aspergillus are produced by
species in only one or few sections. Some well know bioactive
secondary metabolites, such as penicillin, viridivatin,
mevinolin, pseurotin A and cyclopiazonic acid are present in
phylogenetically different sections of Aspergillus (Fig. 1).
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Fig. 1 Well-known secondary metabolites produced by Aspergillus species in different sections of the genus
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Chemical uniqueness and differences
between subgenera and sections of Aspergillus

There are six major subgenera in Aspergillus: Circumdati,
Nidulantes, Fumigati, Polypaecilum/Phialosimplex (not offi-
cially named yet), Cremei (only named as a section at present)
and Aspergillus. As mentioned by Fedorova et al. (2008),
these are distantly related, but with the necessary transfers of
misplaced Aspergilli and Penicillia (Samson et al. (2014);
Visagie et al. 2014c), they form a monophyletic clade
(Houbraken and Samson 2011; Houbraken et al. 2012;
Samson et al. 2014). The last three subgenera have the com-
mon feature in that they grow well at very low water activities
and often tolerate high concentrations of sodium chloride
(most pronounced in subgenus Aspergillus section
Aspergillus and Restricti, most of the species formerly in the
genus Eurotium) (Pitt and Hocking 2009). Halotolerance or
xerotolerance is also reflected in the halotolerant
Polypaecilum pisci being transferred to Aspergillus pisci,
and Basipetospora halophile = Oospora halophile =
Scopulariopsis halophilica = Phialosimplex halophila (Pitt
and Hocking 1985; Greiner et al. 2014) being transferred to
Aspergillus baarnensis and Phialosimplex salinarum obvi-
ously also to be transferred to Aspergillus (Samson et al.
2014). Subgenus Circumdati and and its sister subgenus
Nidulantes are closely related, for example hülle cells, afla-
t o x i n s , k o j i c a c i d , i n d o l e d i t e r p e n e s , a n d
bicyclo[2.2.2]diazaoctanes are found in both subgenera
(Raper and Fennell 1965; Yaguchi et al. 1994; Varga et al.
2009; Finefield et al. 2012; Cai et al. 2013). Some known
secondary metabolites, present in cladistically different sec-
tions of Aspergillus, are shown in Fig. 1.

Unique extrolites in subgenus Circumdati

The subgenus Circumdati contains most biotechnologically
important Aspergilli , such as A. niger, A. oryzae ,
Aspergillus. tamarii and A. terreus. Apart from species in
subgenus Fumigati, subgenus Circumdati also contains the
most important pathogenic species and mycotoxin producers.
Within subgenusCircumdati, the sections have quite few SMs
in common, but they do have many analogous SMs in com-
mon. Section Nigri species can produce the unique com-
pounds: calbistrins, fumonisins, malformins, naphtho-γ-
pyrones, nigerloxins, nigragillins, okaramins, pyranonigrins,
tensidols, and yanuthones (Nielsen et al. 2009 (Fig. 2)).
Section Flavi species can produce the unique compounds
asperfurans, asperlicins, cyclopiamins and griseofulvins
(Varga et al. 2011a, b); section Circumdati species can pro-
duce the unique compounds aspochraceins/sclerotiotides,
aspyrones, chlorocarolides, destruxins, melleins, ochrindols,
penicillic acid, petromindols, preussins, sulpinins and

xanthomegnins (Visagie et al. 2014a); section Candidi species
can produce chloroflavonins and xanthoascins; and section
Terrei and Flavipedes species can produce the unique com-
pounds aspochalasins, asterriquinols, butyrolactones,
citreoviridin, citrinins, geodins, mevinolins and terreic acids
(Samson et al. 2011a) (Fig. 2). Species in these sections pro-
duce many more SMs, but some of these will be mentioned as
similar or analogous SMs in different sections. An overview
of SMs that are unique in the subgenus Circumdati sections
Nigri, Flavi, Circumdati, Terrei and Flavipedes are presented
in Fig. 2. A large number of these extrolites are very bioactive.

Unique extrolites in subgenus Nidulantes

Among the unique SMs in subgenus Nidulantes are
aspernidins, asperugins, asteltoxins, austins, austocystins,
c o r dy c ep i n s , e c h i no c and i n s /mu l undoc a nd i n s ,
emecorrugatins, ethericins, falconensins, falconensons,
emericellins, ophiobolins, shamixanthones, stromemycin,
sydowinins and ustic acids (Fig. 3.) (Turner 1971; Turner
and Aldridge 1983; Cole and Scheweikert 2003, Cole et al.
2003). However, many other SMs are shared with species in
other Aspergillus subgenera and sections.

Unique extrolites in subgenus Fumigati

There are several unique SMs in subgenus Fumigati (Fig. 4)
In section Fumigati, some important ones are fiscalins,
fischerins, fumagillins, fumigaclavins, fumigatonins,
fumiquinazolins, glabramycins, helvolic acids, pyripyropens,
ruakuric acids, tryptoquivalins, viridicatumtoxins and
viriditoxins and in section Clavati expansolides, cytochalasin
E and patulin (Frisvad 1985; Varga et al. 2007a, b, c, Samson
et al. 2007a, b; Hong et al. 2008; Frisvad et al. 2009).

Unique extrolites in subgenus Aspergillus, section
Cremei and subgenus ‘Polypaecilum/Phialosimplex’

In section Aspergillus and Restricti, unique SMs include
asperglaucide, asperentins, auroglaucins, echinulins,
epiheveadride, flavoglaucins and neoechinulins (Fig. 5)
(Slack et al. 2009; Turner 1971; Turner and Aldridge 1983;
Cole and Scheweikert 2003, Cole et al. 2003), while section
Cremei species can produce asperolides, anthraquinone-
derived bianthrons, leuconic acid, citraconic anhydrides and
wentilactones uniquely (Fig. 5) (Verchère et al. 1969; Turner
1971; Assante et al. 1979; Dorner et al. 1980; Selva et al.
1980; Turner and Aldridge 1983; Cole and Scheweikert
2003, Cole et al. 2003; Sun et al. 2012). Asperglaucide from
Aspergillus restrictus and Aspergillus penicillioides (Itabashi
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et al. 2006) has a clear resemblance to asperphenamate found
in Aspergillus flavipes in subgenus Circumdati section
Flavipedes (Clark et al. 1977).

The same secondary metabolite produced
in phylogenetically different subgenera and sections
of Aspergillus

Despite the chemical differences between sections, there are
several examples of the same SM being produced by species
in different sections in Aspergillus, even phylogenetically
more distantly related Aspergilli. This can be explained by
lateral or horizontal SM gene cluster transfer or by reinvention
of a gene cluster coding for the same secondary metabolite
biosynthetic family. The results obtained so far indicate that
lateral gene transfer is common within a series or section of a

genus, while horizontal gene transfer (HGT) is more likely in
phylogenetically more distant species in a genus or even very
distantly related genera across the whole fungal kingdom
(Rank et al. 2011; Campbell et al. 2012; Wisecaver and
Rokas 2015). HGT of either a gene cluster or a whole mini-
chromosome can then be a result of species occurring in the
same habitat with a large degree of competition/collaboration
and the same ecological challenge (Ma et al. 2010).

The polyketide sterigmatocystin (Fig. 1) has been found in
widely different genera, including Aschersonia, Aspergillus,
Bipolaris, Botryotrichum, Chaetomium , Humicola ,
Moelleriella, Monicillium and Podospora but also in widely
different sections of Aspergillus including sections Flavi,
Ochraceorosei, Aenei, Nidulantes, Versicolores and Cremei.
Sterigmatocystin is most common in the two sister subgenera
Circumdati and Nidulantes (Rank et al. 2011), while only A.
inflatus in section Cremei produce it, and those Aspergillus
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sections are distantly related (Houbraken and Samson 2011).
These genera span the Pezizomycotina, i.e. nearly all known
f i l amen tous ascomyce t e s . One fu r t he r spec i e s
Staphylotrichum boninense producer sterigmatocystin precur-
sors, 5′-oxyaverantin, averantin and versicolorin B that are
galactofuranosylated (Tatsuda et al. 2015), indicating that
even sterigmatocystins and aflatoxins may be present as gly-
cosides in foods (masked mycotoxins). Since it appears im-
probable that a common ancestor of all ascomycetes could
produce sterigmatocystin or its precursors, the ability to pro-
duce this secondary metabolite must have evolved indepen-
dently a large number of times, or the gene cluster or a chro-
mosome carrying, it must have been horizontally transferred
as suggested by Slot and Rokas (2011) for Aspergillus and
Podospora . Secondary metaboli tes derived from
sterigmatocystin, aflatoxins, are present in only two genera:
Aspergil lus (Varga et al . 2009) and Aschersonia
(Kornsakulkarn et al. 2012, 2013). Within Aspergillus, there
are some interesting differences between sections:
Aflatoxins G1 and G2 has only been found in section
Flavi, while species in other sections never produce afla-
toxins G1 and G2, but accumulate both sterigmatocystin
and aflatoxin B1 (Frisvad et al. 2005). Concomitant accu-
mulation of aflatoxin B1 and sterigmatocystins is also seen
in Aschersonia coffeae and Aschersonia marginata

(Kornsakulkarn et al. 2012, 2013). Production of
sterigmatocystin is restricted to the subgebera Circumdati sec-
tion Flavi and Nidulantes sections Aenei, Ochraceorosei,
Versicolores and Nidulantes, but has also been detected in the
more distantly related A. inflatus in section Cremei (Rank et al.
2011; Samson et al. 2014). Interestingly sterigmatocystin and
aflatoxins have never been found in Penicillium.

The bioactive bicyclo[2.2.2]diazaoctanes, such as
aspergamides, stephacidins, aspergillimides and notoamides
are produced by several species in closely related sections
Circumdati, Nigri and Candidi (Finefield et al. 2012; Cai
et al. 2013), but also by species in subgenus Nidulantes section
Versicolores (Finefield et al. 2012; Kato et al. 2015). Some
Aspergillus species produce both enantiomers of these
bicyclo[2.2.2]diazaoctanes, and in some cases, the final biosyn-
thetic product is only of one configuration (Kato et al. 2015).

The aspergillic acids are also produced by species in several
sections in subgenus Circumdati, but has not been found out-
side this subgenus yet. Many species in section Flavi produce
aspergillic acids (White and Hill 1943; Varga et al. 2011a, b),
species in section Circumdati can produce neoaspergillic acids
(Maebayashi et al. 1978) and A. flavipes (section Flavipedes)
produces flavipucin (Findlay and Radics 1972).

The nephrotoxin ochratoxin A is produced by species in
the closely related sections Circumdati, Flavi and Nigri in
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subgenusCircumdati only (Frisvad et al. 2004a, Samson et al.
2004; Varga et al. 2011a, b; Visagie et al. 2014a). This myco-
toxin has also been found in Penicillium verrucosum and
Penicillium nordium, however (Frisvad et al. 2004b), but not
in species in any other fungal genus.

In several cases, certain SMs are produced by quite unre-
lated species of Aspergillus, for example pseurotin A (Fig. 1)
has been found in A. fumigatus (Wenke et al. 1993) in section
Fumigati, while the distanly related A. nomius in section Flavi
also produce it (Varga et al. 2011a, b). Similarly, several
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species in section Flavi produce cyclopiazonic acid (Varga
et al. 2011a, b), while Aspergillus lentulus and Aspergillus
fumisynnematus in section Fumigati also produce this myco-
toxin (Larsen et al. 2007).

Viridicatin (Fig. 1) and related compounds are produced by
species in cladistically different sections of Aspergillus. It is
produced by Aspergillus sclerotiorum in section Circumdati
(Visagie et al. a, b, c), Aspergillus jensenii in section
Versicolores (reported as Aspergillus nidulans by Ishikawa
et al. 2014) and by A. fumigatus in section Fumigati
(Frisvad and Dyer, unpublished).

Penicillins (Fig. 1) are also produce by phylogenetically
different species in different sections: A. nidulans and other
Aspergilli produce penicillins (Dulaney 1947a, b), while
A. parasiticus and A. flavus in section Flavi and Aspergillus
clavatus in section Clavati also produces penicillins (Arnstein
and Cook 1947).

Analogous secondary metabolites are produced
in different sections of Aspergillus
(heteroisoextrolites)

The many secondary metabolites produced from one biosyn-
thetic origin, a biosynthetic family of compounds, could be
called small molecule isoextrolites. However, there are func-
tionally and biosynthetically quite similar SMs that may be
analogous. We call these metabolites for small molecule
heteroisoextrolites. Given the large phylogenetic distance be-
tween the main subgenera of Aspergillus (Fedorova et al.
2008), it is to be expected that the species in those subgenera
produce different versions of the functionally the same kind of
secondary metabolite. An example is 6-methylsalicylic acid-
derived antibiotically active secondary metabolites of similar,
but not identical structures (Fig. 6). Species in section Flavi
produce parasitenone (Son et al. 2002), in section Nigri some

species produce the terpene-decorated yanuthones (Bugni et al.
2014; Holm et al. 2014), in section Terrei some species produce
terreic acid (Guo and Wang 2014; Guo et al. 2014), in section
Fumigati some species produce fumigatin oxide (Yamamoto
et al. 1965), in section Clavati most species produce (+)-
epoxydon and the end-product patulin is also produced (Varga
et al. 2007c), while another species in the section, Aspergillus
acanthosporus, produces (+)-isoepoxydon (Kontani et al. 1990).
These epoxyquinones and epoxyquinols thus seem to be span-
ning the whole genus, except that species in sections Aspergillus
andRestricti have not been reported to produce these compounds.

Small organic acids (Fig. 7) should be classified as second-
ary metabolites when they are secreted and accumulated
(Frisvad 2015). The gene cluster for itaconic acid has been
characterized (Van den Straat et al. 2014), and in Aspergillus,
this acid has been found in Aspergillus itaconicus (Kinoshita
1931) and Aspergillus gorakhpurensis (Busi et al. 2009) in
section Cremei and in A. terreus in section Terrei (Van den
Straat et al. 2014). It appears that most sections of Aspergillus
have a unique profile of organic acid production. In
Aspergillus section Flavi, most species produce kojic acid
(Varga et al. 2011b), which is glucose derived (Terebayashi
et al. 2010) and malic acid as the main acids (Peleg et al. 1988;
Knuf et al. 2014). In the phylogenetically closely related
Aspergillus section Nigri, A. niger, Aspergillus carbonarius
and Aspergillus tubingensis predominantly produce citric ac-
id, oxalic acid and gluconic acid, depending on pH (Goldberg
et al. 2006). A. niger was originally reported to produce citric
acid consistently (Moyer 1953a, b), but some of the acid-
producing strains were later re-identified to A. carbonarius
and A. tubingensis (Frisvad et al. 2011). Furthermore a citric
acid producing Aspergillus wentii (Moyer 1953a, b), was later
shown to be A. niger (Frisvad et al. 2011). Deletion of the
glucose oxidase gene in A. carbonarius resulted in the pro-
duction of citric acid, oxalic acid and malic acid (Yang et al.
2014), but apparentlymalic acid is not naturally overproduced
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in A. carbonarius. Although seemingly a major small acid pro-
duced by A. niger, citric acid has also been reported from
Aspergillus lanosus in section Flavi, Aspergillus ochraceus
and Aspergillus melleus in section Circumdati and in
A. gorakhpurensis in section Cremei (Srivastava and Kamal
1980). However, citric acid production is much stronger and
more consistent inA. niger. In sectionCircumdati, the dominant
small acid seems to be malic acid (Srivastava and Kamal 1980;
West 2011), but most species in that section produce the small
polyketide acid penicillic acid (Frisvad et al. 2004a, b; Visagie
et al. 2014a, b, c), not produced by species in any other
Aspergillus section. The main acid produced by A. fumigatus
appear to be epoxysuccinic acid (Martin and Foster 1955), but
in general species in the unrelated sections Nigri, Terrei and
Cremei are the most efficient producers of small organic acids.

A systematic study of all species in section Nigri has not
been performed yet, but preliminary studies indicate that while
the biseriate species in section Nigri produce large amounts of
citric acid/oxalic acid/gluconic acid, the uniseriate species are
much less productive.

Fumonisins were discovered in A. niger in 2007 (Frisvad
et al. 2007b, 2011) and in a recent paper a motif-independent
method for prediction of secondary metabolite gene clusters,
A. fumigatus was predicted to produce fumonisins (top hit)
based on the gene cluster in Fusarium graminearum
(Takeda et al. 2014). However, fumonisins have never been
detected in A. fumigatus. Interestingly, A. fumigatus and
A. lentulus produce sphingofungins and fumifungin (Larsen
et al. 2007), structurally related to fumonisins (Fig. 8), so this
is probably reflecting some sequence similarities in the two

gene clusters. Sphingofungins and fumonisins may also be
heteroisoextrolites.

Some unique chlorinated PKS-NRPS-derived molecules
have been detected in sections Flavi, Circumdati, Nigri and
Candidi. While ochratoxin A, a phenylalanine PKS hybrid, is
present in species in Circumdati, Flavi and Nigri (Frisvad
et al. 2011; Varga et al. 2011a, b; Visagie et al. 2014a, b, c);
it has never been found in section Candidi. Interestingly the
only flavonoid-type SM known in fungi, chlorflavonin, is
produced by Aspergillus candidus and is also derived from a
phenylalanine and a PKS hybrid that is chlorinated (Fig. 9)
(Burns et al. 1979). This indicates that different section-
specific analogous secondary metabolites may be produced
in Aspergillus. A comparison of the gene clusters coding for
production ochratoxins and chlorflavonins may throw light
upon this interesting observation.

Another group of antioxidative secondary metabolites
abundant in species in section Candidi is terphenyllins and
candidusins (Rahbaek et al. 2000; Yen et al. 2001), probably
being overproduced to protect the white/yellow conidia of
these fungi rather than via melanin, as opposed to species in
section Nigri that produce very large amounts of melanins.
However, the terphenyllins and candidusins have analogous
SM molecules in section Nigri: cycloleucomelon and
atromentin (Hiort et al. 2004) and aspulvinones in section
Terrei (Gao et al. 2013). All these biosynthetic families are
produced via the shikimic acid pathway (Turner 1971).
Analogous alkaloidic shikimic acid derived SMs to the com-
pounds in other sections of Aspergillus are emerin and
epurpurins in section Nidulantes (Ishida et al. 1975;
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Takahashi et al. 1996), xanthoascin in section Candidi
(Takahashi et al. 1976) and fumiformamide in Fumigati
(Zuck et al. 2011) (Fig. 10). Thus, it seems that shikimic acid
derived functionally quite similar SMs are produced by spe-
cies in the different sections of Aspergillus.

Gliotoxin is an important secondary metabolite produced
by A. fumigatus and related species in section Fumigati. Even
though this epidithiodioxopiperazine has been reported in
trace amounts from other potentially pathogenic Aspergilli,
including A. niger, A. flavus and A. terreus (Lewis et al.
2005; Kupfahl et al. 2008). The results obtained by latter
two groups suffered from unavailability of strains, so the re-
sults could not be verified, and there is some doubt whether
this was just transient or non-production. Gliotoxin seems to
be only produced in high amounts by species in section
Fumigati in Aspergillus. However, the other species produce
biosynthetically closely related epidithiodioxopiperazines:
A. flavus, A. oryzae and A. tamarii can produce aspirochlorine
= oryzachlorin (Berg et al. 1976; Sakata et al. 1982; 1983;

Monti et al. 1999; Chankhamjon et al. 2014), A. terreus can
produce acetylaranotin (Miller et al. 1968; Cosulich et al. 1968;
Guo et al. 2013) and A. striatus and six other species in section
Nidulantes can produce emestrin (Seya et al. 1985; Terao et al.
1990; Kawahara et al. 1994; Ooike et al. 1997) (Fig. 11).
Interestingly, both aspirochlorine and acetylaranotin is
biosynthesized via a phenylalanyl phenylalanine
diketopiperazine, while gliotoxin is biosynthesized via
phenylalanyl serine diketopiperazine (Amatov and Jahn 2014).

Emodin has been found in many Aspergillus species across
the whole genus, but is also common in Penicillium,
Talaromyces and even in plants (Turner 1971; Turner and
Aldridge 1983; Izhaki 2002; Yilmaz et al. 2014). It has mul-
tiple effects on other organisms; has an antibacterial, antifun-
gal, antiparasitic and antiviral effects; is a feeding deterent on
insects, birds and small mammals; and is also an antioxidant
(Izhaki 2002). Regarding Aspergillus, it was early reported as
a mycotoxin from A. wentii (section Cremei) (Wells et al.
1975), but usually emodin, biosynthesized via atrochrysone,
is converted into more chemically elaborate end-products, de-
pending on the Aspergillus section (Fig. 12). In subgenus
Aspergillus, emodin is turned into anthrons (Turner 1971)
and in section Cremei, several Aspergillus species turns emo-
din into emodin bianthrones and isosulochrin (Assante et al.
1980; Hamazaki and Kimura 1983; Rabie et al. 1986; Ji et al.
2014). In section Nigri and Circumdati, emodin is converted
to secalonic acids (Yamazaki et al. 1971; Andersen et al. 1977;
Turner and Aldridge 1983, Varga et al. 2011a). In A.
fumigatus, emodin is converted to either trypacidin/3-O-
methylsulochrin or into chloroanthraquinones (Yamamoto
et al. 1968). In A. terreus, emodin is converted in to geodin
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(Nielsen et al. 2013). In subgenus Nidulantes, emodin is con-
verted to emericellin and shamixanthones (Nielsen et al. 2011;
Sanchez et al. 2011; Simpson 2012) and may also be involved
in biosynthesis and the specific allocation of asperthecin in the
ascomata (Brown and Salvo 1994; Szewczyk et al. 2008).

Dimeric diketopiperazines are also produced by fungi in
different sections of Aspergillus: asperazine and similar com-
pounds were isolated from A. tubingensis, Aspergillus vadensis
and Aspergillus luchuensis in section Nigri (Varoglou et al.
1997; Varga et al. 2011a; Li et al. 2015) ditryptophenaline by
A. flavus in section Flavi (Springer et al. 1977), aspergilazine A
is produced by Aspergillus taichungensis in section Candidi
(Cai et al. 2012), WIN 64821, probably from A. flavipes in
section Flavipedes (Barrow et al. 1993), and eurocristatine is
produced by by Aspergillus cristatus in section Aspergillus
(Gomes et al. 2012).

The indoloterpenes are often produced in sclerotia only and
occur in section Flavi, Nigri, Circumdati, Candidi and

Nidulantes: Aflavinins are produced in sclerotia of section
Flavi (Gallagher et al. 1980; Cole et al. 1981), 10,23-
dihydro-24,25-dehydroaflavinins are produced in sclerotia by
species in section Nigri (Tepaske et al. 1989, Frisvad et al.
2014), radarins and secopenitrems are produced in the sclerotia
of species in Circumdati (Laakso et al. 1992) and emindole SB
and similar compounds are produced in ascomata by species in
section Nidulantes (Nozawa et al. 1988) and in Aspergillus
cejpii in subgenus Fumigati (Harms et al. 2014), in addition
to fischerindoline in Aspergillus thermomutatus in section
Fumigati (Masi et al. 2013).

The bicoumarins, kotanins, aflavarins, isokotanins and
desertorins are similar polyketides produced in the sclerotia
of species in several sections of Aspergillus. Species in section
Flavi, A. alliaceus and A. flavus produce isokotanins and
aflavarins (TePaske et al. 1992; Laakso et al. 1994), A.
clavatus in section Clavati and A. niger in section Nigri pro-
duce kotanins (Cutler et al. 1979; Varga et al. 2007c; Nielsen
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et al. 2009) and Aspergillus desertorum in section Nidulantes
produces desertorins (Nozawa et al. 1987). However, the
kotanins are produced in isolates of A. niger without sclerotia
being produced (Frisvad et al. 2014), so there is no strict
correlation between ascoma or sclerotium in different
Aspergillus sections and these bicoumarins.

Other analogous specialized metabolites including
siderophores (Yin et al. 2013) have been found in several
sections of Aspergillus, but the examples above show that
these heteroisoextrolites are shared by sections covering the
whole genus Aspergillus.

Conclusions

The genus Aspergillus contains a large number of species that
are capable of producing a large number of specialized metab-
olites. Some of thesemetabolites are produced onmost common
substrates, while others need special chemical signals
(xenoextrolites) in order to be produced. In the different sections
of Aspergillus, the species produce many specialized metabo-
lites in species-specific profiles. These profiles contain unique
SMs, SMs shared with related and distantly related Aspergilli
and analogous SMs (heteroisoextrolites) which are biosyntheti-
cally related and often functionally similar extrolites. The many
shared similar and analogous secondary metabolites across the
genus Aspergillus indicates that this genus is broad, yet has
similarities indicating it should not be split into several smaller
genera. The unique metabolites in many of these sections of
Aspergillus are only unique within the genus Aspergillus, as
several of those occur in Penicillium species also. However,
we hypothesize that many more unique secondary metabolites
will be discovered in each of the Aspergillus sections, based on
genome sequencing evidence. The ability to accumulate and
secrete small molecule extrolites, therefore, is a reaction to chal-
lenges in the environments and competition and collaboration in
species consortia, rather than being determined only by phylog-
eny. The secondarymetabolites have probably evolved based on
gene duplications, horizontal gene transfer and new gene cluster
formations as a reaction to the environment.
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