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Abstract Vinegar is one of the oldest acetic acid-diluted so-
lution products in the world. It is produced from any ferment-
able sugary substrate by various fermentation methods. The
final vinegar products possess unique functions, which are
endowed with many kinds of compounds formed in the fer-
mentation process. The quality of vinegar is determined by
many factors, especially by the raw materials and microbial
diversity involved in vinegar fermentation. Given that meta-
bolic products from the fermenting strains are directly related
to the quality of the final products of vinegar, the microbial
diversity and features of the dominant strains involved in dif-
ferent fermentation stages should be analyzed to improve the
strains and stabilize fermentation. Moreover, although numer-
ous microbiological studies have been conducted to examine
the process of vinegar fermentation, knowledge about micro-
bial diversity and their roles involved in fermentation is still
fragmentary and not systematic enough. Therefore, in this
review, the dominant microorganism species involved in the
stages of alcoholic fermentation and acetic acid fermentation
of dissimilar vinegars were summarized. We also summarized
various physicochemical properties and crucial compounds in
disparate types of vinegar. Furthermore, the merits and draw-
backs of vital fermentation methods were generalized. Finally,
we described in detail the relationships among microbial di-
versity, raw materials, fermentation methods, physicochemi-
cal properties, compounds, functionality, and final quality of
vinegar. The integration of this information can provide us a
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detailed map about the microbial diversity and function in-
volved in vinegar fermentation.
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Introduction

Vinegar is one of the most widespread and common acetic
acid-diluted solution products in the world (Solieri and
Giudici 2009). It is available in every country in distinct vari-
eties (Ubeda et al. 2011a, 2012), and it has been produced
since ancient times from a double fermentation of any fer-
mentable sugary substrate (Solieri and Giudici 2008). Vine-
gars are produced from many kinds of raw materials (e.g.,
cider, wine, and sorghum) by a variety of different fermenta-
tion methods, and their organoleptic and chemical properties
are determined by many factors (Natera et al. 2003). Accord-
ing to the type of raw materials, researchers have classified
vinegars into three categories: vegetable vinegars (rice vine-
gar, onion vinegar, and tomato vinegar), fruit vinegars (cider
vinegar, mango vinegar, and pineapple vinegar), and animal
vinegars (honey vinegar and whey vinegar) (Solieri and
Giudici 2009). Vinegar plays an important role in the quality
of people’s life and culture, and it has a long history in the
world (Mazza and Murooka 2009). The majority of vinegars,
especially those from acidic and sugary fruits, are very easy to
make, so the science and technology of vinegars developed
relatively slowly through time. However, there is currently an
urgent demand to improve the technology and increase scien-
tific knowledge of vinegar production. Moreover, using starter
cultures in vinegar production is the main technological im-
provement in innovations of vinegar production. To develop
the starter cultures, we must determine which microorganisms
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can be used in vinegar production (Gullo and Giudici 2008).
Although numerous microbiological studies have been con-
ducted to examine the process of vinegar fermentation, micro-
bial diversity and their functions involved in vinegar fermen-
tation have not been summarized systematically. No study has
thoroughly expounded the relationships among microbial var-
iations, raw materials, fermentation methods, and other deter-
minant factors in vinegar fermentation. Consequently, to ob-
tain a comprehensive understanding of the science and tech-
nologies of vinegar production, more studies need to be con-
ducted on microbial diversity, variations in vinegar fermenta-
tion, and their functions in vinegar production.

Different types of vinegars have various functions. Some
can be used as preservatives or condiments, and some of them
are also believed to be drinks (Solieri and Giudici 2009).
Some kinds of vinegars are also used to treat diseases in tra-
ditional Chinese medicine. Many studies have also indicated
that vinegar has a wide spectrum of physiological effects, such
as alleviating exhaustion, preventing obesity, and regulating
blood pressure and blood glucose (Fan et al. 2009; Gu et al.
2012; Kahramani et al. 2011; Kondo et al. 2001; Sugiyama
et al. 2003). In addition, it can be used as a natural insecticide,
antigermination agent, and termiticide. Vinegar contains a
large amount of trace components, such as polyphenols
and flavonoids, although its main ingredients are acetic acid
and water. All of the compounds in vinegar contribute to its
taste, smell, and specific functions (Zhang et al. 2006).
Therefore, analyzing the discrepancy among the key com-
pounds in different types of vinegar is important to under-
stand the relationship between compounds and functiona-
lity of vinegar.

The manufacture of some vinegars usually includes three
stages of fermentation (Solieri and Giudici 2009). The first
stage is starch saccharification. The second step is alcoholic
fermentation (AF), which is the conversion of fermentable
sugars into ethanol mainly by yeast. The third stage is acetic
acid fermentation (AAF), which is the oxidation of ethanol to
acetic acid by acetic acid bacteria (AAB) (Adams 1997).
However, not all vinegar production processes involve starch
saccharification because the occurrence of AF either coincides
with saccharification or appears after saccharification. For ex-
ample, in fruit vinegar production, the occurrence of AF co-
incides with saccharification because no distinct saccharifica-
tion step exists in fermentation. By contrast, some rice and
cereal vinegars that are produced with starchy raw mate-
rials have a distinct saccharification step (Haruta et al.
2006; Lee et al. 2012). However, AF and AAF are dis-
tinctly different and have separate biochemical processes,
and both are the results of the action of microorganisms.
Considering that the production of all vinegars has AF
and AAF stages, we defined vinegar fermentation as a
double fermentation process (Casale et al. 2006). Vinegar
fermentations were rarely inoculated with a pure culture
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until 1907 (Nanda et al. 2001), and the fermentations
were always initiated by mixed strains that consisted of
mold and yeast populations and succeeded and ultimately
dominated by acid-tolerant species (Teoh et al. 2004).
Furthermore, given that the metabolic products from the
fermenting strains are directly related to the quality of the
final vinegar, analyses of the microbial diversity and fea-
tures of the dominant strains involved in different fermen-
tation stages are desirable to improve the strains and sta-
bilize fermentation (Fleet 1999; Gullo and Giudici 2008;
Hidalgo et al. 2010; Wu et al. 2012a).

This review aimed to gain insight into the microbial
diversity involved in vinegar fermentation and improve
the biotechnological process of vinegar production by
comparing and analyzing the diversity of microorganisms
involved in both fermentation stages (AF and AAF). This
review is expected to provide a better understanding of
microbial diversity and the roles of microorganisms in
vinegar production. This review will mainly point out
the diversity of microorganisms associated with each fer-
mentation stage and describe the discrepancy among the
key compounds and physicochemical properties of differ-
ent vinegars. Finally, this review analysis will focus on
the reasons why different vinegars select disparate strains
as starter cultures, why various species are involved in
dissimilar fermentation processes, and why we should
choose disparate fermentation methods in the production
of different vinegars. This review will establish a better
understanding of the relationship between microbial di-
versity and other determinant factors in establishing the
quality of vinegar.

Manufacturing process of vinegar
Common procedure for vinegar production

The present production of vinegar has evolved from a simple
artisanal scale to a large-scale industrial process. Meanwhile,
the common procedure for vinegar production is graphically
displayed in Fig. 1.

Ethanol production
Raw material preparation

The first stage of the brewing process is to prepare raw mate-
rials by milling (Grierson 2009; Li et al. 2015). The purpose of
milling is to break the raw materials to release starch and sugar
for increasing water absorption and obtaining a desirable co-
hesion of the mass (Zheng et al. 2011).
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Fig~ 1 a, b The PrOdUCtiOIl (A) Raw material preparation (milling) (B) Raw material preparation (milling)
process of vinegar
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The second stage in the brewing process is the conversion of
starch to sugars to prepare for AF. In this stage, some enzymes
(x-/p-amylase, protease, and 3-glucanase) may be added to
better convert the starch to fermentable sugars, and they play a
crucial role in productivity and directly affect the flavor for-
mation of traditional Chinese vinegar (Li et al. 2015). Only
some rice and cereal vinegar fermentation processes require a
distinct saccharification step to convert the raw materials to
sugars, whereas no saccharification step exists in sugar-rich
fruit vinegar production (Fig. 1). For instance, traditional bal-
samic vinegar (TBV) production has no saccharification stage,
but it requires cooking to improve the concentration of fer-
mentable sugar before AF, and cooking is generally stopped
when the grape must concentration reaches 35—-60° (°Brix) of
soluble solids (Giudici et al. 2009).

Alcoholic fermentation

The last stage of the brewing process is the conversion of
fermentable sugars to ethanol (Solieri and Giudici 2009). This
stage is an anaerobic fermentation stage, and it needs to be
kept in a controlled temperature of 20-30 °C (Grierson 2009;
Wau et al. 2012a). AF of fruit vinegar is mainly carried out by
Saccharomyces cerevisiae, and it can be performed either by
natural spontaneous fermentation or pure culture inoculation.
In simple artisanal production, AF always occurs spontane-
ously, but in large-scale industrial production, AF is per-
formed by adding a starter culture mainly from the genus
Saccharomyces (Adams 1997).

Separation

After the AF stage, the yeasts are inactive and begin to auto-
lyse. The microbial cells will hinder the next fermentation
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Inoculating special strains
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Spontaneous fermentation
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l Spontaneous fermentation
Separation
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Acetification «—— ‘or
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stage, so removing these cells by high-speed centrifugal sep-
aration is imperative (Grierson 2009).

Acetous fermentation

Acetous fermentation is the aerobic oxidation of ethanol to
acetic acid, which is a biotransformation process performed
by AAB (Horiuchi et al. 2000a, b). This stage is a fairly slow
open fermentation process, and it needs to provide a suitable
habitat for the Acetobacter species, so the fermentation vessel
is not covered by any lid in the AAF stage (Wu et al. 2012a).
In cereals and traditional Chinese vinegar production, after
AF, vinegar “seeds,” which come from the last batch of vin-
egar Pei, are added into the acetator and mixed well with
wheat bran and coarse rice hull, which are used to increase
the loose interspace for heat discharge and oxygen uptake and
to promote AAB growth and metabolic activities (Chen et al.
2009). In this step, the temperature in the urn should be stabi-
lized at 38—46 °C by pressing and turning over the vinegar Pei
to decrease the rate of ethanol consumption and reduce oxy-
gen supply and heat production. Normally, vinegar Pei is
turned over once a day, and this step generally lasts about
20 days (Xu etal. 2011a). In contrast, the AAF of fruit vinegar
is different from cereal vinegar. For example, apple cider vin-
egar (ACV) after AF contains a high concentration of alcohol
that needs adjusted to be 7-8 % v/v by adding water. It is then
mixed with ACV from previous cider acidification and inoc-
ulated with AAB species to accomplish the AAF step (Joshi
and Sharma 2009; Kocher et al. 2007). In the past, vinegar
was derived from the spontaneous acidification of wine; thus,
the acetification of traditional vinegar production is spontane-
ous fermentation, so no selected strains are inoculated in this
process (Adams 1997; Wu et al. 2012a). However, to improve
acetification rates, the “mother of vinegar” or a starter culture
of beneficial strains is inoculated in the AAF stage (Gonzalez
and De Vuyst 2009; Gullo et al. 2009). Several studies proved
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that a huge improvement in the ethanol oxidation rate is
achieved by inoculating specific AAB (Kocher et al. 2007;
Sievers et al. 1992). From a technological perspective, many
different kinds of fermentation methods are applied in this
stage for the purpose of improving vinegar manufacture tech-
nology (De Ory et al. 2004; Kaur et al. 2011; Solieri and
Giudici 2009). The AAF of vinegar production can be
achieved either by traditional slow methods, such as surface
culture fermentation (Tesfaye et al. 2002b) or quick sub-
merged methods, based on different kinds of acetators that
increase acetic acid yield and acetification rate using
semicontinuous or continuous processes (Joshi and Thakur
2000).

Maturation or aging

After acetification the “rough stock vinegar” will be stored in
storage vessels and allowed to be saved for at least 3 months
(Joshi and Sharma 2009). Furthermore, traditional wine vine-
gar (WV) production requires maturation in wood for many
years to obtain a high acetic degree (Tesfaye et al. 2002b). At
this stage, we can obtain a high concentration of acetic acid
and a low concentration of alcohol, and important chemical
changes occur during aging, such as the formation of furan
derivatives and hydroxymethylfurfural, because of low pH
and water activity (Solieri and Giudici 2008).

Microbial diversity involved in vinegar production
Microbial diversity involved in saccharification

Saccharification is actually the immediate hydrolysis of starch
by microbial metabolisms and enzymes from Qu to produce
saccharified mash, and this step is the start of AF (Chen et al.
2009). The significant saccharification stage is only presented
in specific vinegar fermentation, in which raw materials as
cultures contain high starch levels. The fermentation of fruit
vinegars or other vinegars that use raw material as cultures
with high sugar does not have this stage. Hence, to better
illustrate ethanol production in all types of vinegar, we named
saccharification as the initial stage of AF. Even though only a
few molds are involved in the initial stage of AF, they play a
pivotal role in the final quality of vinegar because they can
produce a wide range of secondary metabolites, including
flavor and odor components, pigments, and compounds with
antibiotic properties. Moreover, the release of many kinds of
enzymes is a common characteristic of most molds that has
been largely exploited in industrial vinegar production
(Rainieri and Zambonelli 2009). In the initial stage of AF,
we require a variety of amylases and hydrolases to help the
conversion of starch to fermentable sugars, so most molds
may be artificially inoculated in early AF. Aspergillus oryzae
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has powerful ability to release amylase and proteolytic en-
zymes, which can rapidly convert starch into sugar (Hashimo-
to et al. 2013; Li et al. 2015). In addition, although the genera
Bacillus are contaminants in most vinegar fermentation, some
Bacillus species are considered to be functional microbes,
responsible for the formation of a range of lytic enzymes,
substrates for early AF, and flavor compounds (Zheng et al.
2011). For example, Bacillus amyloliquefaciens can produce
amylases to degrade starch into maltose or dextrin and further
to glucose (Li et al. 2014; Zheng et al. 2011). In rice vinegar
and cereal vinegar, As. oryzae is the dominant mold species
and Bacillus species are the functional bacteria involved in the
initial stage of AF. Table 1 shows that the dominant species
involved in the initial stages of AF are mainly from the genera
Aspergillus, Absidia, Mucor, and Rhizopus. For example, in
rice vinegar, the saccharification of rice is mainly by the Koji
mold A4s. oryzae (Hashimoto et al. 2013; Nanda et al. 2001).

Microbial diversity involved in alcoholic fermentation

Vinegar is the product of double fermentation, which is carried
out by different types of microorganisms acting in different
fermentation stages (Fig. 2) (Rainieri and Zambonelli 2009).
Tables 1 and 2 summarize the groups of microorganisms that
have been isolated and reported from different types of vine-
gar. AF is the first important step to provide flavor into vinegar
(Sudheer Kumar et al. 2009), and the most flavorful com-
pounds are the metabolic products from fermentation strains.
Meanwhile, different raw materials and fermentation condi-
tions may cause significant differences in microorganisms be-
tween AF and AAF (Li et al. 2014). Thus, the microbial di-
versity in different fermentation stages should be analyzed.
As shown in Table 1, different kinds of strains are isolated
in AF of different types of vinegar. AF of all vinegars mainly
involves yeast species and only a few other genera. This phe-
nomenon is due to the fact that conversion of fermentable
sugars into ethanol is mainly performed by yeast. The meta-
bolic activity from yeasts can remarkably increase the alco-
holic degree at the end of AF, which also inhibits the growth
and metabolism of most other microorganisms (Wu et al.
2012a). Generally, yeasts grow well at pH 3-5, and they
sometimes grow with difficulty at neutral pH. They prefer
acidic substrates and generally ferment sugars vigorously at
concentrations of up to 20 %, but fermentative metabolism
slows down at higher concentrations. When the sugar concen-
tration is above 50 %, osmotic pressure will become exces-
sively high, which can inhibit the growth and metabolism of
most yeast species (Rainieri and Zambonelli 2009). However,
several species that belong to the genus Saccharomyces mul-
tiply faster than other yeast species and dominate in terms of
the percentage because the fermentation conditions are more
suitable for their growth. Moreover, at high temperature and
high sugar concentration, S. cerevisiae also exhibits strong
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Table 1

Strains isolated in different types of vinegar’s alcoholic fermentation

Vinegar

Abbreviation  Strains

References

Rice vinegar

White rice vinegar

Chinese rice vinegar

Kurosu
(Black rice vinegar)

Komesu
(Amber rice vinegar)

Zhengjiang aromatic
vinegar
Cereal vinegar

Sorghum vinegar

Cereal/Grain vinegar

Shangxi aged vinegar

Kombucha vinegar

Red vinegar

Vegetable vinegar

Onion vinegar

Tomato vinegar
Fruit vinegar

Fruit vinegar

Apple cider vinegar

Jujube vinegar

Coconut Vinegar
Mango vinegar
Banana vinegar

Pineapple vinegar

Cocoa vinegar

WRV

CRV

BRV

ARV

ZAV

SV

C/GV

SAV

KV

RV

oV

vV

FV
ACV
v
CNV

MV

BAV

PIV
Ccov

1. S. cerevisiae; 2. Zygosaccharomyces spp.;
3. Candida sp.; 4. As. oryzae

1. S. cerevisiae; 2. Sp. fibuligera;
3. P, kudriavzeviiy 4. As. oryzae; As. niger;
As. candidus; 5. R. microspores; 6.
Eu. herbariorum

—

. 8. cerevisiae; 2. Pc. acidilactici; 3. La. lactis,
4. As. oryzae; As. awamoriy As. usami

—_

. S. cerevisiae; 2. As. oryzae

—

. S. cerevisiae; S. cariocanus; S. paradoxus;
S. bayanus; 2. Se. complicate

—_

. S. cerevisiae; 2. Ca. saccharolyticus,
3. Hansenula spp.; 4. As. oryzae;
5. Saccharum spp.; 6. C. krusei

1. 8. cerevisiae; 2. C. berkout; 3. Hs. anomala;
4. Lb. sakei; Lb. plantarum; Lb. fermentum;
Lb. homohiochii; Lb. heterohiochii; Lb.
fructivorans; 5. Mucor spp.; 6. Monascus spp.;
7. Rhizopus spp.; 8. Absidia spp.;

9. Le. mesenteroides

. S. cerevisiae; 2. Lb. fermentation; Lb. plantarum;
Lb. buchneri; Lb. casei; 3. Pc. Acidilactici; Pc.
pentosaceus; Pc. anomala; 4. C. berkout; 5. G.
oxydans; 6. Le. mesenteroides; Le. citreum; 7.
W. confuse; 8. A. indonesiensis; A. orientalis;
A. senegalensis; A. malorum

—_

—

. S. cerevisiae; S. codes ludwigii; S. bisporus; 2.

C. stellata; C. guilliermondii; 3. Z. rouxii; Z. bailii;

Z. kombuchaensis; 4. P. membranaefaciens; 5.
Sc. pombe; 6. Rh. mucilagnosa; 7. Sm. ludwigii;
8. T delbreuckii

. S. cerevisiae; 2. Ms. purpureus; 3.
Rhodotorula spp.

—_

—_

. S. cerevisiae; S. boulardii; 2. La. zymae;
La. malefermentans; La. plantarum; 3.
C. humilis; 4. Ka. exigua

—_

. 8. cerevisiae

. S. cerevisiae; 2. Candida sp.
. S. cerevisiae; S. uvarum;, 2. Hs. uvarum

. S. cerevisiae

—_ e = =

. S. chevalieri; 2. Kloeckera spp.; 3. C. pichia;
4. Tr. viride

—

. S. cerevisiae; S. cerevisiae var. bayanus; 2.
Schizosaccharomyces spp.

—_

. S. ellipsoideus; S. uvarum; 2. P. spartinae

—

. S. cerevisiae

—

. S. cerevisiae; 2. Kloeckera spp.; 3. KI.
marxianus; 4. P. fermentans; 5. Hs. uvarum;
Hs. opuntiae; 6. Lo. elongisporus;

7. C. bombi; 8. Lb. fermentum

Haruta et al. (2006), Okazaki et al. (2010),
Solieri and Giudici (2009)

Chen and Xu (2010), Li et al. (2014)

Hashimoto et al. (2013), Murooka and
Yamshita (2008), Solieri and Giudici (2009)

Murooka and Yamshita (2008), Solieri
and Giudici (2009)

Xu et al. (2011a)

Dien et al. (2009), Hamad et al. (1992),
Panagiotopoulos et al. (2010), Solieri and
Giudici (2009), Tew et al. (2008)

Chen et al. (2009), Hammes et al. (2005),
Wu et al. (2010)

Ehrmann et al. (2009), Solieri and Giudici (2009),
Wu et al. (2012a, b)

Kaur et al. (2011), Loncar et al. (2006), Malbasa
et al. (2009), Sievers et al. (1995), Solieri and
Giudici (2009), Sreeramulu et al. (2000),
Steinkraus et al. (1996), Teoh et al. (2004)

Solieri and Giudici (2009)

Cheng et al. (2014a, b), Gonzalez Saiz et al.
(2008), Horiuchi et al. (1999, 2004;
Vazirzadeh et al. 2012)

Lee et al. (2013)

Solieri and Giudici (2009)
Joshi and Sharma (2009)
Vithlani and Patel (2010)

Muniswaran and Charyulu (1994), Okazaki et al.
(2010), Solieri and Giudici (2009)

Akubor (1996), Ndoye et al. (2007),
Sudheer Kumar et al. (2009)

Krishna and Chandrasekaran (1996),
Loesecke (1929)

Sossou et al. (2009)
Igbinadolor (2009), Illeghems et al. (2013)
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Table 1 (continued)

Vinegar Abbreviation  Strains References
Cashew vinegar CvV 1. S. cerevisiae; S. bayannus Garruti et al. (2006), Silva et al. (2007),
Solieri and Giudici (2009)
Palm vinegar PV 1. S. cerevisiae; S. uvarum; 3. K. pichia, Amoa Awua et al. (2007), Solieri and Giudici
4. Kl lactis; 5. C. utilis; C. tropicalis; (2009), Stringini et al. (2009)
C. parapsilopsis; C. fermentati,
6. Sm. ludwigii; 7. Hs. uvarum,
8. Aspergillus spp.; 9. P. fermentans;
10. Lb. plantarum; 11. Le. mesenteroides;
12. Z. bailii; 13. Endomycopsis spp.;
14. Penicillium spp.; 15. Sc. pombe
Strawberry vinegar STV 1. S. cerevisiae; 2. Hs. uvarum;, 3. Is. terricola Hidalgo et al. (2012c), Ubeda et al. (2012, 2013)
Sugarcane vinegar SUv 1. S. cerevisiae Kocher et al. (2006), Tzeng et al. (2009)
Persimmon vinegar PEV 1. S. cerevisiae; 2. D. anomala; 3. Hidalgo et al. (2012a, b), Hwang et al. (2013)

Me. pulcherrima; 4. P. guilliermondii,
5. Z. florentinus; 6. A. malorum;
7. H. uvarum; 8. Cryptococcus sp.
. S. cerevisiae; 2. Kloeckera spp.; 3. Candida sp.

—_

Nata De Coco vinegar NV Montealegre et al. (2012a, b),

Solieri and Giudici (2009)

Balsamic vinegar BV 1. S. cerevisiae Solieri and Giudici (2009)
Traditional balsamic TBV 1. 8. cerevisiae; S. ludwigii; 2. Hs. osmophila, De Vero et al. (2006), Masino et al. (2008),
vinegar Hs. valbyensis; 3. Z. mellis; Z. bisporus; Solieri et al. (2006, 2007),

Z. rouxiiy Z. bailii; Z. pseudorouxii,
4. C. lactis-condensi; 5. C. stellata

Solieri and Giudici (2008, 2009)

Wine vinegar

Red wine vinegar RWV 1. S. cerevisiae Charles et al. (2000)

Malt/beer vinegar M/BV 1. 8. cerevisiae; S. sensustricto Smogrovicova et al. (1997),
Solieri and Giudici (2009)

Wine vinegar wv 1. S. cerevisiae; S. ludwigiiy 2. H. uvarum; Ciani (1998), Li et al. (2011),

3. C. stellata; 4. Ts. delbreuckii; 5.

Lb. acetotolerans; 6. K. apiculata
Sherry/Jerez vinegar SV 1. 8. cerevisiae; S. cerevisiae var. beticus;,

S. cerevisiae var. cheresiensis,

S. cerevisiae var. montuliensis; 2. Z. rouxii

Solieri and Giudici (2009)

Solieri and Giudici (2009), Tesfaye et al. (2009)

Animal vinegar

Honey vinegar HV 1. S. cerevisiae; 2. T5. delbreucki;
3. Zygosaccharomyces spp.

Dezmirean et al. (2012), Pereira et al. (2009),
Solieri and Giudici (2009)

Dragone et al. (2009), Kourkoutas et al. (2002),
Parrondo et al. (2009), Tamura (2000)

WHV

—_

Whey vinegar . S. cerevisiae; 2. KI. marxianus; KI. fragilis;
3. St. thermophilus; 4. Lb. delbrueckii;

Lb. lactis; Lb. helveticus; 5. CI. thermolacticum

A. Acetobacter, Ab. Absidia, As. Aspergillus, B. Brettanomyces, C. Candida, CI. Clostridium, Cr. Cryptococcus, Ca. Caldicellulosiruptor, D. Dekkera,
E. Endomycopsis, Eu. Eurotium, G. Gluconobacter, H. Hansenula, Hs. Hanseniaspora, Is. Issatchenkia, K. Kloeckera, Ka. Kazachstania, KI.
Kluyveromyces, Lb. Lactobacillus, Lo. Lodderomyces, Le. Leuconostoc, La. Lactococcus, M. Mucor, Ms. Monascus, Me. Metschnikowia, P. Pichia,
Pc. Pediococcus, Pe. Penicillium, R. Rhizopus, Rh. Rhodotorula, S. Saccharomyces, Sa. Saccharum, Sc. Schizosaccharomyces, Sm. Saccharomycodes,
Sp. Saccharomycopsis, Se. Saitoella, St. Streptococcus, T. Torulopsis, Ts. Torulospora, Tr. Trichoderma, W. Weissella, Z. Zygosaccharomyces

fermentative metabolism and tolerance to ethanol.
S. cerevisiae is known to be superior to non-Saccharomyces
yeasts in the process of AF in spontaneous fermented wines
(Sudheer Kumar et al. 2009; Wu et al. 2012a). For this reason,
only a few osmotolerant species, such as S. cerevisiae and
S. cerevisiae var. bayanus, can grow and metabolize well in
some special vinegar fermentation conditions, such as high-
temperature fermentation and high sugar concentration fer-
mentation (Rainieri and Zambonelli 2009). Therefore,
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S. cerevisiae is the dominant yeast species involved in the
AF stage of all vinegars, and it becomes dominant toward
the end of AF. By contrast, non-Saccharomyces yeast species
are particularly abundant during the initial and mid-AF stages
of some vinegars. The large number of vinegar production
enterprises in the world, with their unique ecological environ-
ments and diverse manufacturing procedures, results in typical
“home microbiota” with a large diversity of microorganisms
in vinegar. Specific yeasts and bacterial populations dominate
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Fig. 2 a, b The microbial diversity involved in different fermentation stages

AF mainly because of the highly selective materials, opera-
tional conditions, and disparate sugar concentration and os-
motic pressure, so the key species involved in AF of different
types of vinegar vary (Wu et al. 2012a). Molds typically dom-
inate the initial stages of AF because of their relatively rapid
conversion of starch into sugar, followed by yeasts, in sub-
strates that are rich in fermentable sugars. For example, the
original rice material with a relatively low concentration of
sugar mainly needs Aspergillus species to convert starch into
fermentable sugars, and the metabolic activity from
Aspergillus increases the sugar concentration. The genus
Saccharomyces can rapidly consume low molecular weight
sugar, thereby increasing the alcoholic degree. High alcoholic
degree can inhibit the growth and metabolism of most other
microorganisms. Therefore, the species isolated in AF of rice
vinegar are mainly the genera Saccharomyces and
Aspergillus. The dominant yeast species in AF of fruit vinegar
are mainly the genus Saccharomyces because the fruit mate-
rials already have higher initial sugar concentration and do not
need hydrolyzed starch. Given the differences in materials,
species mainly from the genera Lactobacillus and
Saccharomyces are isolated in the AF stage of animal vinegar.
Moreover, the Saccharomyces, Candida, and Lactobacillus
genera and most molds are present in AF of cereal vinegar,
and the genus Saccharomyces is involved in AF of WV and
vegetable vinegar (Table 1). For general vinegar production,
the growth of lactic acid bacteria (LAB) in AF is not necessary
and does not affect AAB activity, but LAB can affect the
growth of yeasts and molds, which might significantly con-
tribute to the quality of fermented vinegar (Li et al. 2014). For
example, yeasts can only grow in whey or milk at pH 5, and
this condition requires a lactic acid fermentation process car-
ried out by LAB. Milk and whey are not ideal substrates for
yeast growth because of their high pH and sugar composition,
whereas LAB (e.g., Lactobacillus and Streptococcus) can
lower pH in milk or whey vinegar fermentation (Rainieri

Not lid

e Acetic acid fermentation stage

compounds

@ :Acetobacter — :Gluconacetobacter <= :Gluconobacter

@ :Saccharomyces — amm .| AB

and Zambonelli 2009). Therefore, LAB can also play a crucial
role in early AF of milk or whey vinegar fermentation. More-
over, LAB populations also contribute a considerable content
of lactic acid in vinegar, which can promote a soft taste by
moderating the irritating sour smell (Chen et al. 2009). For
example, among all the involved fermenting microorganisms,
yeasts (S. cerevisiae and Candida berkout) and AAB
(Acetobacter indonesiensis, Acetobacter orientalis,
Acetobacter senegalensis, and Acetobacter malorum) are crit-
ical to the success of Shanxi aged vinegar (SAV) fermentation,
whereas LAB (Lactobacillus fermentum, Lactobacillus
plantarum, Lactobacillus buchneri, Lactobacillus casei) pop-
ulations also make a great contribution to the taste of vinegar
(Wu et al. 2012a). Nevertheless, LAB also can play a role in
contributing to the acidization of swollen canned products
(Cheng et al. 2014a).

In a nutshell, during vinegar production, the metabolic ac-
tivities of yeasts and enzymes supplied by the action of molds
play crucial roles in the AF stage (Wu et al. 2012a). Vinegar
fermentation actually is a biological decomposition process
that uses beneficial microorganisms as tools, and the main
function of beneficial microorganisms in fermentation is using
raw material as substrate to produce flavor compounds
through metabolic activities.

Microbial diversity involved in acetic acid fermentation

Acetification is a biochemical process that requires microor-
ganisms to oxidize ethanol into acetic acid under strict condi-
tions of aerobiosis (Fig. 2). It has been traditionally considered
as the most important process in vinegar production. Organic
acids, including lactic acid and acetic acid, are the major
sources of total acids and dominant flavor components of
vinegar that are mainly produced during the AAF process
(Nie et al. 2013; Tesfaye et al. 2002b). Previous studies
showed that microbial communities in vinegar production

@ Springer
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Table 2 Microorganisms isolated from acetic acid fermentation of different types of vinegar

Vinegar Strains References
Rice vinegar
WRV 1. A. pasteurianus; A. hansenii; 2. Ga. xylinus; Haruta et al. (2006), Okazaki et al. (2010),
Ga. europaeus; 3. Lb. acetotolerance; Lb. lactis; Solieri and Giudici (2009)
4. Pc. Acidilacticiy 5. Zy. mobilis
CRV 1. Ga. xylinus; 2. A. pasteurianus Fu et al. (2013), Kawano et al. (2010)
BRV 1. A. pasteurianus; A. aceti; 2. Ga. xylinus; Hashimoto et al. (2013), Murooka and Yamshita
Ga. europaeus; Ga. liquefaciens; 3. G. oxydans; (2008), Nanda et al. (2001), Solieri and Giudici
4. Lb. acetotolerance (2009), Tokunaga et al. (2009)
ARV 1. A. pasteurianus; 2. A. aceti Nanda et al. (2001), Solieri and Giudici (2009)
ZAV 1. A. pomorum; A. pasteurianus; 2. Enterobacter sp; Xuetal. (2011a)

Cereal vinegar
SV
C/GV

SAV

KV

RV
Vegetable vinegar
ov

vV

Fruit vinegar
FV
ACV

v
CNV

MV

BAV
PIV
Cov

(O\%
PV
STV
SUV
PEV
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3. Ps. geniculata; Ps. cissicola; 4. Lb. acetotolerans;
Lb. gallinarum;, Lb. crispatus; Lb. panis; Lb. pontis;
5. Ga. intermedius; 6. Flavobacterium sp.;

7. Sinorhizobium sp; 8. SI. gallinarum;, SL. kloosii

. Acetobacter spp.

. A. pasteurianus; A. malorum; A. aceti; A. xylinum;

A. liquefaciens; A. hansenii; A. rancens; A. tropicalis;

2. Ga. xylinus; Ga. europaeus; 3. Bacillus spp.;

4. Lactobacillus spp.
. A. pasteurianus; A. malorum; A. aceti; A. senegalensis;

A. indonesiensis; A. orientalis; A. hansenii; 2. G. oxydans;
Ga. hanseniiy Ga. liquefaciens; 3. Lb. plantarum; Lb. casei,
Lb. buchneri; 4. Pc. acidilactici; Pc. pentosaceus
. A. xylinum; A. xylinoides; A. acetiy 2. Ba. gluconicum;

3. Ga. xylinus; Ga. intermedius; Ga. kombuchae;

4. Z. bailii;y 5. Sc. pombe; 6. T5. delbrueckii;

7. Rh. mucilaginosa; 8. Ko. rhaeticus

. A. hansenii; 2. Ga. xylinus

. A. acetiy A. pasteurianus; A. orientalis

. Acetobacter spp.

. A. acetiy A. rancens; A. lovaniensis; A. xylinum; 2. Ga. xylinus

. A. pasteurianus; A. aceti; A. xylinum; A. pomorum;
A. hansenii; A. oboediens; A. europaeus; A. syzygii,
2. Ga. xylinus; Ga. europaeus; Ga. hansenii; Ga. intermedius

. A. xylinus; A. aceti

. A. acetiy A. xylinum
. A. pasteurianus; A. acetiy A. lovaniensis; A. tropicalis

. Lb. acidophilus
. A. acetiy A. pasteurianus; A. tropicalis

. A. pasteurianus; A. tropicalis; A. senegalensis

. A. aceti

. A. acetiy 2. Lb. plantarum; 3. Lc. mesenteriodes; 4. Zy. mobilis
. A. malorum; 2. Ga. saccharivorans; Ga. xylinus

. A. aceti

. A. pasteurianus; A. malorum; A. cerevisiae; A. syzygii;
2. Ga. europaeus; Ga. intermedius; Ga. saccharivorans

Solieri and Giudici (2009)

Kawano et al. (2010), Solieri and Giudici (2009),
Wu et al. (2010)

Solieri and Giudici (2009), Wu et al. (2012a, b)

Dos Santos et al. (2014), Kaur et al. (2011), Sievers
et al. (1995), Solieri and Giudici (2009),
Sreeramulu et al. (2000), Steinkraus et al. (1996),
Teoh et al. (2004)

Solieri and Giudici (2009)

Gonzalez Saiz et al. (2008), Horiuchi et al.
(1999), Horiuchi et al. (2004)

Lee et al. (2013)

Saeki et al. (1997), Solieri and Giudici (2009)

Fernandez Pérez et al. (2010a), Hidalgo et al.
(2012b), Sokollek et al. (1998b), Solieri and
Giudici (2009)

Vithlani and Patel (2010)

Gonzalez and De Vuyst (2009), Solieri and
Giudici (2009)

Akubor (1996), Ndoye et al. (2006, 2007),
Sudheer Kumar et al. (2009)

Tsen et al. (2003, 2004)
Ou and Chang (2009), Sossou et al. (2009)

De Vuyst et al. (2008), Illeghems et al. (2013),
Papalexandratou et al. (2011)

Silva et al. (2007)

Solieri and Giudici (2009)

Hidalgo et al. (2012¢)

Kocher et al. (2006), Kocher and Dhillon (2013)

Hidalgo et al. (2012b), Hwang et al. (2013),
Kim et al. (2006)
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Table 2 (continued)

Vinegar Strains References
NV 1. 4. aceti; A. xylinum; A. hansenii Bernardo et al. (1998), Montealegre et al. (2012b),
Santosa et al. (2012), Solieri and Giudici (2009)
BV 1. A. hansenii Chen et al. (2010)
TBV 1. A. pasteurianus; A. malorum; A. acetiy A. hansenii, De Vero et al. (2006), Gullo et al. (2006), Gullo et al.

A. pomorum;, 2. Ga. xylinus; Ga. europaeus;

Ga. hanseniiy Ga. azotocaptans; Ga. diazotrophicus;

Ga. liquefaciens; Ga. oboediens; Ga. sacchari,
Ga. oxydans; Ga. cerinus
Wine vinegar

(2009), Gullo and Giudici (2008), Masino et al.
(2008), Solieri and Giudici (2009), Solieri et al.
(2006)

Fernandez Pérez et al. (2010b), Sokollek et al.
(1998a), Solieri and Giudici (2009)

Solieri and Giudici (2009)

Ciani (1998), Fregapane et al. (1999), Hidalgo
et al. (2010), Solieri and Giudici (2009);
Tesfaye et al. (2002a, b, c), Vegas et al.
(2010, Vegas et al. 2013)

Palacios et al. (2002)

Solieri and Giudici (2009)

RWV 1. A. pomorum; A. oboediens; 2. Ga. europaeus

M/BV 1. A. cerevisiae; 2. Ga. sacchariy Ga. europaeus

WV 1. A. pasteurianus; A. aceti; A. xylinum; A. pomorum;
A. liguefaciens; A. hansenii; A. methanolicus;
A. diazotrophicus; A. polyoxogenes; 2. G. oxydans;
G. oxydans subsp. sphaerricus; Ga. xylinus; Ga. europaeus;
Ga. hansenii, Ga. intermedius; Ga. oboediens; Ga. entanii,
Ga. pomorum; 3. S. cerevisiae

KA 1. Acetobacter spp.; 2. Gluconobacter spp.

Animal vinegar
HV 1. Acetobacter spp.; 2. Gluconacetobacter spp.
WHV 1. A. pasteurianus; 2. Ga. liquefaciens

Parrondo et al. (2003), Solieri and Giudici (2009)

A. Acetobacter, B. Bacillus, Br. Brettanomyces, Ba. Bacterium, Eb. Enterobacter, F. Flavobacterium, G. Gluconobacter, Ga. Gluconacetobacter, Ko.
Komagataeibacter, Lb. Lactobacillus, Lc. Leuconostoc, Pc. Pediococcus, Ps. Pseudomonas, Rh. Rhodotorula, S. Saccharomyces, Sc.
Schizosaccharomyces, SI. Staphylococcus, Si. Sinorhizobium, Ts. Torulospora, W. Weissella, Z. Zygosaccharomyces, Zy. Zymomonas

are comparatively stable, but microbial diversity undergoes a
series of regular changes during different fermentation pro-
cesses (Xu et al. 2011a). Thus, the dynamic changes in a
microbial community during AAF are different from those
during other fermentation stages (Nie et al. 2013). For this
reason, a summary of microbial diversity and function in
AAF of different types of vinegar is urgently needed.

Most AAB are capable of oxidizing ethanol as substrate
to acetic acid in neutral and acidic (pH 3.0-4.0) media
(Gullo and Giudici 2008; Schiiller et al. 2000; Sokollek
et al. 1998b), and they are the main oxidative microorgan-
isms able to survive in high ethanol and high acidic condi-
tions, such as in wine and vinegar (Gonzalez et al. 2005).
High alcohol concentrations at the initial stage of acetifica-
tion, as well as high acidic conditions at the middle and late
stages of AAF, suggest that most of the bacteria present are
AAB (Hidalgo et al. 2012a). Microorganisms isolated from
AAF of different types of vinegar are displayed in Table 2.
Various kinds of raw materials are used as substrate, differ-
ent types of starter cultures are used in fermentation, and
disparate physicochemical properties are needed in vinegar
production. All these factors lead to microbial diversity in
AAF of vinegar production. Most bacteria present in the
AAF stage belong to the genera Acetobacter,
Gluconacetobacter, and Gluconobacter. Previous studies

revealed that only two genera of AAB are mainly involved
in AAF of vinegar production, namely, Gluconobacter and
Acetobacter (Garcia Garcia et al. 2009; Maal et al. 2010;
Sokollek et al. 1998a; Tesfaye et al. 2002b). However, cur-
rent research indicated that some species of
Gluconacetobacter also possess the ability to oxidize etha-
nol into acetic acid under high alcohol concentrations and
high acidity conditions (Hidalgo et al. 2012a; Lisdiyanti
et al. 2006). For example, Gluconacetobacter
saccharivorans can oxidize ethanol at high alcohol concen-
tration (more than 11.5 % (v/v)) (Kato et al. 2011).
Acetobacter oxidizes ethanol more strongly than glucose,
and its main function is to oxidize ethanol to acetic acid
(Tesfaye et al. 2002b). By contrast, the Gluconacetobacter
genus is known to have a higher tolerance to acetic acid than
Acetobacter. Moreover, the Acetobacter genus has always
been associated with traditional WV fermentation, while
Gluconacetobacter species are linked with vinegar produc-
tion in submerged systems, where the conditions are more
extreme. Therefore, Acetobacter species are abundant dur-
ing the initial and mid-AAF stages, whereas
Gluconacetobacter species are dominant during the final
stages of AAF (Hidalgo et al. 2012a). Unlike Acetobacter
and Gluconacetobacter species, Gluconobacter bacteria
oxidize glucose more strongly than ethanol, and their main
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role is the oxidation of glucose to gluconic acid (Tesfaye
et al. 2002b). Hence, Gluconobacter bacteria are involved
in two fermentation stages (AF and AAF), and they can
continue to convert glucose into gluconic acid and ethanol
under high alcohol and acidity conditions. However, the
genera Acetobacter and Gluconacetobacter are mainly in-
volved in AAF step, and they mainly oxidize ethanol into
acetic acid. These characteristics also explain why
Gluconobacter species are always involved in early acetifi-
cation, which still contains a certain amount of glucose. By
contrast, the genera Acetobacter and Gluconacetobacter are
involved in all AAF stages. However, numerous studies
indicated that the primary bacteria existing during the
AAF process belong to the genus Acetobacter (Haruta
et al. 2006; Nanda et al. 2001; Xu et al. 2011a).

In addition to those described above for the AAB genus, a
new genus Komagataeibacter has been proposed, and most
species of this genus are transferred from the genus
Gluconacetobacter (Yamada et al. 2012). Some
Komagataeibacter species are also involved in industrial vin-
egar fermentation, and they are the most resistant
Acetobacteraceae family to high acetic acid concentrations,
such as Komagataeibacter xylinus, Komagataeibacter
hansenii, Komagataeibacter europaeus, Komagataeibacter
saccharivorans, Komagataeibacter nataicola, and
Komagataeibacter intermedius (Suwanposri et al. 2014;
Yamada et al. 2013). The Komagataeibacter species can also
produce acetic acid from ethanol. Their growth and metabo-
lism are positive in the presence of acetic acid, and they can
oxidize acetate and lactate to water and carbon dioxide
(Yamada et al. 2012). In some Komagataeibacter species,
cellulosic materials are produced, whereas acetic acid is re-
quired for growth in some species (Dos Santos et al. 2014;
Suwanposri et al. 2014; Yamada et al. 2012). Given the unique
features and functions of the genus Komagataeibacter,
Komagataeibacter species also play an important role in
AAF of vinegar production.

Some studies demonstrated that the greatest hurdle to
AAB growth is the high sugar concentration (Gullo et al.
2006), and the AF stage has high sugar concentration
through starch saccharification, so only few AAB are
present in the AF stage. However, considering the high
acidity conditions at the middle and late stages of AAF,
as well as the decreased concentration of sugar caused by
the conversion of sugar to ethanol, most of the bacteria
involved in AAF are AAB (Hidalgo et al. 2012a). At
present, acetification of vinegar is becoming increasingly
carried out with mixed and often undefined cultures, so
not only AAB can be isolated in AAF. For example, the
bacteria existing during AAF of Zhenjiang aromatic vin-
egar also include Lactobacillus, Enterobacter,
Staphylococcus, Flavobacterium, Pseudomonas, and
Sinorhizobium species (Table 2) (Xu et al. 2011a).

@ Springer

Physicochemical properties and compounds
in different types of vinegar

Aroma components play an important role in the quality of
vinegar, so understanding the major aroma components pres-
ent in different types of vinegar is necessary. The main
methods, namely, chemical analysis, electronic nose, and sen-
sory analysis, are used to measure the aroma components in
vinegar (Zhang et al. 2008). Several studies indicated that
chemical analysis plays a major role in component analysis,
such as high-performance liquid chromatography (HPLC) and
gas chromatography-mass spectrometry (GC-MS), which are
always used to evaluate the key compounds of vinegar
(Chinnici et al. 2003; Consonni et al. 2008; Duran Guerrero
et al. 2008; Lu et al. 2011; Peng et al. 2009). The important
metabolites are analyzed by HPLC (Cheng et al. 2014a), and
volatile compounds are mainly analyzed by headspace solid-
phase microextraction GC-MS (Pollien et al. 1997). With the-
se analytical methods, a link can be made between the metab-
olites, substrates, and microbes identified (Cheng et al. 2014a,
b). In addition, pyrolysis MS and nuclear magnetic resonance
spectroscopy are always conducted to distinguish representa-
tive compounds of well-known flavor types of vinegar
(Anklam et al. 1998; Caligiani et al. 2007; Jo et al. 2013;
Zhang et al. 2008). The physicochemical properties, concen-
trations of organic acids, content of polyphenols, and levels of
other compounds in different types of vinegar are presented in
Tables 3 and 4. In the qualitative analysis of vinegar, large
numbers of organic acids and polyphenols are selected as
discriminant variables (Galvez et al. 1994; Natera et al.
2003). However, most volatile short-chain organic acids affect
the flavor, quality, and acidity of vinegar. These volatile acids
are mainly acetic acid, butyric acid, and smaller propionic
acid, which all come from raw materials or are generated
during fermentation (Sossou et al. 2009). Therefore, the anal-
ysis and summary of final physicochemical properties and
compounds in different types of vinegar are critical to the
appraisal of vinegar quality.

Understanding the contribution of physicochemical param-
eters to microbial diversity and vinegar aroma quality is ur-
gent. In AAF, the important physicochemical parameters that
affect the growth of microorganisms are pH and acidity
(Ghosh et al. 2012). At lower pH of vinegar, the growth of
most microorganisms is believed to be inhibited. For instance,
acetic acid has strong antibacterial activity at low pH, so vin-
egar with high acidity has a better inhibitory effect on vinegar
spoilage. By contrast, moderately acidic vinegar has been re-
vealed to retain most sensory odors and volatile compounds
(Jo et al. 2013). Consequently, to guarantee the quality of
vinegar, we should control the physicochemical parameters
at suitable values. As shown in Table 4, acidity in the balsamic
vinegar (BV) is higher than that in TBV, whereas the concen-
trations of most volatile and aroma compounds in BV are
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= X lower than those in TBV (Table 3). Compared with BV, TBV
E o has more moderate acidity, so it is more conducive to the
g a LE 8 quality of vinegar.
28 g = _ The volatile and nonvolatile compounds involved in vine-
—§ g = % g gar production are important to the aromatic quality and anti-
z 2= 2‘% a oxidant activity of vinegar. Kurosu is one of the most famous
§ i § = :2 traditional healthy vinegars in Japan, and it is characterized by
g :‘;”; . § 2 higher levels of organic acids and amino acids than other
w| ST 8 § L; § vinegars (Murooka and Yamshita 2008; Nagashima and Saito
g E a #§ S/ B 2010). Kurosu has been found to exhibit higher levels of an-
é ;;’ g5 = §§ tioxidant activity than cereal/grain vinegar (C/GV), Komesu,
© | @ N white rice vinegar (WRV), TBV, WV, and most fruit vinegar.
Such levels of antioxidant activity are due to the fact that
BN Kurosu contains higher concentrations of 2,2-diphenyl-1-
é g‘ - pycrylhydrazyl (DPPH) radical scavenging compounds com-
M| e = pared with other vinegars. The dihydrosinapic acid (DSA) and
dihydroferulic acid (DFA) are DPPH radical scavenging com-
=% pounds that have been found in the nonvolatile acidic part of
jﬁ) ;:‘ 5 Kurosu. DSA and DFA are the homologues of sinapic acid
<o = and ferulic acid, respectively, which are known as natural
2 antioxidants in unpolished rice, wheat, rice, and other grains.
g . § Moreover, the levels of antioxidative activity of DSA and
§ % I DFA are stronger than those of their homologues, sinapic acid
& 2 I and ferulic acid. The concentrations of DSA and DFA are
. lower in common rice vinegar (polished rice vinegar), but
Bl higher in Kurosu, so Kurosu is more advantageous than
é :‘ < polished rice vinegar as an antioxidative food item (Shimoji
8| & Pt et al. 2002). In addition, the presence of phenolic compounds
can significantly affect the aromatic quality (Qingping 2006),
% and several papers sugge.ste.d that pl}e{lolic cgmpounds .also
2|« play a key role in the antioxidant activity of vinegar (Cejudo
BRI - Bastante et al. 2010; Xu et al. 2007).
& | % S
E Fermentation methods in vinegar production
2 & "
S é - In terms of technological processing, the main biotechnolog-
ical process and fermentation methods involved in vinegar
‘_’g production are carried out in the AAF stage (Ndoye et al.
S | & = 2007). From technological aspects, two well-defined methods
g ({rl g‘ can be used for vinegar production: submerged (quick)
methods and traditional (slow) processes (Tesfaye et al.
= 2002b). Vinegar production is actually a process of microbial
§ 3 P fermentation, and microbial fermentation can be induced ei-
ks é - = g ther by three methods: spontaneous fermentation, back-
= - E = - slopping fermentation, and starter culture fermentation
B 8 E= (Solieri and Giudici 2009). The production of traditional Chi-
=) § - % E” 5 nese rice vinegar mainly include solid-state fermentation, deep
é - 5 2 - BE & liquid fermentation, and surface fermentation (Fu et al. 2013;
§ <= 2:9 © % ,‘E § _§ Liu et al. 2004). The primitive vinegar fermentation method is
N .= < O O O . . .
ol sz % é’ 2 % 2 spontaneous fermentation. In this method, the changed envi-
2 2|3 £ =z 2 &g & ronmental conditions and raw material encourage growth of
S S < TRAH the most appropriate indigenous microbial communities.
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Furthermore, the more stringent the growth conditions are, the
greater the selective pressure exerted on the indigenous mi-
croorganisms (Solieri and Giudici 2009). Natural vinegar
made from different sources of derived ethanol (such as cider,
beer, wine, and fermented fruit juice) by spontaneous fermen-
tation methods not only contains small amounts of citric acid,
tartaric acid, and other organic acids, but also require a long
fermentation time (Ghosh et al. 2012). To increase the speed
of the biological reaction, the dominant AAB are used in the
aerobic transformation of ethanol into acetic acid, and various
fermentation methods have been developed (De Ory et al.
2004; Tesfaye et al. 2002b). Although many diverse fermen-
tation methods are applied in vinegar production, most fer-
mentation methods involved in industrial vinegar production
are modified methods, and all of them are based on the sub-
merged culture method (Arnold et al. 2002; Fregapane et al.
2001). Generally, industrial vinegar is produced by two main
methods. One is a slow process involving static surface acetic
acid fermentation and traditional surface fermentation; these
methods comprise the so-called surface culture fermentation,
where the AAB are placed on the air-liquid interface for direct
contact with oxygen (Tesfaye et al. 2002b). The other is the
quick submerged fermentation process involving continuous
submerged culture and semicontinuous acetic acid fermenta-
tion. For example, static surface acetic acid fermentation is
employed in traditional vinegar production such as Komesu
and Kurosu. This technique is not costly in terms of plant
investment, and the quality of the final product is superior,
although a rather long time is required to complete fermenta-
tion (Table 5) (Haruta et al. 2006). In most modern industrial
vinegar production units, the submerged fermentation process
is the main method used (Arnold et al. 2002; Baena Ruano
et al. 2006); however, semicontinuous acetic acid fermenta-
tion is currently one of the most common fermentation
methods in vinegar production (De Ory et al. 2004). Further-
more, different from submerged pure culture fermentation
techniques for vinegar production in European countries
(Tesfaye et al. 2002b), solid or semisolid mix culture fermen-
tation techniques are widely used in Asian countries (Xu et al.
2011a). In particular, Chinese vinegars and cereal vinegars are
mostly produced by a typical aerobic solid-state fermentation
(SSF) (Wu et al. 2010; Xu et al. 2011a). SSF refers to the
growth of microbes on moist solid substrate without free-
flowing water. SSF processes may be more practical and suit-
able than deep liquid fermentation for low-technology appli-
cations (Table 5). This fermentation method is widespread in
Asian countries to produce vinegar at a small scale (Wu et al.
2010), whereas China uses this method on a large scale for
vinegar production (Liu et al. 2004).

In addition to the aforementioned fermentation methods,
other important liquid culture methods, such as shake-flask
fermentation and stationary surface culture fermentation, are
also applied in vinegar production (Table 5). To determine the

optimal conditions of vinegar production, such as quality of
vinegar, capital investment, and operating cost, diverse fer-
mentation methods are used for vinegar production. For in-
stance, WV is mainly produced in Mediterranean countries,
and different fermentation methods have been used to im-
prove the quality of WV. The traditional surface fermentation
method of WV production usually acquires high value be-
cause of its outstanding sensory properties, but production
requires maturation in wood for several years to obtain a high
acetic degree; thus, the finished product is relatively valuable
(Charles et al. 2000). To overcome this difficulty, new fermen-
tation methods have been designed, such as submerged liquid
culture, deep liquid fermentation, and a continuous aeration
system (Tesfaye et al. 2002b).

Relationship between microbial diversity and other
determinant factors

The final quality of vinegar is determined by many factors, in
which the microbial diversity involved in vinegar fermenta-
tion and the raw materials may be the major determinant fac-
tors, because vinegar’s physicochemical parameters and
chemical composition are mainly influenced by these factors
(Morales et al. 2001b). All of the factors are closely related to
each other, and they all affect the vinegar fermentation process
(Morales et al. 2001b; Natera et al. 2003). Furthermore, the
quality of vinegar is also strongly determined by sensory prop-
erties as it may modify the overall quality of a given food or
meal, and the sensory properties are mainly determined by
metabolism of microorganisms. Studies have now highlighted
that the metabolism of microorganisms can affect vinegar
chemical properties in a remarkable way (Li et al. 2014,
2015).

The odorant compounds play a vital role in vinegar’s flavor
(Castro Mejias et al. 2002; Tesfaye et al. 2002b). For example,
Zhenjiang aromatic vinegar (ZAV) and SAV are two typical
types of famous China-style vinegars, and they are famous all
over the world because of their unique flavor, which is the
result of different concentrations of aroma compounds
(Table 3) (Aili et al. 2012; Lu et al. 2011). Moreover, the final
composition of vinegar is also influenced by the raw material
and fermentation methods used in the process, and both of
these factors can lead to microbial differences in fermentation.
For instance, Cantonese-style rice vinegar is famous in China
for its high acidity and special fragrance because special
acidogenic bacteria are used as starter culture, brown rice is
selected as the raw material, and surface acetic acid fermenta-
tion method is used for fermentation (Fu et al. 2013). In addi-
tion, SAV is produced from barley, mille, wheat, bran, sor-
ghum, and buckwheat by spontaneous fermentation and
SSF. More than 45 compounds are detected in SAV, of which
13 compounds have not been previously reported in other
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Table 5 Different fermentation methods in vinegar production

Fermentation method Advantages Disadvantages RV References
Fermentation can be induced by three methods
Spontaneous Suitable for small-scale production; Low efficiency of the process and SUV  Ghosh et al. (2012), Kocher et al.
fermentation without the use of starter culture; long fermentation time; only SAV (2006), Mimura et al. (2004),
a cheap and simple traditional suitable for very specific juices. PV Solieri and Giudici (2009),
fermentation method Difficult to control and there is Wu et al. (2012b)
a great risk of spoilage to occur.
Starter culture It increases the safety, the stability, Starter cultures are not very TBV  Ghosh et al. (2012), Gullo et al.
fermentation and the efficiency of the process; flexible with regard to the PV (2009), Leroy and De Vuyst
it reduces production losses desired properties and (2004), Solieri and Giudici (2009)
caused by uncontrolled functionality of the end product.
fermentation, eliminating
undesired features; shortens the
fermentation process and reduces
the risk of fermentation failure.
Back-slopping More reliable, cheaper, and faster Still has the risk of spoilage to TBA  Holzapfel (2002), Leroy and De
fermentation process than spontaneous occur; the initial phase of the WV Vuyst (2004), Solieri and Giudici
fermentation; reduces spoilage fermentation process is CRV (2008), Solieri and Giudici (2009),
from occurring. The risk of shortened. Viiard et al. (2013)
fermentation failure is reduced.
Main fermentation methods of traditional Chinese vinegar
Deep liquid Quick fermentation method; fast The metabolisms of CRV  Baena Ruano et al. (2006), Charles
fermentation oxidation of alcohol and greater microorganisms are lower than wv et al. (2000), Fernandez Pérez
efficiency is achieved; the ratio solid-state fermentation; ACV et al. (2010b), Fu et al. (2013),
of productivity to capital produces higher wastewater Solieri et al. (2007), Viniegra
investment is much higher; the than solid-state fermentation; Gonzalez et al. (2003)
process can be highly automated. a smaller reactor is needed.
Solid-state Low-technology applications: cheap Difficulties on scale-up; difficult C/GV  Baena Ruano et al. (2006), Chen
fermentation unrefined agricultural products control of process parameters; SAV et al. (2009), Couto and Sanroman
are used as substrates, capital low mix effectively; the time ZAV (2006), Holker and Lenz (2005),
investment and operating cost are required and the inability to Liu et al. (2004), Lu et al. (2011),
moderate, aseptic processing is detect viable but nonculturable Pandey (2003), Thomas et al.
less stringent; solid-state processes bacteria; the growth time of the (2013), Wu et al. (2010), Xu et al.
have lower energy requirements; active microorganisms involved (2011a)
produces lesser wastewater and is in this bioprocess is too long.
environmental-friendly as it
resolves the problem of solid
wastes disposal; higher
productivity; it resembles the
natural habitat for several
microorganisms.
Traditional surface Obtains high-quality vinegar Slow fermentation method: long CRV  Callejon et al. (2009), Cerezo et al.
fermentation period of time is required to RWV (2010a), Charles et al. (2000),
obtain a high acetic degree NAAY Fu et al. (2013), Morales et al.
(2001a)
From a technological point of classification
Stationary surface The brewed vinegar obtained Takes a long period of time to BRV  Hashimoto et al. (2013), Lee et al.
culture is superior in quality; the ferment; the yield of the product ARV (2012), Nanda et al. (2004),
production can be practised vinegar or the utilization rate C/IGV Nanda et al. (2001)
with a very simple apparatus; of the starting material is low. FV
organic acid content is higher
than agitated culture.
Shake-flask Obtains high concentrations of Obtains low concentrations of CRV  Fang and Zhong (2002), Fu et al.
fermentation volatile compounds; beneficial organic acids (2013), Lee et al. (2012)
to solve oxygen limitation
Semicontinuous Higher acetification rates; obtains Higher evaporative losses of MV Adams (1985), De Ory et al. (2004),
acetic acid high total and volatile acidity; volatile compounds KV Fregapane et al. (2001), Fregapane
fermentation the method is quicker and easier. wv et al. (1999), Kaur et al. (2011),
Ndoye et al. (2007)
Continuous submerged  High fermentation rate and Requires precise control of ACV  Budaketal. (2011)

culture yield of acetic acid

fermentation for efficient
vinegar production

RV representative vinegar
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vinegars. SAV differs from other vinegars because of its
unique thermal process (6 days at 85 °C), special raw mate-
rials, and diverse fermentation methods, which create its typ-
ical aroma compounds (Aili et al. 2012). The fermentation
methods are also important for the functions of vinegar.
ACYV produced with maceration in the surface method has
high total phenolic content, ORAC levels, chlorogenic acid,
and TEAC, which exert positive effects on delaying gastric
emptying and lowering postprandial blood glucose and insulin
levels, liver functions and steatosis, body weight increase, and
blood lipid levels (Budak et al. 2011; Hlebowicz et al. 2007).

The relationship between microbial diversity
and raw materials

To date, various types of vinegar are produced with different
types of raw materials. The main raw materials for Chinese
vinegar production are cereals and their bran. However, many
other sugar-containing and starch materials, such as fruits and
sweet potato, have found their way into vinegar production
(Liu et al. 2004). Furthermore, the main difference between
European vinegar and Chinese vinegar is the raw materials
used. European vinegar is usually produced from cider, wine,
malted barley, fruit honey, pure alcohol, or juices, whereas
Chinese vinegar is always produced from wheat bran, rice,
and sticky rice as raw materials (Castro Mejias et al. 2002;
Lipp et al. 1998; Zhang et al. 2006).

In vinegar fermentation, the selection, preparation, and fer-
mentation of raw materials are crucial because one of the most
possible causes of strain diversity in AF and AAF can be the
effect of raw material composition (Wu et al. 2010). The
chemical composition of a raw material exerts a very strong
selective pressure on microorganisms and determines the
dominant species involved in saccharification, liquefaction,
AF, and acetification. As shown in Table 1, vinegar produc-
tion with different raw materials results in obvious strain di-
versity in AF. For instance, given that cereal materials contain
more starch but less sugar, yeasts and molds are mainly re-
sponsible for AF in cereal vinegar fermentation (Li et al.
2014), and the dominant strains in AF of cereal vinegar are
mainly Saccharomyces, Lactobacillus, Aspergillus, Mucor,
and Rhizopus species. Compared with fruit vinegar, signifi-
cantly more Aspergillus, Mucor, and Rhizopus species are
involved in cereal vinegar’s initial stages of AF. This phenom-
enon is mainly due to the fact that molds are the dominant
strains, which can release amylase and proteolytic enzymes to
convert starch into sugar in the saccharification of cereal vin-
egar. Moreover, the fruit materials contain more sugar but less
starch, so fruit vinegar fermentation does not need molds to
convert starch into sugar. This example also shows that appro-
priate fermentation strains are chosen as starter culture and
applied to different vinegars based on various raw materials.

In another example, the Lactobacillus genus is mainly in-
volved in the AF stage of whey vinegar because whey material
has a high pH value and sugar composition. Thus, whey ma-
terials are not ideal substrates for yeast growth but suitable for
the Lactobacillus genus. In the early AF stage of whey vine-
gar, the pH decreases and whey is converted into lactic acid
mainly because of the Lactobacillus genus. In later stages of
AF, the pH decreases to 5, which is suitable for yeast growth
and metabolism. An important example is shown in Tables 1
and 2, in which the microorganisms involved in amber rice
vinegar (Komesu) are very different from those in black rice
vinegar (Kurosu). Although both of them are rice vinegars that
are produced by the same process and the same fermentation
method, Komesu is produced from polished amber rice,
whereas Kurosu is produced from unpolished black rice
(Nanda et al. 2001). Given that the raw material of Komesu
is only polished amber rice, many microorganisms disappear
during the refining process of rice. Thus, more kinds of strains
work in Kurosu than in Komesu because Kurosu’s raw mate-
rial is different from Komesu’s raw material. The microorgan-
isms isolated in Kurosu’s AF stage are Lactobacillus lactis,
Pediococcus acidilactici, Aspergillus awamori, and Aspergil-
lus usami, but they are not isolated in Komesu’s AF stage
(Table 1). In the AAF stage, Gluconacetobacter xylinus,
Gluconacetobacter europaeus, Gluconacetobacter
liguefaciens, Gluconobacter oxydans, and Lactobacillus
acetotolerance are also involved in Kurosu fermentation
(Table 2). In addition, different kinds of strains possess their
unique ability to tolerate the sugar concentrations and osmotic
pressure, so disparate sugar contents in raw material can also
affect the microbial diversity. All of the above findings indi-
cated that raw material has an inseparable relationship with
microbial diversity in vinegar fermentation.

The relationship between microbial diversity
and starter culture

A number of technological innovations have appeared in the
production of a range of dissimilar types of vinegar, among
which the most important one is the development of starter
cultures to control and accelerate the vinegar’s fermentation
process (Sokollek and Hammes 1997; Vegas et al. 2013). In
contrast to spontaneous fermentation processes, the applica-
tion of starter cultures will become attractive to vinegar pro-
duction only in terms of benefits, such as reduced fermenta-
tion times, reduced costs, reduced risk of spoilage, improved
safety attributes, improved sensory quality, improved process
control, and reduced preparation procedures for the final prod-
uct (Holzapfel 2002). Comprehensive understanding of the
culturable fermenting microorganisms is a prerequisite for
selecting strains for starter culture implementation (Wu et al.
2012a). For example, the use of Tetragenococcus halophilus
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as a starter culture during fermentation needs a wide range of
salt stresses to promote its metabolism, and this organism
plays a crucial role in improving the flavor of soy sauce (Liu
etal. 2015). To develop AAB starter cultures, selection criteria
should consider AAB metabolic activities, composition of raw
material, food safety requirements, applied technology, quali-
ty expectations, and desired characteristics of the final product
(Gullo and Giudici 2008; Holzapfel 2002).

A starter culture is defined as a preparation or material
containing large numbers of variable microorganisms, which
will be added to the fermentation of raw materials and produce
a fermented food by steering, accelerating, and completing its
fermentation process (Holzapfel 2002; Leroy and De Vuyst
2004). The microorganisms that come from starter cultures are
the best strains to adapt to raw materials, and they eventually
dominate the vinegar fermentation process. Therefore, accord-
ing to the various kinds of raw materials in vinegar produc-
tion, starter cultures need to be composed of diverse best-
adapted strains. The strains used as starter cultures in industri-
al applications always include LAB, AAB, molds, and yeasts,
and incorporation of these organisms into starter cultures can
enhance the nutritional value of vinegar (Ndoye et al. 2009).
The distinctive contributions of different strain types to vine-
gar production have been summarized. LAB populations
cause rapid acidification of the raw materials through the pro-
duction of organic acids, mainly lactic acid, and improve the
taste of vinegar (Leroy and De Vuyst 2004). AAB populations
mainly contribute in oxidizing ethanol to acetic acid in AAF
of vinegar fermentation. The metabolic activities of yeasts and
the key enzymes supplied by molds play important roles in AF
and saccharification (Wu et al. 2012a). Furthermore, the fila-
mentous fungi Aspergillus sojae and As. oryzae in starter cul-
tures have been studied extensively. Their production of am-
ylase, proteolytic, and other lytic enzymes has been linked to
the transformation of insoluble wheat and soya bean com-
pounds into sugars, free amino acids, water-soluble peptides,
and other degradation products that constitute vinegar
(Furukawa et al. 2013). Without doubt, different types of start-
er cultures contain disparate microorganisms. For example,
Daqu is the starter culture used in the AF stage, and the dom-
inant beneficial microorganisms in Daqu are molds of the
genera Aspergillus, Rhizopus, and Mucor, and yeasts of the
genus Saccharomyces (Chen et al. 2009; Haruta et al. 2006; Li
et al. 2014, 2015). By contrast, the molds of the genera
Aspergillus, Monascus, and Rhizopus are the main fungi in
koji starter preparation (Kitamoto 2002; Liu et al. 2004). To
adapt to a substrate or raw materials, modern starter cultures
are always either multiple or single microorganism strains
(Holzapfel 2002). Single-strain cultures can improve the ac-
curacy of prediction of metabolic activities and process con-
trol and simultaneously increase spontaneous mutation and
spoilage through bacteriophage infection and loss of key
physicochemical properties (Holzapfel 2002; Ndoye et al.
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2009). Mixed-strain cultures are less vulnerable to deteriora-
tion, and they are better suited to most small-scale fermenta-
tions (De Ory et al. 2002; Sokollek et al. 1998a). In addition, if
the starter cultures do not contain sufficient beneficial micro-
organisms, such conditions may lead to turbidity spoilage of
vinegar. Populations and species of yeasts and molds that are
not abundant in Daqu samples may lead to turbidity spoilage
of vinegar because of the reduction in secretions of protease,
glucoamylase, and amylase (Li et al. 2014). Therefore, analy-
sis of the relationship between microbial diversity and starter
culture can provide a better understanding of the role of mi-
croorganisms in contributing to turbidity spoilage of vinegar.
The selection of industrial starter cultures is based on certain
basic features, such as adaptation to growth on a specific raw
material or substrate, rapid acidification, and phage resistance.
For innovations in vinegar production, we should focus on
improving the technology of selecting starter cultures (Caplice
and Fitzgerald 1999; Giudici et al. 2005; Paul Ross et al. 2002;
Sievers et al. 1992).

The relationships among microbial diversity,
compounds, and fermentation method

Previously, most manufacturers used spontaneous fermenta-
tion, which is a process initiated without the use of a starter
inoculum, and it typically results from the competitive activ-
ities of various contaminating microorganisms to brew vine-
gar. To improve fermentation technology, a variety of fermen-
tation methods have been developed in different types of vin-
egar production. The diverse fermentation methods used can
influence the metabolism and growth of microorganisms, as
well as enhance their value in the production of potential ther-
apeutic compounds and aroma compounds (Demain 1981,
1999). For instance, thanks to SAV made from several kinds
of cereal by spontaneous SSF techniques, the indigenous mi-
croorganisms, including 28 LAB isolates, 47 yeast isolates,
and 58 AAB isolates, were discovered from its fermentation
process. Moreover, SAV produces high contents of organic
acids and other compounds because of the fermentation meth-
od used.

The contents of organic acids, phenolic composition, and
aroma compounds in 36 kinds of vinegars have been summa-
rized. According to several classification methods, multiple
fermentation methods that have been used in different types
of vinegar fermentation are summarized in Tables 3, 4, and 5.
Moreover, the microbial diversity involved in AF and AAF of
dissimilar vinegars is summarized in Tables 1 and 2. The
summarized data indicated that more types of dominant strain
species exist in WRV, black rice vinegar (BRV), ZAV, SAV,
kombucha vinegar (KV), PV, WV, ACV, and TBV compared
with other vinegars, and these vinegars also have more types
of compounds than others. Statistical analysis demonstrated
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close relationships among microbial diversity, compounds,
and fermentation methods. For example, compared with other
rice vinegars, a wide variety of dominant strains have been
reported in SAV and ZAV produced by SSF methods, and
more compounds are produced by microbial metabolism dur-
ing fermentation. Moreover, several studies have shown that
back-slopping fermentation is a very useful practice because it
accelerates the growth of beneficial yeasts and increases the
initial number of desirable microorganisms. Although most
AAB are very fastidious microorganisms that need special
care in the production of true AAB starter cultures, the back-
slopping fermentation method is especially advantageous for
inoculating AAB cultures. This method not only can inhibit
the growth of pathogenic microorganisms, but also reduce
spoilage (Millet and Lonvaud Funel 2000). In addition, simply
because Acetobacter pasteurianus is unable to grow at a high
concentration of acetic acid, several vinegars are produced by
semicontinuous acetic acid fermentation methods to solve this
problem (Fregapane et al. 1999).

In SSF, the solid support systems are applied to provide
new methods to manipulate variables that influence the
growth and physiology of microorganisms (Barrios Gonzalez
and Mejia 1996). Among vinegar fermentation methods, SSF
is an ancient food fermentation method that is widespread in
Asian countries to produce C/GV, SAV, and ZAV at a small
scale (Table 5). Nowadays, SSF processes have attracted
much attention because of their potential not only in the food
and pharmaceutical industries, but also in the production of
vinegar. However, to date, no large-scale application of SSF
has been achieved mainly because of limited microbiological
knowledge (Wu et al. 2010). Therefore, the analysis of micro-
bial diversity in vinegar fermentation is also beneficial to im-
prove the fermentation technology.

The relationships among microbial diversity,
compounds, and physicochemical properties

Microbial diversity leads to compound and nutrient differ-
ences in vinegar fermentation, and it affects the final physico-
chemical and volatile flavor composition of vinegar (Chen
and Xu 2010). In industrial vinegar production, the initial
stage of AF often adds enzymes directly to replace the micro-
bial metabolism and speed up the completion of starch sac-
charification. However, the vinegar produced by this method
is obviously not conducive to the formation of flavor sub-
stances, because the microorganisms, especially molds, which
are used to convert starch to sugars, not only can release many
kinds of enzymes, but also can produce secondary metabolites
that are endowed with the aroma quality to vinegar. During the
fermentation process, yeasts and bacterium metabolize su-
crose into a number of organic acids, and the organic acids
(especially acetic acid and lactic acid) contributing to vinegar

aromas are mainly produced during the AAF stage by meta-
bolic activity of LAB and AAB (Sreeramulu et al. 2000).
Numerous compounds are also released in the AF stage, such
as fatty acids, succinic acid, and esters, which are mainly
produced by the metabolism of yeasts (Charles et al. 2000).
Moreover, the type of AF and AAF (inoculated or spontane-
ous) also influences the number of odor-active compounds.
Generally, given that beneficial bacteria are inoculated in vin-
egar fermentation, the spontaneous process contains a lower
percentage of aromatic odor compounds compared with the
inoculated process (Ubeda et al. 2012). Meanwhile, certain
volatile compounds also have been proven to be useful to
characterize the bacterial microbiota involved in the AF and
AAF processes (Zhang et al. 2008).

The microorganism metabolites exert great effects on the
physicochemical properties of vinegar, decreased pH, and in-
creased acidity because of the accumulation of the acidity
secreted by AAB, yeast, LAB, and mold populations (Wu
et al. 2012a). Physicochemical properties can also affect mi-
crobial diversity involved in vinegar production because the
effect of such properties, such as pH and acidity, is responsible
for the activity of microorganisms (Cheng et al. 2014a, b). For
example, after initiation of AAF, the rapid growth of
A. pasteurianus immediately increases acidity, which may in-
hibit the multiplication of other AAB species. The genus
Kloeckera cannot grow at an environment with an ethanol
concentration higher than 4 % (v/v), whereas more tolerant
species, such as the genus Saccharomyces, can grow at an
environment with up to 14 % (v/v) ethanol (Rainieri and
Zambonelli 2009). During the AF stage, the pH values are
suitable for yeast growth and fermentation of sugar into alco-
hol. In the AAF stage, stressful acidity exerts a fungicidal
effect on yeast, so yeasts no longer grow in AAF with increas-
ing acidity; and the pH values during this stage are more
suitable for AAB growth and fermentation (Sossou et al.
2009). Thus, yeasts are usually involved in the AF stage,
whereas AAB show active participation in the AAF stage.
Table 4 shows that the acidity in WRV is 3.5-5.0, the pH is
1.71-3.5, and the residual ethanol is 0.68. By contrast, the
acidity in WV is 4-6, the pH is 2.8-3.4, and the residual
ethanol is 0.6-2. Given that these physicochemical parameters
in WRV are significantly different from those in WV, the dom-
inant species involved in their fermentation processes are also
different (Tables 1 and 2).

The relationship between raw material
and functionality of vinegar

Vinegar is mostly made from fruit, wheat, barley, and/or peas,
which are significant sources of crude protein, carbohydrates,
amino acids, and crude fat. Considering that the proportion of
these raw materials can differ in different types of vinegar, the
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chemical composition and physicochemical features, includ-
ing organic acids, total amino acids, acidity, and pH values,
generally exhibit certain variability. The chemical composi-
tions of raw materials play a vital role in the functionality of
vinegar. Tomatoes are a rich source of vitamins, bioactive
phenolic, and nutrients compounds, including several poly-
phenols (chlorogenic and caffeic acid), a large amount of ca-
rotenoids (b-carotene and lycopene), naringenin, rutin, and a
rich source of trace elements, such as copper, selenium, zinc,
and manganese. Thanks to a large amount of functional com-
pounds in the raw materials, tomato vinegar as an anti-obesity
therapeutic agent can prevent obesity by suppressing lipid
accumulation (Choi et al. 2011; Lee et al. 2013). Onion vine-
gar is a new functional condiment with specific physicochem-
ical properties and particular composition of raw material,
such as high content of minerals, amino acids, and organic
acids (Cheng et al. 2014a, b; Gonzalez Saiz et al. 2008).

Vinegar can bring numerous benefits for people’s health,
such as increased serum antioxidant capacity, improved endo-
thelial function, decreased native plasma protein oxidation,
reduced platelet aggregation, and protection of low-density
lipoprotein against oxidation (Chou et al. 2001). These bene-
ficial effects can be mainly attributed to its content of polyphe-
nols, phenolic compounds, and other functional compounds
that are rooted in the raw material (Xia et al. 2010). For exam-
ple, tea vinegar (kombucha) is produced from tea extract,
which is rich in amino acids, proteins, volatiles, antioxidant
flavonoids, and lipids; it offers cure or control of dandruff,
constipation, bone fractures, cough, cold, diarrhea, toothache,
and hypothermia (Johnston and Gaas 2006). Moreover, grape
is a rich source of flavonoids and other phenolics, so grape
vinegar and grape juices have various health-promoting effects
based on their high antioxidant capacity (Davalos et al. 2005;
Makris et al. 2006; Pala and Toklucu 2013).

The relationship between compounds
and functionality of vinegar

Different contents of compounds in dissimilar types of vinegar
can lead to disparate functions in them. Acetic acid, lactic
acid, citric acid, and phenolic compounds are considered im-
portant compounds that contribute to the aromatic quality of
vinegar, and volatile components of vinegar have been used to
distinguish between quality and defective or adulterated sam-
ples of vinegar (Duran et al. 2010; Lee et al. 2012). Moreover,
thanks to special compounds responsible for the functions of
vinegar, various types of vinegars can be differentiated by the
discrepancy in the contents of compounds (Del Signore 2001).

Studies revealed that several vinegars possess antioxidant
activity, and the main classes of natural antioxidant com-
pounds in nature are phenolic acids and flavonoids in free or
complexed forms (Keser et al. 2013). Antioxidant activity of
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vinegar is well established and generally attributed to poly-
phenols and phenolic compounds, and the antioxidant capac-
ity of vinegar is mainly determined by DPPH free radical
assays (Fan et al. 2009). Table 4 shows that ACV has high
DPPH and total phenolic index (TPI) values, so it has high
antioxidant activity (Budak et al. 2011). The DPPH values of
vinegars fermented from inoculated wines are significantly
lower than those of vinegars produced from spontaneous fer-
mentation. However, the TPI values of vinegars from inocu-
lated wines are obviously higher than the vinegars from spon-
taneous fermentation (Ubeda et al. 2011b). The results indi-
cated that TPI is not the only measure of antioxidant activity,
and many antioxidant compounds contribute to the final anti-
oxidant activity of vinegar. The antioxidant activity of vinegar
has a positive correlation with the contents of flavonoids,
polyphenols, and other compounds. For example, given that
the raw material of honey vinegar is fermented and the con-
tents of flavonoid and polyphenol in vinegar decrease signif-
icantly, the antioxidant activity of honey vinegar decreases
obviously (Dezmirean et al. 2012; Kiiciik et al. 2007).

In addition to antioxidant activity, polyphenols also benefit
endothelin synthesis and oxidation of low-density lipoprotein
cholesterols, promote nitric oxide production, and decrease
platelet aggregation. For instance, red wine vinegar is demon-
strated to lower the blood pressure of humans, because poly-
phenols in it play an important role in vasodilator actions
(Honsho et al. 2005; Takahara et al. 2005). Furthermore,
acetic acid is known to inhibit and destroy a number of
Gram-negative and Gram-positive microorganisms, and high
concentrations of acetic acid are conducive to antimicrobial
activity of vinegar. Similar to kombucha vinegar, which ex-
hibits antimicrobial activity, acetic acid is mainly attributable
to antimicrobial compounds (Greenwalt et al. 2000;
Sreeramulu et al. 2000; Yang et al. 2010).

The compounds of vinegar also play an important role in
other special functions of vinegar. First, some studies revealed
that volatile enrichment markedly reduces spoilage by reduc-
ing fungal spore germination/production (Tzortzakis 2010).
Second, sugarcane vinegar contains antimutagenic compo-
nents, which are estimated to be phenolic, so it may be an
excellent acid seasoning with higher levels of physiological
function (Yoshimoto et al. 2006). Third, sherry vinegar is a
highly appreciated product because of its organoleptic proper-
ties, and the organoleptic properties are acquired from the high
contents of aromatic and phenolic compounds (Garcia Moreno
and Barroso 2002; Parrilla et al. 1999; Tesfaye et al. 2002a).
Finally, persimmon vinegar is considered to be a useful inter-
vention for obesity. In persimmon vinegars, acetic acid, citric
acid, and lactic acid are the organic acids present in the largest
proportion, and they can hinder glycolysis, promote appetite,
and enhance the use of fatty acids (Moon et al. 2010). The
aforementioned facts clearly indicated that the compounds
and functionality of vinegar have a close relationship.
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Conclusion

We summarized the dominant microorganism isolated in dis-
similar vinegars, as well as various physicochemical proper-
ties and crucial compounds in disparate types of vinegar.
Moreover, a scientific understanding of the relationships be-
tween microbial diversity and other determinant factors in
vinegar production was preliminarily elaborated in this re-
view. A summary of microbial diversity, physiological prop-
erties, and compounds in vinegar fermentation process will be
very useful for future technological developments in vinegar
fermentation.

However, based on the summarized data, research on the
physicochemical properties and flavor compounds in fruits
and cereals vinegars are limited (Tables 3 and 4), so more
studies are necessary. To facilitate technological progress in
fermentation; address the problem of limited microbiological
knowledge about the physiology, ecology, and genetic vari-
ability among strains; reduce the variability in fermentation
outcomes qualitatively; and improve the control of vinegar
quality, quantitative knowledge of the microbial diversity of
vinegar is a prerequisite. In addition, more efforts are needed
to summarize and analyze the role of microbial diversity in
vinegar production, and further research is required to estab-
lish microbial ecology and enhance the kinetics of the micro-
biota in diverse types of vinegar.
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