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Abstract A putative glycoside hydrolase family 43 β-
xylosidase/α-arabinofuranosidase (CoXyl43) that promotes
plant biomass saccharification was isolated via functional
screening of a compost microbial metagenomic library and char-
acterized. CoXyl43 promoted the saccharification of plant bio-
masses, including xylans (xylan and arabinoxylan), rice straw,
and Erianthus, by degrading xylooligosaccharide residues to
monosaccharide residues. The recombinant CoXyl43 protein
exhibited both β-xylosidase and α-arabinofuranosidase activi-
ties for chromogenic substrates, with optimal activity at pH 7.5
and 55 °C. Both of these activities were inactivated by ethanol,
dimethylsulfoxide, and zinc and copper ions but were activated
by manganese ions. Only the β-xylosidase activity of recombi-
nant CoXyl43 was enhanced in the presence of calcium ions.
These results indicate that CoXyl43 exhibits unique enzymatic
properties useful for biomass saccharification.
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Introduction

The replacement of fossil fuels on a global scale has the
potential to solve multiple environmental problems in
addition to fossil fuel depletion. Lignocellulosic biomass
materials, such as various agricultural residues (e.g., rice
straw, corn stover, and timber from forest thinning), can
be converted into renewable biofuels and biochemicals.
Lignocellulosic biomass is composed of cellulose, hemi-
celluloses, and lignin (Lynd et al. 2002) and is available
in large quantities. Cellulose consists of linear chains of
β-1,4-linked glucose and is the most abundant compo-
nent of lignocellulosic biomass. Xylans are hemicellu-
loses and are the most common hetero-polysaccharides
in lignocellulosic biomass (Saha 2003). Xylans are com-
posed of homopolymeric backbone chains of β-1,4-
linked xylopyranose units and may contain arabinose,
glucuronic acid, and other small sugars (Table 1)
(Kormelink and Voragen 1993; Saha 2003). In natural
environments, lignocellulosic biomass is degraded by en-
zymes such as glycoside hydrolase, which is produced
by environmental microorganisms. For example, cellu-
lose is hydrolyzed by cellobiohydrolase (Teeri et al.
1983, 1987) and endo-β-1,4-glucanase (Penttilä et al.
1986; Okada et al. 1998; Saloheimo et al. 1988). Xylans
are hydrolyzed by xylanase (Tenkanen et al. 1992; Xu
et al. 1998) and xylosidase (Shallom et al. 2005). These
glycoside hydrolases are vital for the saccharification and
degradation of plant biomass.

The filamentous fungus, Trichoderma reesei (also
known as Hypocrea jecorina), produces cellulases and
hemicellulases in large quantities and efficiently degrades
cellulosic biomass materials. Many mutants that produce
large amounts of cellulase have been generated from
wild-type T. reesei (Peterson and Nevalainen 2012).
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T. reesei PC-3-7, isolated from the QM9414 strain, is a
cellulose hyperproducing mutant (Nogawa et al. 2001).
Although T. reesei produces large amounts of cellulases
and hemicellulases, these enzymes are too costly for use
in commercial cellulosic biomass saccharification. There-
fore, the discovery of new cellulases is important to fa-
cilitate biomass saccharification.

Although environmental microorganisms can be used
to produce various glycoside hydrolases for the commer-
cial degradation of lignocellulosic biomass, more than
99 % of environmental microorganisms are difficult to
culture and have not been fully characterized (Torsvik
and Øvreås 2002; Kimura et al. 2010). This indicates that
the vast majority of microbial resources have not been
accessed for biotechnology (Handelsman et al. 1998).
This limitation can be overcome to a large extent by
metagenomics, which is the culture-independent genomic
analysis of microorganisms. Metagenomics has been used
to screen for novel microbial enzymes in forest soil (Lee
et al. 2008), activated sludge (Suenaga et al. 2007), ma-
rine environments (Okamura et al. 2010), and mammalian
rumen (Beloqui et al. 2006; Ferrer et al. 2012).

In this study, a metagenomic approach was used to
identify an enzyme that acts synergistically with T. reesei
cellulase enzymes to improve the efficiency of lignocellu-
lose saccharification. Genes encoding glycoside hydro-
lases were isolated from a compost metagenomic library
using a chromogenic (p-nitrophenyl (pNP)) substrate mix-
ture (pNP-β-D-lactopyranoside, pNP-β-D-xylopyrano-
side, pNP-β-D-mannopyranoside, and pNP-β-D-
galactopyranoside). Among the isolated hydrolases was a
putative glycoside hydrolase family 43 (GH43) protein
(named CoXyl43) that enhanced the saccharification of
lignocellulosic biomass and xylans using T. reesei cellu-
lase enzymes. CoXyl43 had bifunctional β-xylosidase/α-
arabinofuranosidase activity and was able to hydrolyze
xylooligosaccharide intermediates produced by T. reesei
cellulases and hemicellulases into xylose.

Materials and methods

Materials

Xylan from birch wood, pNP-α-L-arabinofuranoside, pNP-α-
L-arabinopyranoside, pNP-β-L-arabinopyranoside, pNP-β-
D-cellobioside, pNP-α-L-fucopyranoside, pNP-β-D-
fucopyranoside, pNP-β-L-fucopyranoside, pNP-β-D-
galactopyranoside, pNP-β-D-glucopyranoside, pNP-β-D-
mannopyranoside, pNP-α-L-rhamnopyranoside, and pNP-α-
D-xylopyranoside were purchased from Sigma-Aldrich (St.
Louis, MO, USA). pNP-α-D-galactopyranoside, pNP-α-D-
glucopyranoside, and pNP-β-D-xylopyranoside were pur-
chased from Nacalai Tesque (Kyoto, Japan). pNP-α-D-
mannopyranoside was purchased from Wako Pure Chemical
Industries (Osaka, Japan). pNP-β-D-xylopyranoside, pNP-α-
L-arabinofuranoside, pNP-β-D-cellobioside, pNP-β-D-
fucopyranoside, pNP-β-L-fucopyranoside, pNP-β-D-
galactopyranoside, pNP-α-D-galactopyranoside, and pNP-β-
D-glucopyranoside were dissolved in water at a final concen-
tration of 20 mM. pNP-α-L-arabinopyranoside, pNP-β-L-
arabinopyranoside, pNP-α-L-fucopyranoside, pNP-β-D-
mannopyranoside, pNP-α-D-mannopyranoside, pNP-α-L-
rhamnopyranoside, pNP-α-D-xylopyranoside, and pNP-α-
D-glucopyranoside were dissolved in 25 % dimethyl sulfox-
ide (DMSO) at a final concentration of 20 mM. Arabinoxylan
from wheat flour (low viscosity) was obtained from
Megazyme (Wicklow, Ireland). Arabinofuranosyl-
xylooligosaccharides, O-α-L-arabinofuranosyl-(1→3)-O-β-
xylopyranosyl-(1→4)-D-xylopyranose (Araf-X2) and O-β-
D-xylopyranosyl-(1→4)-[O-α-L-arabinofuranosyl-(1→3)]-
O-β-xylopyranosyl-(1→4)-D-xylopyranose (Araf-X3) were
prepared as reported previously (Fujimoto et al. 2004).

Biomass pretreatment

Pretreated plant biomass for enzymatic saccharification was
prepared by the alkaline treatment of rice straw or Erianthus

Table 1 Monosaccharide compositions of alkaline-pretreated rice straw, alkaline-pretreated Erianthus, birch wood xylan, and wheat arabinoxylan

Alkaline-pretreated
rice straw

Alkaline-pretreated Erianthus Birch wood xylan Wheat arabinoxylan

Monosaccharide
composition (%)

Glucose 66.1 70.9 1.4 0.3

Xylose 26.7 24.5 89.3 65.8

Arabinose 5.2 3.5 1.0 33.5

Mannose 0.2 0.1 n.d. 0.1

Galactose 1.4 0.8 n.d. 0.2

Rhamnose 0.3 0.1 n.d. n.d.

others 0.1 0.1 8.3 n.d.

References This study This study Kormelink and Voragen (1993) Gruppen et al. (1992)

n.d. not detected
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as described previously with some modifications (Kawai et al.
2012). Alkaline-pretreated rice straw was treated with 0.5 %
sodium hydroxide at 100 °C for 5 min. Alkaline-pretreated
Erianthus was treated with 1 % sodium hydroxide at 120 °C
for 5 min. The compositions of alkaline-pretreated rice straw
and Erianthus were determined by acid hydrolysis and high-
performance liquid chromatography (HPLC) according to the
procedure published by NREL (http://www.nrel.gov/biomass/
analytical_procedures.html). The monosaccharide
compositions of alkaline-pretreated rice straw and Erianthus
are listed in Table 1.

Construction of metagenomic library and screening
of glycoside hydrolases with a positive effect on biomass
saccharification

Metagenomic DNA extracted from composts was integrated
into p18GFP plasmid vectors as described previously
(Uchiyama et al. 2013).

Escherichia coli DH10B (Life Technologies Corporation,
Carlsbad, CA, USA) harboring the metagenomic library were
selected on Luria-Bertani (LB) agar plates containing ampicillin
(LB + Amp), and 20 colonies were inoculated together into the
same well of 96-well plates containing 900 μl LB + Amp me-
dium with 10 μM isopropyl thiogalactoside (IPTG). After over-
night cultivation at 37 °C, cells were collected by centrifugation
(4000 rpm, 5 min) and resuspended in 220 μl Milli-Q water. Ten
microliters of each cell suspension was mixed with 10 μl of a
pNP substrate mixture (1 mM pNP-β-D-lactopyranoside, 1 mM
pNP-β-D-xylopyranoside, 1 mM pNP-β-D-mannopyranoside,
and 1 mM pNP-β-D-galactopyranoside) and incubated over-
night at room temperature. After incubation, wells that had de-
veloped a yellow color, derived from pNP, were selected (pNP
substrate screening). To isolate individual clones from the select-
ed wells, a 20-clone mixture was diluted and cultured on LB +
Amp plates. Clones that degraded the pNP substrate were select-
ed (pNP substrate positive clones).

pNP substrate positive clones were then inoculated into
900 μl LB + Amp medium containing 10 μM IPTG. After
overnight cultivation at 37 °C, cells were collected and resus-
pended in 145 μl Milli-Q water and 10 μl of 10× BugBuster
(Novagen, Madison, WI, USA). The cell suspensions were in-
cubated for 30 min at room temperature for protein extraction,
and soluble fractions (4000 rpm, 20 min, 4 °C) of cell lysates
were collected. Ten-microliter aliquots of the soluble fractions
were mixed with 100 μl biomass premix (100 mM sodium
acetate buffer (pH 5.0), 42.2 % (w/v) alkaline-treated rice straw,
0.02% sodium azide), 70μl 100mM sodium acetate buffer (pH
5.0), and 20 μl 10 μg/ml cellulase CTec2 (Novozyme,
Bagsværd, Denmark) and incubated overnight at 37 °C. To de-
termine the polysaccharide degradation activity, reducing sugars
were measured using the 3,5-dinitrosalicylic acid (DNS) reagent
method (Miller 1959). Inserted DNA fragments encoding

putative glycoside hydrolase, termed coxyl43, that had a positive
effect on biomass saccharification were sequenced. The nucleo-
tide sequence of coxyl43 was deposited in DDBJ/EMBL/
GenBank under accession number LC025936.

Cloning, expression, and purification of glycoside
hydrolase

To express the mature region of CoXyl43 in E. coli, the
coxyl43 gene was synthesized in its codon-optimized
form using DNA2.0 Inc. (Menlo Park, CA, USA)
(DDBJ/EMBL/GenBank accession number LC027446)
and cloned into a pET-28b vector (Novagen) digested
with NdeI and XhoI. E. coli BL21(DE3) (NIPPON
GENE, Tokyo, Japan) harboring the pET28b-putative
glycoside hydrolase gene was cultured overnight in
100 ml Overnight Expression Instant LB medium
(Novagen) containing 20 μg/ml kanamycin at 37 °C. Af-
ter cultivation, the cells were harvested by centrifugation
(5000 rpm, 3 min). The cell pellet was resuspended in
BugBuster (Novagen) with Benzonase (Novagen) and in-
cubated for 40 min at room temperature. Cell debris was
removed by centrifugation (10,000 rpm, 20 min) at 4 °C.
The supernatant was applied to a HisTrap HP Ni2+-affin-
ity column (GE Healthcare, Buckinghamshire, England)
to purify the recombinant enzyme. The recombinant pro-
tein was eluted with elution buffer (20 mM sodium phos-
phate, 500 mM NaCl, 500 mM imidazole, pH 7.4) and
concentrated using an ultrafiltration membrane (Amicon
Ultra 10K cutoff, Millipore, Darmstadt, Germany). The
concentrated recombinant enzyme was then applied to a
HiLoad 16/60 Superdex 200 prep-grade gel-filtration col-
umn (GE Healthcare) and eluted with PBS buffer
(137 mM NaCl, 2.7 mM KCl, 10 mM disodium hydro-
gen phosphate, 1.8 mM potassium dihydrogen phosphate:
pH 7.4). The enzyme fraction was concentrated using an
ultrafiltration membrane (Amicon Ultra 10K cutoff,
Millipore).

Biomass saccharification

Xylans (xylan from birch wood or arabinoxylan from wheat)
were dissolved inMilli-Q water to a final concentration of 2%
and incubated at 98 °C for 5 min with agitation (1000 rpm)
using a Thermomixer comfort (Eppendorf, Hamburg, Germa-
ny). After centrifugation (8000 rpm for 5 min), the supernatant
was used as a source of xylans or arabinoxylans.

Culture supernatant of T. reesei PC-3-7 (ATCC 66589)
(T. reesei PC-3-7 was cultured in the liquid medium contain-
ing Avicel) was used as a source of cellulases (Kawai et al.
2012; Kawamori et al. 1986). Saccharification of xylans by
cellulases was performed in 200-μl tubes in 50 mM sodium
phosphate buffer (pH 6.0) with or without CoXyl43. For xylan
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saccharification, 20 μl xylan solution, 10 μl 50 μg/ml cellu-
lases (or 10 μl sterile water), and 10 μl 50 μg/ml CoXyl43 in
200 mM sodium phosphate buffer (pH 6.0) (or 10 μl 200 mM
sodium phosphate buffer) were mixed and incubated at 40 °C
for 24 h. For arabinoxylan saccharification, 20 μl
arabinoxylan solution, 10 μl 50 μg/ml cellulases (or 10 μl
sterile water), and 10 μl 50 μg/ml CoXyl43 in 200 mM sodi-
um phosphate buffer (pH 6.0) (or 10 μl 200 mM sodium
phosphate buffer) were mixed and incubated at 40 °C for
24 h. After incubation, the produced sugars were measured
by DNS and analyzed using a high-performance ion chroma-
tography system (HPIC) as described previously (Nakazawa
et al. 2012). The degree of saccharification was calculated
relative to the complete saccharification of xylans by
phenol-sulfuric acid reaction (Dubois et al. 1956). Briefly,
200 μl 5 % phenol and 200 μl diluted xylan or arabinoxylan
solutions were mixed, and 1 ml concentrated sulfuric acid was
then added. After incubation at room temperature for 20 min,
the absorbance was measured at 490 nm. A standard curve
was constructed using D-xylose.

Biomass (alkaline-treated rice straw and Erianthus)
saccharification by cellulases (T. reesei PC-3-7 strain)
and CoXyl43 was performed in 20-ml plastic bottles.
The total reaction volume was 2 ml. The reaction mixture
contained 0.54 g alkaline-treated rice straw (water con-
tent: 81.4 %; final concentration 5 % (w/v)) or 0.56 g
alkaline-treated Erianthus (water content: 82.1 %, final
concentration 5 % (w/v)), 500 μl of 400 mM sodium
phosphate buffer (pH 6.0), 10 μl 0.5 mg/ml CoXyl43
(or 10 μl sterile water), 117.6 μl 1.7 mg/ml cellulases
(culture supernatant of T. reesei PC-3-7), 20 μl 2 % sodi-
um azide, and sterile water. The reaction was performed at
40 °C with shaking at 150 rpm for 72 h. To inactivate the
enzymes, 200 μl supernatant were incubated at 100 °C for
5 min. The produced sugars were measured by DNS and
analyzed using an HPIC system as described previously
(Nakazawa et al. 2012). A standard curve for DNS was
constructed using D-glucose.

Substrate specificity

The total reaction volume was 20 μl and contained 0.15 μg of
the recombinant enzyme, 50 mM sodium phosphate buffer
(pH 7.5), and 5 mM pNP-substrate (pNP-β-D-xylopyrano-
side, pNP-α-D-xylopyranoside, pNP-α-L-arabinofuranoside,
pNP-α-L-arabinopyranoside, pNP-β-L-arabinopyranoside, p-
NP-β-D-cellobioside, pNP-α-L-fucopyranoside, pNP-β-D-
fucopyranoside, pNP-β-L-fucopyranoside, pNP-α-D-
galactopyranoside, pNP-β-D-galactopyranoside, pNP-α-D-
glucopyranoside, pNP-β-D-glucopyranoside, pNP-α-D-
mannopyranoside, pNP-β-D-mannopyranoside, or pNP-α-
L-rhamnopyranoside). The reaction mixture was incubated
at 50 °C for 5 min. To stop the reaction, 50 μl of a 1.0-

M sodium bicarbonate solution were added. The con-
centration of released pNP was determined by measur-
ing the solution absorbance at 405 nm (Infinite M200
PRO, Tecan (Zurich, Switzerland)).

The substrate specificity of CoXyl43 for xylan and
a r ab inoxy l an was ana l yz ed u s ing xy l an and
arabinoxylan solutions (described above) in a final reac-
tion volume of 20 μl. The reaction mixture contained
0.2 μg of the recombinant enzyme, 10 μl of the xylan
or arabinoxylan solution, and 50 mM sodium phosphate
buffer (pH 7.5). The reaction mixture was incubated at
50 °C for 10 min. The produced sugars were measured
by DNS.

Arabinofuranosyl-xylooligosaccharide hydrolysis

Each reaction (100 μl final volume) contained 25 μg of the
recombinant enzyme, 0.3 % Araf-X2 or Araf-X3, and 50 mM
sodium phosphate buffer (pH 7.5). Reaction mixtures were
incubated at 50 °C for 24 h. The produced sugars were ana-
lyzed by HPIC as described previously (Nakazawa et al.
2012).

Effects of pH and temperature on hydrolysis activity

The optimum pH for recombinant glycoside hydrolase
activity with 3 mM pNP-β-D-xylopyranoside was eval-
uated at 40 °C for 5 min in McIlvaine’s buffer ranging
from pH 3.0 to pH 9.0 (McIlvaine 1921). The optimum
temperature for recombinant glycoside hydrolase activity
with 2.86 mM pNP-β-D-xylopyranoside in McIlvaine
buffer (pH 7.5) was evaluated from 20 to 80 °C for
5 min.

Kinetic analyses

The kinetic parameters of CoXyl43 for chromogenic sub-
strates were determined using 0.025 μg recombinant
CoXyl43 at pNP-β-D-xylopyranoside or pNP-α-L-
arabinofuranoside concentrations from 0.125 to 8 mM in
50 mM sodium phosphate buffer (pH 7.5) at 50 °C for
5 min. The total reaction volume was 20 μl. To stop the
reaction, 50 μl of a 1.0-M sodium bicarbonate solution
were added. The kinetic parameters of CoXyl43 for
xylobiose were determined using 0.5 μg recombinant
CoXyl43 at xylobiose concentrations from 0.125 to
50 mM in 50 mM sodium phosphate buffer (pH 7.5) at
50 °C for 5 min. The reaction was stopped by heating the
reaction mixture to 98 °C for 10 min. The xylose concen-
tration was determined using a D-Xylose assay kit obtain-
ed from Megazyme (Wicklow, Ireland). Kinetic constants
(Km and kcat) were calculated using a nonlinear regression
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of the Michaelis-Menten equation using GraphPad Prism
version 5.0 (GraphPad Software, La Jolla, CA, USA).

Effects of organic solvents, metal ions, and chelating agent

The effects of additives including organic solvents (ethanol and
DMSO), metal ions (Ca2+, Mg2+, Mn2+, Zn2+, Cu2+, and Fe2+),
and ethylenediaminetetraacetic acid (EDTA) were evaluated by
measuring enzyme activity in the presence of these additiveswith
5 mM pNP-β-D-xylopyranoside or pNP-α-L-arabinofuranoside
and 50 mM sodium phosphate buffer (pH 7.5) at 50 °C
for 5 min following the measurement of pNP release.

Results

Screening of clones with glycoside hydrolase activity
from the metagenomic library

About 40 clones exhibiting glycoside hydrolase activity in a
mixture of pNP substrates (mixture of pNP-β-D-
lactopyranoside, pNP-β-D-xylopyranoside, pNP-β-D-
mannopyranoside, and pNP-β-D-galactopyranoside) were
screened from the metagenomic library (approximately 30,
000 colonies). Among these pNP substrate positive clones,
one showing a positive effect on biomass saccharification
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Fig. 1 Phylogenetic tree of GH43 enzymes. The amino acid sequences
of GH43 enzymes sharing a high sequence similarity with CoXyl43 were
obtained from UniProtKB (www.uniprot.org). Sequence alignment was
performed using ClustalW (http://clustalw.ddbj.nig.ac.jp/), and the
phylogenetic tree was constructed using FigTree v1.4.2 (http://tree.bio.
ed.ac.uk/software/figtree/). UniProtKB accession numbers are as follows:
Bacteroides ovatus Xsa, P49943; Prevotella ruminicola XynB, P48791;
Bacillus subtilis XynD, Q45071; Paenibacillus polymyxa XynD,
P45796; Clostridium stercorarium XylA, P48790; Streptomyces
chartreusis Afase, P82594; Butyrivibrio fibrisolvens XylB, P45982;
Escherichia coli YagH, P77713; B. subtilis XynB, P94489; Prevotella
ruminicola β-xylosidase, Q9WXE8; B. subtilis Abn2, P42293;
Thermotoga petrophila AbnA, A5IKD4; B. subtilis AbnA, P94522;

Geobacillus stearothermophilus AbnB, B3EYM8; Geobacillus
thermodenitrificans abn-ts, Q93HT9; Aspergillus nidulans AbnA,
Q5BA96; Aspergillus terreus AbnA, Q0CS14; Aspergillus fumigatus
AbnA, Q4WYX7; Neosartorya fischeri AbnA, A1D5W1; Aspergillus
clavatus AbnA, A1CLG4; Aspergillus niger AbnA, A2QT85; A. niger
AbnC, A5AAG2; Aspergillus oryzaeAbnC, Q2U1X8;N. fischeriAbnC,
A1DKY5; A. fumigatus AbnC, Q4W930; A. clavatus AbnC, A1CN18;
A. fumigatus AbnB, B0XTS5; N. fischeri AbnB, A1DHW8; A. oryzae
AbnB, Q2UI74; Aspergillus flavus AbnB, B8N803; A. nidulans AbnB,
Q5AZC8; A. terreus AbnB, Q0CY27. EC numbers: 3.2.1.37, β-
xylosidase; 3.2.1.55, α-L-arabinofuranosidase; 3.2.1.99, endo-1,5-α-L-
arabinanase
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was isolated. Plasmid DNAwas extracted from this clone, and
the inserted DNAwas sequenced. A gene encoding a putative
glycoside hydrolase, named CoXyl43, was isolated from the
sequencing data. CoXyl43 contains an open reading frame of
1107 bp encoding a putative protein of 369 amino acids. The
N-terminus of the mature protein may begin at the 47th resi-
due from the first Met, because the first 46 amino acids from
the N-terminus are predicted to be a signal sequence. N-ter-
minal proteolytic cleavage resulted in a protein of 323
amino acid residues with a predicted molecular mass of
36,186 Da. CoXyl43 was predicted to belong to the

glycoside hydrolase family 43 (GH43), which contains β-
xylosidase (EC 3.2.1.37) (Shallom et al. 2005; Brüx et al.
2006), α-arabinofuranosidase (EC 3.2.1.55) (Flipphi et al.
1993b), and endo-α-arabinase (EC 3.2.1.99) (Flipphi et al.
1993a). Comparisons against the BLAST database (NCBI
BLAST: ht tp : / /b las t .ncbi .n lm.nih .gov/Blas t .cg i ,
nonredundant UniProtKB/SwissProt sequences) revealed
that CoXyl43 is similar to Bacteroides ovatus Xsa (identi-
ty: 63 %, similarity: 75 %) (Whitehead 1995) and
Prevotella ruminicola XynB (identity: 57 %, similarity:
69 %) (Gasparic et al. 1995), both of which belong to the
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Fig. 2 Synergism between
T. reesei cellulases and CoXyl43
in xylan saccharification. T. reesei
PC-3-7 cellulases and CoXyl43,
either in combination (+PC3-7 +
CoXyl43) or alone (+PC3-7 -
CoXyl43, −PC3-7 +CoXyl43),
were incubated with birch wood
xylan (a and c) or wheat flour
arabinoxylan (b and d) at 40 °C
for 24 h. Saccharification yields
(a and b) and HPIC
chromatograms of the
hydrolysates (c and d) are shown
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GH43 class of carbohydrate-active enzymes in the CAZy
database (Fig. 1). Both B. ovatus Xsa and P. ruminicola
X y n B a r e b i f u n c t i o n a l β - x y l o s i d a s e s / α -
arabinofuranosidases (EC 3.2.1.37, EC 3.2.1.55). CoXyl43
had a relatively low degree of similarity with the charac-
terized GH43 arabinanases (EC 3.2.1.99) (Fig. 1).

The recombinant CoXyl43 enzyme was expressed in
E. coli for characterization. His-tagged recombinant
CoXyl43 was purified using Ni2+-affinity chromatography
and gel filtration.

Synergism of cellulases and CoXyl43 on biomass
saccharification

CoXyl43 and PC-3-7 cellulases (alone or combined)
were incubated with birch wood xylan (Fig. 2a, c) or
wheat flour arabinoxylan (Fig. 2b, d) to evaluate any
synergistic effects on saccharification. Some reducing
sugar (xylose) was released from both xylan and
arabinoxylan in the presence of CoXyl43 alone, sug-
gesting that CoXyl43 has a slight exo-xylanase activity
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Fig. 3 Synergism between
T. reesei cellulases and CoXyl43
in NaOH-pretreated biomass
saccharification. PC-3-7
cellulases and CoXyl43, either in
combination (+PC3-7 +CoXyl43)
or alone (+PC3-7 -CoXyl43,
−PC3-7 +CoXyl43) were
incubated with NaOH-pretreated
rice straw (a and c) and Erianthus
(b and c) at 40 °C for 72 h. HPIC
chromatograms (a and b) and
saccharification yields (c) are
shown
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with xylan and arabinoxylan (left panels of Fig. 2c, d).
With T. reesei cellulases (PC-3-7), saccharification
yields of xylan and arabinoxylan were approximately
36 and 43 %, respectively, and xylooligosaccharide
(such as xylobiose and xylotriose) accumulation was
detected (middle panels of Fig. 2c, d). When CoXyl43
was added to a xylan saccharification solution contain-
i n g PC -3 - 7 c e l l u l a s e s , t h e a c cumu l a t i o n o f
xylooligosaccharides was negligible (right panels of
Fig. 2c, d), resulting in a significant increase in sacchar-
ification yields (Fig. 2a, b).

Next, the synergistic effects of CoXyl43 with PC-3-7
cellulases in NaOH-pretreated rice straw and Erianthus
saccharification were investigated (Fig. 3). As with xylan,
some xylose was released from NaOH-pretreated rice
straw and Erianthus in the presence of CoXyl43 alone
(Fig. 3a, b). Accumulation of xylooligosaccharides and
some cellooligosaccharides, including cellobiose, was al-
so observed during the saccharification of NaOH-
pretreated rice straw and Erianthus using PC-3-7 cellu-
lases (Fig. 3a, b). The addition of CoXyl43 dramatically
reduced the amounts of accumulated xylooligosaccharides
(Fig. 3a, b), and the relative saccharification yield in-
creased by approximately 5 % (Fig. 3c). These results
indicated that CoXyl43 could almost completely hydro-
lyze the xylooligosaccharides derived from plant bio-
masses into xylose.

Characterization of recombinant CoXyl43

The hydrolytic activity of recombinant CoXyl43 toward
various chromogenic substrates was measured as a

means of characterizing substrate specificity (Table 2).
CoXyl43 exhibited hydrolytic activity with pNP-β-D-xy-
lopyranoside and pNP-α-L-arabinofuranoside but not
wi th other pNP subst ra tes (such as pNP-β -D-
mannopyranoside and pNP-β-D-galactopyranoside)
(Table 2). The specific activities of recombinant
CoXyl43 toward birch wood xylan and wheat
arabinoxylan were 22.0 U/mg protein and 4.2 U/mg pro-
tein, respectively. One unit was defined as the amount of
enzyme that released 1 μmol of xylose equivalents as
reducing sugars per minute. CoXyl43 showed substantial
activity between pH 5.5 and 9.0 and between 20 and
60 °C (Fig. 4a, b). The CoXyl43 activity with pNP-β-
D-xylopyranoside was maximal at pH 7.5 and 55 °C.

Table 2 Substrate specificity of recombinant CoXyl43

Substrate Relative activity (%)

pNP-β-D-xylopyranoside 100.0±2.5

pNP-α-D-xylopyranoside <5

pNP-α-L-arabinofuranoside 119.9±3.6

pNP-α-L-arabinopyranoside <5

pNP-β-L-arabinopyranoside <5

pNP-β-D-cellobioside <5

pNP-α-L-fucopyranoside <5

pNP-β-D-fucopyranoside <5

pNP-β-L-fucopyranoside <5

pNP-α-D-galactopyranoside <5

pNP-β-D-galactopyranoside <5

pNP-α-D-glucopyranoside <5

pNP-β-D-glucopyranoside <5

pNP-α-D-mannopyranoside <5

pNP-β-D-mannopyranoside <5

pNP-α-L-rhamnopyranoside <5
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Fig. 4 The activity of recombinant CoXyl43 is shown at (a) various pH
values and (b) temperatures.Error bars represent standard deviations (SD)
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We also investigated the hydrolytic activity of CoXyl43
against the arabinofuranosyl-xylooligosaccharides Araf-
X2 and Araf-X3, which are degradation products of
arabinoxylan (Fujimoto et al. 2004). Although CoXyl43
partially degraded Araf-X2 into xylose and arabinose
(Fig. 5a), little activity was observed against Araf-X3
(Fig. 5b). These results indicate that CoXyl43 was able to
degrade both xylooligosaccharides and the arabinose side
chain of Araf-X2 (Fig. 5c). However, the xylose residue at
the nonreducing end of Araf-X3 inhibited the release of an

arabinofuranose residue, thereby inhibiting hydrolysis of
the xylotriose backbone of Araf-X3 (Fig. 5d).

Kinetic constants of CoXyl43

The kinetic parameters (Michaelis constant: Km, turnover
number: kcat, and kcat/Km) of CoXyl43 were measured for p-
NP-β-D-xylopyranoside, pNP-α-L-arabinofuranoside, and
xylobiose (Table 3). The Km of CoXyl43 for xylobiose was
2.02, and the kcat for xylobiose was 17.82. TheKm of CoXyl43
f o r pNP -β - D - x y l o p y r a n o s i d e a n d pNP -α - L -
arabinofuranoside were 1.43 and 2.60, respectively, sug-
gesting that pNP-β-D-xylopyranoside was the preferred
substrate for CoXyl43. However, the kcat of CoXyl43 for
pNP-β-D-xylopyranoside was much lower than that for
pNP-α-L-arabinofuranoside, and the catalytic efficiency
constant kcat/Km for pNP-β-D-xylopyranoside was almost
equivalent to that for pNP-α-L-arabinofuranoside.
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Fig. 5 Arabinofuranosyl-
xylooligosaccharide hydrolysis
by CoXyl43. (a) O-α-L-
arabinofuranosyl-(1→3)-O-
βxylopyranosyl-(1→4)-D-
xylopyranose (Araf-X2) and (b)
O-β-D-xylopyranosyl-(1→4)-
[O-α-L-arabinofuranosyl-(1→
3)]-O-β-xylopyranosyl-(1→4)-
D-xylopyranose (Araf-X3) were
hydrolyzed by CoXyl43. The
predicted mechanisms of Araf-X2
and Araf-X3 hydrolysis using
CoXyl43 are shown in c and d,
respectively

Table 3 Steady-state kinetic constants of recombinant CoXyl43

Substrate Km (mM) kcat (s
−1) kcat/Km

pNP-β-D-xylopyranoside 1.43±0.07 4.60±0.08 3.21

pNP-α-L-arabinofuranoside 2.60±0.13 7.91±0.17 3.04

Xylobiose 2.02±0.06 17.82±0.14 8.83

Appl Microbiol Biotechnol (2015) 99:8943–8954 8951



Almost all of the GH43 bifunctional β-xylosidase/α-
arabinofuranosidases have preferential activities. Some
enzymes show much higher activity toward pNP-β-D-
xylopyranoside than toward pNP-α-L-arabinofuranoside
(Dougherty et al. 2012; Jordan et al. 2013; Shallom
et al. 2005; Viborg et al. 2013; Whitehead and Cotta
2001; Kim and Yoon 2010; Zhou et al. 2012b) while
the reverse relationship has been reported for other en-
zymes of the same family (Sakka et al. 1993; Shao and
Wiegel 1992; Utt et al. 1991; Wagschal et al. 2009).
Therefore, the almost equivalent catalytic efficiency con-
stants for pNP-β-D-xylopyranoside and pNP-α-L-
arabinofuranoside are unique to CoXyl43.

Effects of various organic solvents, metal ions,
and chelating agent on CoXyl43 activity

The effects of various organic solvents, metal ions, and EDTA
chelating agent on CoXyl43 were investigated (Table 4). Sig-
nificant inactivation of CoXyl43 was observed in the presence
of ethanol, DMSO, ZnCl2, and CuSO4. The CoXyl43 β-
xylosidase activity was decreased by about 45 % with the

addit ion of 100 mM EDTA, but no effect on α-
arabinofuranosidase activity was observed with the addition
of EDTA. The addition of MnCl2 resulted in a slight activity
enhancement of bothβ-xylosidase andα-arabinofuranosidase
activities (156.6 and 162.5 %, respectively). Significant acti-
vation of the β-xylosidase activity of CoXyl43 was observed
upon addition of Ca2+, CaCl2, or CaSO4 (Table 4). The β-
xylosidase activity was approximately 3-fold higher in the
presence of 0.01 mM CaCl2 or CaSO4 and more than 5-fold
higher in the presence of 1 mM CaCl2 or CaSO4. The β-
xylosidase activity for 12.5 mM xylobiose at pH 7.5 (50 °C
for 5 min) was enhanced by about 2.4-fold by addition of
1 mM CaCl2. In contrast, the α-arabinofuranosidase activity
of CoXyl43 was enhanced by only about 25% in the presence
of 1 mM CaCl2 or CaSO4.

Discussion

Metagenomic analyses of environmental microorganisms are
a highly effective means of screening for useful genes such as
those suitable for biomass utilization and bioremediation. In
the present study, we isolated a new β-xylosidase/α-
arabinofuranosidase, CoXyl43, from a compost metagenome
focusing on biomass saccharification. CoXyl43 displayed
both β-D-xylosidase and α-L-arabinofuranosidase activities,
similar to other members of the GH43 family of dual-
functional enzymes and also showed xylooligosaccharide hy-
drolysis activity. CoXyl43 degraded xylooligosaccharides de-
rived from plant biomasses, including both xylobiose and
xylotriose, into xylose. Although CoXyl43 displayed high
α-arabinofuranosidase activi ty toward pNP-α-L-
arabinofuranoside, CoXyl43 removed few arabinofuranosyl
units from the backbone chains of arabinoxylan and Araf-X3
(Figs. 2d and 5b). These results suggest that the backbone
chains of β-1,4-linked xylopyranose units interfere with α-
arabinofuranosidase activity toward the arabinofuranosyl
units of arabinoxylan and Araf-X3.

In recent years, many genes encoding glycoside hydrolases
have been obtained using metagenomic approaches. For exam-
ple, Dougherty et al. (2012) isolated and characterized several
endo-xylanases, α-fucosidase, and a bifunctional β-xylosidase/
α-arabinofuranosidase from a compost metagenome. In addi-
tion, various cellulases and hemicellulases, including endo-
glucanase (Pang et al. 2009; Alvarez et al. 2013), endo-
xylanase (Gong et al. 2013), β-glucosidase/xylosidase (Zhou
et al. 2012a; Bao et al. 2012), β-glucosidases (Uchiyama et al.
2013; McAndrew et al. 2013), β-galactosidase (Gupta et al.
2012), and β-xylosidase/α-arabinofuranosidase (Zhou et al.
2012b), were isolated from soil, compost, hot spring, or rumen
using metagenomic methods. It was reported previously that a
GH family 3 β-glucosidase/xylosidase and GH43 β-D-
xylosidase/α-L-arabinofuranosidase from a yak rumen

Table 4 Effects of organic solvents, metal ions, and chelating agent on
the β-D-xylosidase activities of recombinant CoXyl43

Reagent Concentration Relative activities (%) for

pNP-β-D-Xyl pNP-α-L-Araf

No additive 100.0±6.4 100.0±9.5

Ethanol 10 % (v/v) 25.2±1.2 17.1±0.3

25 % (v/v) 7.9±0.8 6.5±1.1

DMSO 10 % (v/v) 57.8±2.0 31.5±2.4

25 % (v/v) 8.6±1.9 4.9±0.7

MgCl2 1 mM 92.0±3.9 118.3±4.7

5 mM 93.9±5.7 123.2±13.8

ZnSO4 1 mM 8.7±1.5 8.6±1.0

5 mM 16.7±1.4 21.8±3.9

CuSO4 1 mM 3.2±0.5 2.3±0.4

5 mM 4.5±0.1 3.2±0.2

FeSO4 1 mM 66.9±5.3 97.2±8.1

5 mM 69.7±17.8 85.7±8.5

MnCl2 1 mM 138.3±6.6 147.0±7.8

5 mM 156.6±4.7 162.5±11.2

CaCl2 0.01 mM 290.4±19.3 110.0±1.7

0.1 mM 482.8±35.2 126.7±6.6

1 mM 513.7±17.0 124.4±5.8

CaSO4 0.01 mM 294.5±20.2 103.2±1.4

0.1 mM 484.8±21.7 119.3±4.3

1 mM 519.0±43.5 125.9±5.1

EDTA 10 mM 67.1±3.7 108.3±2.7

100 mM 44.7±1.3 105.3±9.2
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metagenome showed synergisms with endo-xylanase in xylan
hydrolysis (Bao et al. 2012; Zhou et al. 2012b). Synergism
betweenCoXyl43 and T. reesei cellulaseswas observed not only
in xylan (from birch wood) and arabinoxylan (fromwheat flour)
saccharification but also inNaOH-pretreated biomass (rice straw
and Erianthus) saccharification, resulting in a significant in-
crease in saccharification efficiency. These results indicate that
CoXyl43 would be useful for the saccharification of various
cellulosic/hemicellulosic biomasses and that metagenomic ap-
proaches to environmental microorganisms have the potential to
identify genes that may be valuable for the utilization of plant
biomass. Themetagenomic isolation of genes encoding non-GH
family proteins that improve the efficiency of biomass sacchar-
ification will be explored in future studies.

Various chemical reagents affected CoXyl43 activity. Or-
ganic solvents, such as ethanol and DMSO, and zinc ions,
and copper ions all strongly inhibited both the β-xylosidase
and α-arabinofuranosidase activities of CoXyl43. Zinc and
copper ions may inhibit the catalytic reaction or hinder sub-
strate binding at the active site. Manganese ions enhanced both
the β-xylosidase and α-arabinofuranosidase activities. The in-
hibition by zinc and copper ions, and activation by manganese
ions, has been observed with other GH43 bifunctional β-
xylosidase/α-arabinofuranosidases (Gong et al. 2013; Lee
et al. 2013; Yang et al. 2014). Interestingly, the β-xylosidase
activity of CoXyl43 was dramatically enhanced by the addition
of calcium ions, while the α-arabinofuranosidase activity was
not. The presence of EDTA inhibited β-xylosidase activity but
not α-arabinofuranosidase activity. These results indicate that
manganese ions enhance both β-xylosidase and α-
arabinofuranosidase activities while calcium ions enhance only
β-xylosidase activity. Further studies, incorporatingX-ray crys-
tal structure analyses of CoXyl43 with and without calcium
ions, will aim to elucidate the mechanism by which calcium
ions activateβ-xylosidase activity while having no effect onα-
arabinofuranosidase activity. Previous studies have reported
distinctly different metal ion sensitivities among the GH43 en-
zymes (Viborg et al. 2013). Our ongoing studies will clarify
how metal ions assist the catalytic function of GH43 enzymes.
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