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Abstract The ubiquitous occurrence of microorganisms
gives rise to continuous public concerns regarding their path-
ogenicity and threats to human environment, as well as poten-
tial engineering benefits in biotechnology. The development
and wide application of environmental biotechnology, for ex-
ample in bioenergy production, wastewater treatment, biore-
mediation, and drinking water disinfection, have been bring-
ing us with both environmental and economic benefits.
Strikingly, extensive applications of microscopic and molec-
ular techniques since 1990s have allowed engineers to peep
into the microbiology in Bblack box^ of engineered microbial
communities in biotechnological processes, providing guide-
lines for process design and optimization. Recently, revolu-
tionary advances in DNA sequencing technologies and rapid-
ly decreasing costs are altering conventional ways of micro-
biology and ecology research, as it launches an era of next-
generation sequencing (NGS). The principal research burdens
are now transforming from traditional labor-intensive wet-lab
experiments to dealing with analysis of huge and informative
NGS data, which is computationally expensive and
bioinformatically challenging. This study discusses state-of-
the-art bioinformatics and statistical analyses of 16S ribosom-
al RNA (rRNA) gene high-throughput sequencing (HTS) data
from prevalent NGS platforms to promote its applications in
exploring microbial diversity of functional and pathogenic

microorganisms, as well as their interactions in biotechnolog-
ical processes.
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Introduction

The rapidly decreasing cost and continuous development
(e.g., data throughput, base quality) of NGS in the past decade
have largely promoted the widespread application of 16S ri-
bosomal RNA (rRNA) gene HTS in exploring microbial di-
versity across multiple disciplines from medicine, biology,
evolution, to ecology and environmental sciences. As opposed
to traditional labor-intensive molecular methods used for mi-
crobial fingerprinting, such as fluorescent in situ hybridization
(FISH), denaturing gradient gel electrophoresis (DGGE),
PCR cloning, and terminal restriction fragment length poly-
morphism (T-RFLP), the most challenging as well as time-
consuming experimentation of a NGS-based study usually
not lies in the preliminary molecular experiments (e.g., DNA
extraction, PCR, cloning) or sequencing (e.g., can be done by
commercial companies), but rather in the subsequent tedious
and rigid bioinformatics and statistical analyses, which are
solid foundations to an effective way of revealing the under-
lying microbiological mechanisms behind efficient operations
of biotechnological processes.

To meet the needs of processing diverse types of large 16S
rRNA gene HTS data (that may differ in read length, sequenc-
ing depth, base quality, and error profiles) from various NGS
platforms, a number of standardized or customized bioinfor-
matics pipelines, platforms, and tools are proposed or
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developed, and kept regularly updated (Caporaso et al. 2010a,
b; Schloss et al. 2009; Cole et al. 2009). The usage of these
bioinformatics tools greatly improves our understandings of
microbiology and microbial ecology in various natural habi-
tats and engineered biological systems (e.g., bioenergy and
wastewater treatment bioreactors) (Ibarbalz et al. 2013; Cai
et al. 2013; Ju and Zhang 2014a, b; Peng et al. 2014; Guo
and Zhang 2012; Xia et al. 2012; Ye et al. 2011).

This review paper is to technically guide the application of
16S rRNA gene HTS in investigating microbial diversity and
interactions in biotechnological processes so as to reveal novel
alternative microbial resources for use in environmental bio-
technology (e.g., bioenergy production, pollution control), as
well as to explore unaware microbial interactions that could be
utilized to guide the manipulation of microbial community
functioning. The state-of-the-art bioinformatics analysis tools
or pipelines, including the most popular web-based or locally
installed bioinformatics tools/platforms, reference databases,
and the widely used ecological matrices, are sequentially in-
troduced to promote their more extensive application.
Moreover, popular statistical approaches and procedures for
network analysis are elucidated by emphasizing on their ap-
plication in mining huge NGS data from a large number of
samples. Above all, most protocols introduced in this study
are not only applicable to 16S rRNA gene-based analysis, but
also to future NGS applications that target other marker genes.

Bioinformatics analysis

Bioinformatics analysis of HTS data includes three core as-
pects: (1) pretreatment of raw sequence data, (2) microbial
diversity analysis, and (3) advanced data analysis and visual-
ization. Several local or web-based software packages have
been developed to trim, filter, analyze, and visualize large
amplicon sequence data from NGS, including QIIME,
mothur, RDP, VAMPS, and MEGAN (Table 1). The locally
installed, command line-basedQIIME andmothur are current-
ly the two most popular platforms with complete pipelines to
guide users through standardized or customized data analysis
procedures. For users with limited computational resources,
these tools are also available at Galaxy (Goecks et al. 2010)

and CloVR wrappers (Angiuoli et al. 2011) via web-based
cloud computing.

Regardless of which software or platform to employ, com-
plete processing procedures of 16S rRNA gene amplicon data
typically incorporate three parts (Fig. 1), that is, (1) data pre-
treatment, including de-multiplexing of barcoded sequences,
quality filtering, denoise, chimera checking, and data normal-
ization; (2) construction of operational taxonomic unit (OTU)
table, including picking OTUs, picking representative se-
quences, aligning representative sequences, taxonomic as-
signment of representative sequences, and building of a phy-
logenetic tree of the OTUs; and (3) advanced data analysis and
visualization, including the alpha- and beta-diversity analyses,
clustering and coordinates analysis, and data visualization
(e.g., heatmaps, Figs. 2b; 2D and 3D principal coordinates
plots, Fig. 2d; and networks, Fig. 4b).

De-multiplexing and quality filtering

The initial step with handling raw barcoded sequence data of
16S rRNA gene amplicons is to de-multiplex the whole se-
quence set into individual subsets belonging to different sam-
ples based on sample-specific nucleotide barcodes. To avoid
adverse effects in the downstream data analysis, all reads with
a considerable proportion of either poor quality bases (e.g.,
low quality score, ambiguous base, or homopolymer) or mis-
matches in the primer or barcodes, must be removed before
assigned to different samples (Caporaso et al. 2010a, b;
Schloss et al. 2009).

QIIME and mothur have respective command lines for de-
multiplexing and quality filtering of sequence data in several
formats (e.g., FASTQ, FASTA, QUAL) generated by prevalent
NGS platforms. Exactly, QIIME employs two python scripts,
namely Bsplit_libraries.py^ and Bsplit_libraries_fastq.py,^ to
perform coupled de-multiplexing and quality filtering of raw
data generated by a single or multiple 454 runs and Illumina
lanes, respectively; while mothur depends on BTrim.seqs^ to
screen and sort pyrosequences in a way similar to those imple-
mented in web-based RDP pipeline (http://rdp.cme.msu.edu/).
Both QIIME and mothur cannot de-multiplex barcoded se-
quences directly from a sff file (e.g., generated from 454 py-
rosequencing), but they offer commands (Bprocess_sff.py^ in

Table 1 Software for analysis of 16S rRNA gene amplicon NGS data

Software Access Interface Major function Reference

QIIME Local Command line Data trimming and filtering, diversity analysis, and visualization Caporaso et al. 2010a

mothur Local Command line Data trimming and filtering, diversity analysis, and visualization Schloss et al. 2009

RDP Web-based Web submission Data trimming and filtering, and diversity analysis Cole et al. 2009

VAMPS Web-based Web submission Data trimming and filtering, and diversity analysis http://vamps.mbl.edu/

MEGAN Local Graphical Diversity analysis and visualization (needs similarity alignments as input) Huson et al. 2007
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QIIME and BSffinfo^ in mothur) to transform sff into readable
FASTA and QUAL files. For quality filtering of raw reads by
whichever platforms or software, the following filtering criteria
are typically applied, such as minimum average quality score
allowed in a read, maximum number of ambiguous bases
allowed, minimum and maximum sequence length, maximum
length of homopolymer allowed, maximum mismatches in
primer or barcode allowed, whether to truncate reverse primer,
and so on.

Denoise and chimera checking

As PCR-based amplicon pyrosequencing and other HTS tech-
nologies revolutionized the study of microbial diversity, noise
introduced during PCR amplification and pyrosequencing,
such as sequencing errors (Table 2), PCR single-base errors,
and PCR chimeras, can lead to inflated estimates of alpha
diversity of microbial communities in a given habitat by or-
ders of magnitude (Reeder and Knight 2010; Quince et al.
2011). Therefore, it is vital to remove noise from raw data to
resolve true diversity.

There are several software alternatives for noise removal
and chimera checking of amplicon sequences derived from
NGS technologies. The software commonly used to remove
or correct PCR and pyrosequencing errors/noise includes
Denoiser (implemented in QIIME), AmpliconNoise (including
PyroNoise and SeqNoise) (Quince et al. 2011), Acacia (Bragg
et al. 2012), and Pre.cluster (in mothur). The command line-
based Denoiser and AmpliconNoise are among the most pop-
ular tools, and both of them use raw flowgram file (.sff) as

input, which contains all raw information from sequences,
quality score, to flowgrams. The difference between
PyroNoise and Denosier is that the former uses an
expectation-maximization (EM) algorithm to identify most
likely sequence for every read, while the latter uses a greedy-
scheme viewed as an approximation to PyroNoise. As these
two tools consider both base quality and flowgram, the
denoising process is extremely computationally intensive and
time-consuming. For example, Denosier may require 35 h to
denoise half Titanium run reads (450,000 reads) on 200 CPUs.
Other denoising tools including Acacia and Pre.cluster use
FASTA as input without considering of flowgram signals, thus
their operational time is much less. Strikingly, Acacia achieves
equivalent sensitivity and specificity for homopolymer error-
correction from FASTA files, but at speeds that are ~500×
faster and 2000× faster than Denoiser and AmpliconNoise,
respectively (Bragg et al. 2012). Therefore, Acacia is particu-
larly suitable for rapid homopolymer error-correction for ex-
tremely large amplicon datasets.

For filtering of PCR chimeras, there are several types of
available software, such as ChimeraSlayer (Haas et al. 2011),
UCHIME (Edgar et al. 2011), Perseus (Quince et al. 2011),
and DECIPHER (Wright et al. 2012). Among them, command
lines of ChimeraSlayer, UCHIME (reference and de novo
modes), and Perseus have been wrapped in mothur.
ChimeraSlayer, which reads a FASTA file and a chimera-
free reference database, is the recommended method for chi-
mera checking in QIIME. However, these different methods
often disagree with one another on the list of identified chi-
meras (Goodrich et al. 2014), probably because of their
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Fig. 1 Flow chart of a typical
16S rRNA gene amplicon data
analysis pipeline. Dash arrows
indicate alternative path for data
analysis
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different mechanisms or algorithms. More efforts are required
to evaluate these methods and coordinate their inconsistencies
in chimera identification.

Noteworthy, a very small proportion of archaeal sequences
may be generated for 16S rRNA gene amplicon datasets
amplified with bacteria-specific primers. These unexpected
sequences should be identified after denoising and chimera

removal, and are advised to be discarded before subsequent
data normalization (Zhang et al. 2012; Qian et al. 2010)

Data normalization

In general, raw sequence data post quality filtering, denoising,
and chimera checking are often referred as Bclean^ or
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Fig. 2 Bacterial composition (a, b), clustering analysis (c), and principal
coordinate analysis (c) of 10 microbiomes of full-scale municipal sewage
influent (1–2) and effluent (3–4) (Cai et al. 2013), and activated sludge
(5–6) of an anoxic/oxic process (Ju et al. 2014), full-scale rotating
biological contractor biofilms (7–8) (Peng et al. 2014), and lab-scale fresh

and saline sewage EBPR activated sludge (9–10) (Mao et al. 2014),
respectively. For each sample, 18,000 sequences of V3–V4 regions of
16S rRNA gene are assigned byweb RDP classifier. a class level; bmajor
genera (>2 % in at least one sample); c, d based on class-level
abundance

Table 2 Comparison of error
rates and major error profiles in
several prevalent commercial
NGS platforms

NGS platform Error rate frequency Major error profile

Illumina MiSeq 1–8×10−3 Nucleotide substitutions, almost no indels

Illumina HiSeq2000 1–3×10−3 Nucleotide substitutions, almost no indels

Roche 454 GS Junior 0.1–1.0×10−2 Deletions and homopolymer-associated indels
(0.38 indel errors/100 bases)

Ion Torrent PGM 1–2×10−2 Short deletions and homopolymer-associated indels
(1.5 indel error/100 bases)

Pacific Biosciences RS 1–2×10−1 Insertions and GC deletions

Reference: (Loman et al. 2012; Quail et al. 2012; Minoche et al. 2011; Ross et al. 2013)
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Beffective^ reads. The number of clean sequences obtained for
each sample, that is sequencing depth, can significantly differ
across different samples in the same sequencing run, which is
mainly due to technical (sample-independent) rather than bi-
ological (sample-dependent) reasons. Uneven sequencing
depth can affect diversity estimates in a single sample (i.e.,
alpha diversity), as well as comparisons across different sam-
ples (i.e., beta diversity), thus data normalization is required.

Two methods, i.e., relative abundance and random sam-
pling (i.e., rarefaction), are commonly used to account for
various sequencing depths across samples (Goodrich et al.
2014). However, relative abundance, calculated as normaliz-
ing sequence counts for a taxon against total sample sequence
counts, is subjected to statistics pitfalls and can lead to
correlation-based clustering of samples by sequencing depths
(Friedman and Alm 2012). Such bias resulted from simply
computing correlations using relative abundances of taxa
across samples (with uneven sequencing depth) is known as
Bcompositionality bias,^ which can distort data interpretation.
For instance, artefactual correlations may be observed be-
tween two non-correlated, rare community species in the pres-
ence of highly abundant species (Faust and Raes 2012). In the
other method termed Brarefaction,^ normalization is per-
formed by random extraction of equal number of sequences
from each sample, and this number is typically identified as
the minimum sequence counts for all samples. The major
drawback with rarefaction method is the loss of valuable se-
quence data from samples with relative high sequence counts,
especially in the presence of large unevenness of sequencing
depth across samples, leading to conservative diversity
estimates.

In addition, z-score, calculated as the difference between
observed value and mean value divided by the standard devi-
ation, has also been commonly used to normalize and com-
pare samples with different sequencing depths, although it has
disadvantages, such as losing meaningfulness of raw data, and
magnifying small differences (Oswald et al. 2011).

Picking OTUs and representative sequences

After initial quality filtering, denoising, and chimera checking,
clean sequences are clustered into OTUs (i.e., referred as phy-
lotypes when a recognized reference database is used). The
OTUs are picked based on sequence identity, and various
identity cutoffs of 16S rRNA gene have been used for differ-
ent taxonomic ranks. For example, identity cutoffs recom-
mended by MEGAN are 99 % for species, 97 % for genus,
95% for family, and 90% for order level, respectively (Huson
et al. 2007). The OTU picking strategy and algorithms have
significant effects in the downstream data interpretation.
Based on whether to use a reference database, OTU picking
strategies are classified into three categories: de novo, closed
reference, and open reference (Caporaso et al. 2010a, b). De

novo OTU picking clusters sequences among themselves
without a reference database, whereas closed reference OTU
picking matches sequences against a reference database and
those unmatched at given identity cutoffs are discarded. In an
open-reference OTU picking process of QIIME, all sequences
are first picked for closed reference OTUs, and any unmatched
reads are subsequently clustered for de novo OTUs. In partic-
ular for OTU picking from 16S rRNA gene sequences of
different hypervariable regions, only closed reference OTU
picking is applicable, and publicly available GreenGenes,
SILVA SSU, and RDP are commonly employed as sources
of reference databases.

There are many clustering or alignment tools available for
OTU picking, such as Uclust, cd-hit, BLAST, mothur,
usearch, and prefix/suffix. These tools are implemented in
QIIME. Among them, the mothur method contains three clus-
tering algorithms to pick de novo OTUs, namely, nearest
neighbor, furthest neighbor, or average neighbor. These algo-
rithms are also available by calling BCluster^ command in
mothur platform. Upon accomplishment of OTUs picking,
the next consideration is which sequence to choose as a rep-
resentative of an OTU cluster. In general, a representative
sequence can be a random, the longest, the most abundant
(as default in QIIME), or the first sequence in an OTU cluster.
In particular, the distance method in mothur identifies the
sequence with the smallest maximum distance to the other
sequences as the representative sequence.

Taxonomic assignment

The methods for taxonomic assignment of representative
OTU sequences contain three strategies, i.e., word match, best
hit, and Lowest Common Ancestor (LCA; (Huson et al.
2007)). The RDP classifier (Wang et al. 2007), either run as
a web-based or a local tool, employs a word-matching strategy
and does not require alignment, thus the speed is high
(Fig. 2a, b). By contrast, both best-hit and LCA strategies
require identity search (i.e., alignment) of query sequences
against a 16S rRNA reference databases (e.g., RDP,
GreenGenes, SILVA SSU) using an alignment tool, thus the
efficiency of annotation is determined by the speed, sensitiv-
ity, and accuracy of alignment software, apart from sizes and
quality of reference databases. The difference between best-hit
annotation and LCA algorithm for taxonomic assignment lies
in that whether a sequence read is assigned by its best hit (e.g.,
alignment with the highest score), or by LCA of multiple hits
in a given reference database. At present, MEGAN (Huson
et al. 2007) and web-based SINA Alignment Service (http://
www.arb-silva.de/aligner/) both support taxonomic
assignment by LCA algorithm.

Pairwise alignment tools include BLAST (Altschul et al.
1990), BLAT (Kent 2002), Usearch/Uclust (Edgar 2010),
mothur (BClassify.seqs^ command), SINA aligner (Pruesse
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et al. 2012), and RTAX (Soergel et al. 2012). Among them, the
most-cited tool has been BLAST, due to its high sensitivity and
accuracy with acceptable computational costs. Other tools,
such as BLAT, have increased speeds by at least two orders
of magnitudes than BLASTN, but at the cost of decreased
sensitivity (e.g., BLAT allows short, high-similarity align-
ments, but almost no gapped search). Usearch has been evalu-
ated as 30–200 times faster than BLASTN while keeping al-
most equal sensitivity and error rates in searching low (0–
70 %), medium (70–80 %), and high (80–100 %) similarity
nucleotide sequences, as described at http://www.drive5.com/
usearch/perf/. This powerful tool, in combination with a
condensed reference database (e.g., OTUs sets of public 16S
rRNA gene databases, customized sub-databases of functional
genes (Yu and Zhang 2013)), is especially suitable for rapid
screening of marker (e.g., 16S rRNA) or functional (e.g., anti-
biotic resistance) genes from huge short-gun metagenomic
datasets, as demonstrated by Albertsen et al. (2013) and Yang
et al. (2014).

Phylogenetic analysis

Phylogenetic relationships between aligned representative
OTU sequences can be visualized and explored in a phyloge-
netic tree. Methods used for multiple DNA and/or protein se-
quence alignments include ClustalW, MUSCLE (Edgar 2004),
Clustal Omega (Sievers et al. 2011), Kalign (Lassmann and
Sonnhammer 2005), T-COFFEE (Notredame et al. 2000),
COBALT (Papadopoulos and Agarwala 2007), and FastTree
(Price et al. 2010). Many software or packages have been de-
veloped for inferring phylogenies and building trees for multi-
ple sequence alignments, such as MEGA (Tamura et al. 2011),
RAxML (Stamatakis 2014), MRBAYES (Huelsenbeck and
Ronquist 2001), PhyML (Guindon et al. 2010), TreeView
(Page 2001), Clearcut (Evans et al. 2006), FigTree (Morariu
et al. 2009), and ARB (Ludwig et al. 2004).

MEGA is a popular and versatile tool because of its user-
friendly graphical user interface and manuals, as well as plen-
tiful alternative resources, such as alignment tools (e.g.,
ClustalW, MUSCLE), ways of building trees (e.g., maxi-
mum-likelihood, neighbor-joining) from sequence data and
distances, evolutionary distance estimation (e.g., pairwise,
overall mean), and substitution models. However, RAxML
and PhyML are the most widely used programs for
maximum-likelihood phylogenetic analysis, probably because
they are specifically designed and optimized for such purpose.
Web servers of these two programs make them more easily
accessible by researchers. Notably, ARB is a useful graphical
software package equipped with a variety of tools for se-
quence alignment and editing, phylogenetic analyses, design
and evaluation of hybridization probe or PCR primer, etc.
Nonetheless, it may not be suitable for directly handling large
NGS data.

Many independent alignment and tree building tools are
accessible via several NGS data analysis pipelines. QIIME
by default uses PyNAST to align sequences and multiple pro-
grams (e.g., FastTree, Clearcut, ClustalW, MUSCLE) to build
a Newick format tree file which can be later visualized with
programs, such as FigTree (Caporaso et al. 2010a, b). By
contrast, mothur employs multiple approaches (e.g.,
Needleman-Wunsch, Gotoh, BLASTN) within the command
BAlign.seqs^ to align sequences and builds a relaxed
neighbor-joining tree in Newick format by calling
BClearcut^ command (Schloss et al. 2009).

Alpha- and beta-diversity analyses

For alpha-diversity analysis within one sample, mothur pro-
vides lots of diversity metrics (e.g., Shannon, Berger-Parker,
Simpson, Q statistic; observed richness, Chao1, ACE,
and jackknife), while QIIME by default uses phylogenetic di-
versity (PD)-whole tree, chao1, and observed species. Another
way to compare species richness is by rarefaction curve, i.e., a
plot of number of taxon/OTU as a function of number of ran-
domly sampled sequences (Fig. 3). The slope at the end point of
a rarefaction curve denotes fraction of unexplored taxon/OTU
in a sample at current sequencing depth, thus a smaller slope
represents a better reflection of community richness. Tools for
r a r e f a c t i o n a n a l y s i s a r e a v a i l a b l e i n Q I IME
(Bsingle_rarefaction.py^ and Bmultiple_rarefaction.py^),
mothur (BRarefaction.single^ and BRarefaction.shared^ com-
mands), and RDP web server.
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Fig. 3 Rarefaction curves of 10 microbiomes of full-scale municipal
sewage influent (1–2) and effluent (3–4) (Cai et al. 2013), and activated
sludge (5–6) of an anoxic/oxic process (Ju et al. 2014), full-scale rotating
biological contractor biofilms (7–8) (Peng et al. 2014), and lab-scale fresh
and saline sewage EBPR-activated sludge (9–10) (Mao et al. 2014),
respectively. The rarefaction curve, plotting the number of observed
OTUs (at a similarity cutoff of 97 %) as a function of the number of
sequences, was computed using RDP pyrosequencing pipeline
rarefaction tool
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For analysis of beta diversity between samples, that is the
degree to which the samples differ from one another, several
distance metrics, such as Unifrac, Bray-Curtis, Euclidean,
Jaccard index, Yue & Clayton, and Morisita-Horn, have been
often employed. In general, beta-diversity metrics, unlike al-
pha diversity metrics, are remarkably robust to issues, such as
sequencing noise and presence of rare sequences (e.g., single-
tons) (Gobet et al. 2010). Based on whether to consider se-
quence abundance, beta-diversity metrics can be classified
into two categories: quantitative (e.g., Bray-Curtis, weighted
Unifrac) and qualitative (e.g., binary Jaccard index) (Goodrich
et al. 2014). Noteworthy, weighted and unweighted Unifrac
distances, as implemented in QIIME, take into consideration
phylogenetic relationships between taxon/OTU sequences.
This superiority of Unifrac distance make it outperfom other
metrics in community comparison, especially in the case of no
apparent difference in abundance profiles of taxon/OTU be-
tween samples.

Statistical and network analysis

High throughput of NGS technologies and sample
multiplexing enable parallel sequencing of a large number of
samples with factorial design and adequate replicates to allow
rigorous statistical analysis. Here, popular approaches used for
statistics analysis, modeling, and visualization of diversity or
function profiles in microbiota data are briefly introduced,
such as two-sample/group tests, clustering, classification, or-
dination, and network analysis. The commonly used tools for
statistics and visualization of biological/ecological data in-
clude open-source free software or packages, such as R pack-
ages (e.g., vegan, ade4), PAST (http://folk.uio.no/ohammer/
past/), STAMP (http://kiwi.cs.dal.ca/Software/STAMP), and
commercial graphical software, such as CANOCO, PRIM
ER-E, SPSS, and EXCEL. Free open-source software pack-
ages for network visualization and exploration include
Cytoscape, Gephi, and R-WGCNA package.

Two-sample/group tests

A common metagenomic experimentation is to compare
taxa/OTUs or functional categories between two samples, or
each of them across two groups of samples (e.g., different
treatments, treatment vs. control, before vs. after treatment)
(Ju et al. 2014). Many statistical tests are available to decide
whether observed differences between two groups are statisti-
cally significant or merely raised by chance (e.g., natural var-
iations during measurement). The most widely used one is
two-sample t-test, also known as BStudent’s t-test.^ This test,
either it is independent or paired, is based on an assumption of
normal distribution of each of the two data sets being com-
pared, although their sample sizes are not necessarily the
same. The data normality can be pretested by a normality test,

such as Kolmogorov-Smirnov, Shapiro-Wilk, or Anderson-
Darling normality test. Particularly for independent two-
sample t-test, independence and equal variances (which can
be tested by F-test, Levene’s test, etc.) of two populations are
required. In the case of non-normal distribution of data sets,
nonparametric two-sample tests robust to data non-normality,
such as Wilcoxon signed-rank test, and Mann-Whitney U test
are applicable for significance testing of difference between
group medians.

Multiple-sample/group tests

To test significant differences between means of multiple sam-
ples (two or more), analysis of variance (ANOVA) is often
applied based on three assumptions, i.e., normality of re-
sponse variable, sample independence, and equality of popu-
lation variance. Typically, one-way ANOVA is applicable to
compare three or more levels of one factor/variable, while
two-way ANOVA is more popular when two factors/vari-
ables, each with multiple levels, are involved in the experi-
ments (Ju et al. 2013). Compared with a one-way mode, two-
way ANOVA enables tests of effects of two factors/variables
at the same time, as well as tests of independence between two
factors (i.e., whether interaction effect is present or not).

In the case of non-normal distribution of populations, it is
feasible to transform your data to make it follow a normal
distribution, or to choose a nonparametric test (e.g., Kruskal-
Wallis H test, PerANOVA) that does not require an assump-
tion of normality. However, one-way ANOVA appears to be
robust to moderate violations of normality assumption (with
false positive rate not much affected) (Lix et al. 1996).
Moreover, in the case of failures to meet equal variance as-
sumption, there are several alternatives to one-way ANOVA,
such as Welch test, Brown and Forsythe test, and Kruskal-
Wallis H test.

Clustering and classification

Clustering and classification are two contrasting methods
widely used for statistical mining of taxonomic or functional
entities in microbiota data. The unsupervised clustering is the
process of grouping a set of instances (e.g., samples, genes, and
taxa) into clusters based on how Bclose^ (similar) they are to
one another. For example, hierarchical clustering has been a
popular method to compare and visualize as much as differ-
ences between multiple samples (i.e., as measured by beta-
diversity metrics) as possible via a small number of dimensions
and in a resulting tree (Fig. 2c). By contrast, supervised clas-
sification is to learn which instances (e.g., taxa, genes, pro-
teins) discriminate between categories (e.g., predefined groups
of samples) based on a predefined training set of data points,
and to build models using these discriminatory instances so as
to predict which categories (or classes) novel instance inputs
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belong to. Readers may refer to Knights et al. (2011) for more
applications and examples of supervised classification
methods of microbial communities.

Notably, both taxonomic marker (e.g., 16S rRNA gene)
and functional genes have been used for classification of mi-
crobial communities. However, what they can do (function),
in comparison with who is there (taxonomy), is expected to
provide far more discriminatory power for classification of
biologically meaningful groups of samples (Xu et al. 2014),
since functionally similar communities may show quite differ-
ent taxonomic structures. It has been reported that PICRUSt, a
powerful tool capable of gene content prediction of microbial
community from environmental 16S rRNA gene sequences
with the Random Forest classifier (Langille et al. 2013), can
provide robust information as good as functional genes for
classifying samples from environments with enough existing
microbial reference genomes in the database (Xu et al. 2014).

Ordination analysis

Once ecological similarities or distances (e.g., beta-diversity
metrics) between samples have been computed, the entire data
set can be explored by multivariate ordination methods (apart
from aforementioned clustering methods), such as principal
component analysis (PCA), principal coordinates analysis
(PCoA, also known as metric multidimensional scaling)
(Fig. 2d), Nonmetric multidimensional scaling (NMDS), ca-
nonical correspondence analysis (CCA), linear discriminant
analysis (LDA), and redundancy analysis (RDA). Among
them, PCA is to create a set of new linearly uncorrelated
variables (principal components) via orthogonal transforma-
tion so as to account for as much as of the variability of the
original data as possible, while PCoA is a rotation of inter-
sample distance matrix to project as much distance as possible
to low dimensional ordination space (Knights et al. 2011).
NMDS is similar to PCoA, except that it seeks to rank the
pairwise distances between samples, and uses these ranks
(rather than the actual distances in PCoA) to map samples
nonlinearly into simplified low-dimensional ordination space
to represent their ranked differences. CCA is perhaps the most
widely used ordination method today. This method has been
widely used by ecologists to relate abundances of species to
environmental variables (i.e., sample metadata) (Zhang et al.
2012; Ju et al. 2013).

When applied to exploring microbial ecology, linear ordi-
nation methods, such as PCA, LDA, or RDA that are gener-
ally meant to be designed for continuous data, may be some-
times limited by the nonlinear or nonmonotone species-
species interactions or environment-species responses.
Moreover, as opposed to PCA which mainly employs a
Euclidean distance, PCoA or NMDS works with any
dissimilarity/distance measure or other association coeffi-
cients that is specifically designed to deal with data sparsity

(e.g., presence of many double zeros) and compositionality
bias (e.g., Bray-Curtis dissimilarity). Readers may refer to
Ramette (2007) for more advice on how to choose an appro-
priate ordination method for multivariate analyses of ecolog-
ical data.

Network-based modeling

16S rRNA gene HTS enables intensive community-wide in-
vestigation of microbial structure. Network-based modeling is
increasingly applied to predict microbial community assembly
(e.g., co-occurrence and co-exclusion patterns), gene co-
expression or regulatory patterns, metabolic associations, or
protein-protein interactions from huge NGS data, posing nov-
el insights into complex ecological (e.g., cooperative and
competitive relationships) or biological associations in various
natural or engineering habitats (Doncheva et al. 2012; Steele
et al. 2011; Ju et al. 2014). Moreover, time-dependent re-
sponses of microbial communities to changes of environmen-
tal variables have been traced in interactive environment-
species association networks (Ju and Zhang 2014a, b), thanks
to developments in both barcoded NGS technologies and bio-
informatics software (Ruan et al. 2006). The prediction of
environment-species associations has a great significance in
the manipulation of microbial communities for selective en-
richment of beneficial species and elimination of detrimental
microorganisms in anaerobic bioreactors operated for waste
and wastewater treatment or bioenergy production
(Vanwonterghem et al. 2014).

Network analysis is typically launched by creating an inci-
dence (presence and absence) or abundance matrix of entities
(e.g., OTUs, gene or protein), across a range of temporal
(time) and/or spatial (location) scales (Fig. 4a). As an associ-
ation between entities is assumed as one-to-one (pairwise) or
one-to-many, it then can be well modeled by computing
pairwise correlation/distance measures (e.g., Pearson’s or
Spearman’s coefficients) or sparse multiple regression (Faust
and Raes 2012). The above computing step is repeated a large
number of times by permutation tests to generate P value as an
indicator of statistical significance of a predicted relationship.
Finally, all statistically significant (P value below the thresh-
old, typically 0.05 or 0.01) relationships are visualized in a
network interface, where a node represents an entity and an
edge stands for a robust relationship between two entities
(Fig. 4b).

In addition, topological and statistical properties of a mi-
crobial association network, such as modularity, clustering
coefficients, node degree, network diameter, and density,
may carry biological or ecological meanings. For example,
modules and hubs (nodes with highest degree) in an ecologi-
cal network are widely interpreted as niches and keystone
species, respectively (Fig. 4b). Readers may refer to
Proulx et al. (2005) for network thinking in ecology and
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evolution; Doncheva et al (2012) for topological analysis and
interactive visualization of biological networks, and Ju and
Zhang (2014a, b) for a demonstration of a correlation-
based statistical method for predicting microbial co-occurrence
and assembly patterns in a biological wastewater treatment
system from large time-series 16S rRNA gene pyrosequencing
datasets.

Concluding remarks

The wide application of 16S rRNA gene HTS allows
community-wide characterization of microbial diversity and
composition in various natural or engineering habitats. With
the assistance of highly multiplexed barcoded sequencing and
the state-of-the-art bioinformatics and statistical tools, it is
technically feasible and economically affordable to simulta-
neously sequence up to hundreds of to a thousand of sample
amplicons in a single NGS run equipped with biological and
technical replicates to allow rigid statistical analyses of micro-
bial community dynamics over adequate temporal and/or spa-
tial environmental gradients. This is often required to obtain
thorough understandings of environmental impacts on micro-
bial community structure and completely resolve species-
species interactions (e.g., by network analysis). Moreover,
there is an inevitable tradeoff between data throughput and
read length for currently prevalent NGS platforms.
Generally, larger data size (i.e., higher sequencing depth) is
more beneficial to investigate complex or diverse microbial
communities and rare species, while longer read length

provides higher taxonomic resolution and may resolve highly
similar species (e.g., microdiversity). Therefore, as to which
NGS platform to employ highly depends on the research pur-
pose. Better still, 16S rRNA gene HTS is encouraged to work
more in complementary with other techniques, such as other
me t a g enom i c app r o a ch e s ( e . g . , me t a g enome ,
metatranscriptome), bioimaging (e.g., FISH), and isotope la-
beling, to explore metabolic potentials and gene expressions
of active microorganisms.
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