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Abstract Endophytism is the phenomenon of mutualistic as-
sociation of a plant with a microorganismwherein the microbe
lives within the tissues of the plant without causing any symp-
toms of disease. In addition to being a treasured biological
resource, endophytes play diverse indispensable functions in
nature for plant growth, development, stress tolerance, and
adaptation. Our understanding of endophytism and its ecolog-
ical aspects are overtly limited, and we have only recently
started to appreciate its essence. Endophytes may impact plant
biology through the production of diverse chemical entities
including, but not limited to, plant growth hormones and by
modulating the gene expression of defense and other second-
ary metabolic pathways of the host. Studies have shown dif-
ferential recruitment of endophytes in endophytic populations
of plants growing in the same locations, indicating host spec-
ificity and that endophytes evolve in a coordinated fashion
with the host plants. Endophytic technology can be employed
for the efficient production of agricultural and economically
important plants and plant products. The rational application
of endophytes to manipulate the microbiota, intimately asso-

ciated with plants, can help in enhancement of production of
agricultural produce, increased production of key metabolites
in medicinal and aromatic plants, as well as adaption to new
bio-geographic regions through tolerance to various biotic and
abiotic conditions. However, the potential of endophytic biol-
ogy can be judiciously harnessed only when we obtain insight
into the molecular mechanism of this unique mutualistic rela-
tionship. In this paper, we present a discussion on endophytes,
endophytism, their significance, and diverse functions in na-
ture as unraveled by the latest research to understand this
universal natural phenomenon.
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Introduction

Endophytic biology is pursued in research with multitude of
objectives that can be broadly classified into two categories—
bioprospecting and plant-microbe symbiosis (Fig. 1). The
bioprospecting aspect of endophytism has been extensively
reviewed (Aly et al. 2011; Porras-Alfaro and Bayman 2011;
Mousa and Raizada 2013; Chen et al. 2014; Brader et al.
2014; Strobel 2015). However, the other aspect, i.e., plant-
microbe symbiosis, at molecular level, has been poorly under-
stood (Rodriguez and Roossinck 2012; Saikkonen et al. 1998;
Ryan et al. 2008). Plant-microbe interactions are ubiquitous
and diverse in nature (Redman et al. 2002; Kuldau and Bacon
2008; Mitter et al. 2013). In fact, each plant is a complex
community, rather than a single organism, owing to its en-
gagement in diverse heterospecific associations (Kiers and
Denison 2008; Rodriguez et al. 2009; Rey and Schornack
2013). The complex interplay of diverse array of microbial
communities with the host plant affects its ecophysiology such
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as plant nutrition, growth rate, resistance to biotic and abiotic
stress conditions, as well as plant survival and distribution
(Reinhold-Hurek and Hurek 2011; Singh et al. 2011; Iqbal
et al. 2013). Owing to the fact that the association of plants
with microbes dates back to more than 400 million years ago,
along with the modern scientific reports of these associations,
it can be stated with certainty that the presence of symbiotic
microorganisms inside the plant tissues Bmust be considered
to be the rule, rather than the exception^ (Strobel et al. 2004;
Albrectsen et al. 2010; Partida-Martínez and Heil 2011).

Endophytism as a natural phenomenon is a question of
history, and its origin probably dates back to the existence of
plants on the planet earth (Redecker et al. 2000), but its ad-
vancement as a discipline of science began in 1886 when De
Barry put forth the concept of Bendophyte.^ However, this
discipline of science did not receive much attention until the
recent recognition of their pharmaceutical and ecological sig-
nificance (Gunatilaka 2006). Since then, endophytes have cre-
ated immense scientific curiosity pertaining to their biology,
evolution, ecology, and applications. The aim of this paper is
to present a general description of endophytes in the light of
recent scientific reports with an emphasis on its general clas-
sification, interaction with plants, communication between
endophytes and host plants, and differential recruitment of
endophytes. Furthermore, the importance of endophyte

technology is also discussed with examples of their potential
application in agriculture, drug discovery, and bioremediation.

Classification of endophytes

Previously, fungal endophytes were categorized into two gen-
eral groups viz. clavicipitaceous and non-clavicipitaceous
based on their taxonomy, host specificity, evolution, and
ecological functions. However, Rodriguez et al. (2009) de-
scribed four distinct functional groups based on six criteria
viz., host range, tissue(s) colonized, in planta colonization
pattern, in planta biodiversity levels, mechanism of transmis-
sion between host generations, and ecological functions.
Clavicipitaceous endophytes are referred to as class 1, and
non-clavicipitaceous endophytes are further classified into
three distinct functional groups as class 2, class 3, and class
4 (Rodriguez et al. 2009).

However, endophytes comprise different groups of micro-
organisms, and there is a wide diversity of nonfungal endo-
phytes associated with almost every plant. The endophytic
microorganisms can be bacteria, fungi, actinomycetes, or vi-
ruses (Stepniewska and Kuzniar 2013; Bao and Roossinck
2013) while they express a variety of symbiotic lifestyle rang-
ing from parasitism to mutualism (Redman et al. 2001; Schulz

Fig. 1 Endophytic biology is
studied with the aim of
bioprospection for genuine
microbial products, potential host
metabolites, and industrially
important volatile organic
compounds (VOCs) or to
understand the principles of
endophytism and its
consequences on the secondary
metabolism of the partners as well
as adaption of the plant host to
biotic and abiotic stress
conditions
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and Boyle 2005) depending on the plant host genotype and/or
environmental conditions. Endophytes are classified into two
general categories, systemic/true endophytes and transient/
nonsystemic endophytes, based on their taxonomy, functional
diversity, biology, and mode of transmission (Table 1).

The concept of systemic/true endophytes was put forth by
Mostert et al. (2000). Systemic endophytes can be defined as
the organisms that inhabit the plant organization, share a sym-
biotic relationship with the host, and do not produce any
visible symptoms of disease at any stage. However, the
widely accepted definition of Petrini (1991) with a minor
modification is valid for the transient endophytes, as the or-
ganisms that live within the plant tissues at least for part of
their life cycle without producing any apparent disease symp-
toms in plants under normal conditions but turn pathogenic
when host plant is stressed or resource-limited. Systemic en-
dophytes are cocladogenetic, i.e., in different environmental
conditions, a given host possesses phylogentically same en-
dophytes, while as transient endophytes vary both in diversity
and abundance with change in environment (Botella and Díez
2011; Higgins et al. 2014). These endophytes, because of
coevolutionary selection process, share the metabolic and ge-
netic makeup of the host and are resistant to host metabolites
and/or defense mechanism (Christensen et al. 2008; Soliman
et al. 2013). Systemic endophytes share a symbiotic relation-
ship with the host plant and when grown under axenic condi-
tions may lose their vitality after subculturing. For example,
recently, it was found that a camptothecin-producing endo-
phyte, F. solani isolated from C. acuminata (Kusari et al.
2009), could indigenously produce the precursors of
camptothecin. However, a host plant enzyme absent in the
fungus, strictosidine synthase, was employed in planta for
the key step in producing camptothecin (Kusari et al. 2012).
This was the main reason for substantial reduction of
camptothecin production on subculturing under axenic condi-
tions. The possible reason for this molecular and metabolic
cross talk may be horizontal gene transfer between endophyte
and the host plant (Kusari and Spiteller 2012). However, the

association of transient endophytes is short lived and seasonal;
therefore, they share only physiological cues, and their diver-
sity varies with change in the host’s physiological parameters
in relation to varying environmental conditions (Botella and
Díez 2011). As systemic endophytes are symbiotically asso-
ciated with the host plant, their transmission to next generation
would be usually vertical, i.e., by means of seeds and/or veg-
etative propagules, while as the transient endophytes are hor-
izontally transmitted, via spores (Schardl et al. 1991;
Saikkonen et al. 1998; Moricca and Ragazzi 2008).

Endophytism: a unique interaction between the microbe
(endophyte) and the plant

According to the theory of Bbalanced antagonism^ the
endophyte-host interactions (endophytism) exhibit great phe-
notypic plasticity from mutualism to antagonism depending
on the biocommunication between endophytes and host plant
and environmental conditions (Schulz and Boyle 2005). In
widely studied epichloe endophyte association, it has been
reported that in some Epichloe spp., the onset of flowering
in the host plant induces the fungal endophyte to switch from
mutualistic asexual life cycle to antagonistic sexual life cycle
(Schardl et al. 2004). Prevailing views contend that fungal
endophytes are presumably thought to have evolved from
plant pathogenic fungi, as evidenced by some root endophytic
fungi that require host cell death for proliferation during the
formation of mutualistic symbiosis with the host plants; they
remain asymptomatic for many years and only become para-
sitic when their hosts are stressed (Deshmukh et al. 2006;
Kogel et al. 2006). In general, a variety of microbes may enter
and become transient endophytes, and those consistently
found inside the host tissues for long periods of time and
eventually share the physiological and genetic makeup of
the host are candidate symbionts or true endophytes
(Moricca and Ragazzi 2008; Conn et al. 2008). Recently, it
has been reported that the establishment of biotrophic lifestyle

Table 1 Criteria for classification of endophytes into systemic and nonsystemic endophytes

Criteria Systemic endophytes Nonsystemic endophytes

1. Taxonomy Cocladogenetic species Varies spatially and temporally

2. Mode of transmission Usually vertical but in some
cases horizontal as well

Horizontal only

3. Life style Mutualistic Changes from mutualism to parasitism
with change in environment

4. Host defense response Lack host defense response Host defense response is active

5. Ecological functions Beneficial Beneficial or detrimental depending on
the environment, age of the plant, etc.

6. Evolutionary pattern Coevolved with the host plant Association with the host is transient and short lived

7. Diversity Rare Rich
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of endophytes during the colonization of host plants is an
important feature of the host endophyte interactions, as it im-
plies a strong genetic and metabolic relief to both the
interacting partners. However, the response of long-term as-
sociation of an endophyte may be mutualistic or antagonistic
depending on nutrient availability to the endophytes and met-
abolic status of the host plant (Eaton et al. 2011; Lahrmann
et al. 2013). Also, some endophytes produce signals like re-
active oxygen species (ROS), which result in switching of
endophytism to either antagonism or mutualism in response
to some environmental cues (White and Torres 2010). Thus,
endophytes, in the earlier stage, are detected as minor patho-
gens which over a period of time evolve with the host into a
benign or mutualistic symbiont with varying degrees of de-
pendence, depending on the cost-benefit analysis of the host-
endophyte association (Fig. 2) (Freeman and Rodriguez 1993;
Schulz and Boyle 2005; Conn et al. 2008).

The other unique aspect of endophytism is the
multitrophic association between different endophytic
groups and the host plants. The variegated cross talks
between endophytic fungi, endophytic bacteria, endo-
phytic viruses and between these endophytes and the
host plants under different biotic and abiotic selection
pressures shape the outcome of this cross-kingdom sym-
biosis (Kusari et al. 2012; Rodriguez and Roossinck
2012). As in case of Dichanthelium lanuginosum (host
plant) and Curvularia protuberata (fungal endophyte)
association, the thermotolerance ability in the host plant
provided by the endophytic fungal symbiont was be-
cause of a double-stranded virus harbored by the fungal
endophyte (Márquez et al. 2007; Rodriguez and
Roossinck 2012). Therefore, in order to understand the
complexity of endophytism, future endophyte research
should focus on multitrophic association models with
cost-benefit analysis of communications between differ-
ent interacting partners in a systems biology approach.

Mechanism of action of endophytes in the host plant

Researchers have endeavored to elucidate the molecular
mechanisms underlying the establishment of plant-
endophyte association and their responses, but very limited
data is available as of now (Sherameti et al. 2005; Mathys
et al. 2012; Straub et al. 2013). There are two main reasons
for it, one is the complex relationship between the host and the
endophyte and the other is that it is not easy to imitate living
condition of endophytes in vitro as well as studying the mech-
anisms in planta. It is generally believed that the endophytic
response in plants is largely primed by the plant genotype,
endophyte species, and endophyte strain (Gundel et al.
2012; Qawasmeh et al. 2012). Broadly, there are two basic
mechanisms, through which endophytes affect their responses
in host plants:

1. By producing diverse chemical entities (reactive oxygen
species (ROS), phytoalexins, phytohormones, volatile or-
ganic compounds (VOCs), toxicants, antibiotics,
peptaibols, etc.) (Schirmbock et al. 1994; Griffin et al.
2010; Khan et al. 2012), it has been reported that in some
plant lines inoculated with endophytes, there was more
growth in the roots, and by far, the most common mech-
anism that endophytes use to stimulate root growth is
through secretion of phytohormones within the plant
(Khan et al. 2012; Waqas et al. 2014). Also, endophytic
interactions with the host generate reactive oxygen spe-
cies stimulating antioxidant production in their host
plants, which in turn are responsible for protecting the
hosts from oxidative stress (Tanaka et al. 2006; White
and Torres 2010). Recently, it was reported in Lolium
perenne that colonization with the endophyte,
Neotyphodium lolii significantly influenced the phenolic
content and antioxidant activity. However, the effect was
found to be dependent on the endophytic strain
(Qawasmeh et al. 2012). In addition to this, some endo-
phytes manipulate the host plant metabolism by changing
the nutrient uptake and nutrient homeostasis (Sherameti
et al. 2005; Singh et al. 2013).

2. By altering/inducing gene expression of plants’ defense
and metabolic pathways (Rosenblueth and Martínez-
Romero 2006; Sherameti et al. 2008; Mathys et al.
2012), it is well established that the interaction of mi-
crobes with plants can induce both local and systemic
alterations in the host (Heil and Bostock 2002;
Glazebrook 2005; Ownley et al. 2010). Studies of plant
gene expression in response to endophytic colonization
reveal that genes for C and N metabolism, and plant
growth and plant defense are induced (Elvira-Recuenco
and Van Vuurde 2000). Plants can detect the presence of
molecules from endophytes through chemoperception
systems (Boller 1995). Recognition of endophytes byFig. 2 Evolutionary progression of the host-endophyte relationship
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the host plants triggers a cascade of signal transduction,
which gives rise to a series of plant defense responses
similar to plant pathogen interaction, thus leading to a
noticeable change in plant metabolic state (Qawasmeh
et al. 2012). The endophytic rhizobacteria and
actinobacteria have been shown to enhance disease resis-
tance by stimulating the systemic defense pathways (Heil
and Bostock 2002; Conn et al. 2008). The systemic ac-
quired resistance (SAR) pathway in the model plant,
Arabidopsis, is normally activated by biotrophic patho-
gens either as a part of the hypersensitive response or as
a symptom of disease, and the jasmonic acid/ethylene
(JA/ET) pathway is triggered by infection with
necrotrophic pathogens (Durrant and Dong 2004;
Glazebrook 2005). However, the activation of plant de-
fense genes in the absence of a pathogen by endophytic
actinobacteria reveals that the latter are detected as
Bminor^ pathogens which do not trigger a full resistance
response on their own, because they do not have patho-
genic determinants; thus, this may result in more effective
priming of the defense response (Conn et al. 2008).
Recently, it was reported that an endophytic bacterium
Bacillus thuringiensis GS1 isolated from Pteridium
aquilinum induced defense response against Rhizoctonia
solani KACC 40111 in cucumber plants. The possible
mode of action was reported to be the induction of PR
proteins and defense-related enzymes by B. thuringiensis
GS1 against R. solani KACC 40111 in cucumber plants
(Seo et al. 2012). Though this is some of the basic work
done on mechanistic aspect of endophytism, a complete
comprehension of this ecological phenomenon can only
be obtained by the integration of the Bomics^ technolo-
gies, such as metagenomics, metabolomics, or tran-
scriptomics together with ecogenomics.

Are endophytes a metabolic drain on plants
or an ecological bargain?

Symbiotic plant-fungal interactions are of widespread interest
to ecological research as they influence important ecosystem
processes including plant productivity, plant diversity, and
plant pathogen interactions (Van der Heijden et al. 2006;
Rodriguez et al. 2009; Van Bael et al. 2012), as exemplified
by the association of endophytic systemic clavicipitaceous
fungi with grasses exerting beneficial effects on hosts, through
increased resistance to herbivores, pathogens, and drought
stresses, which are of great ecological significance (Kuldau
and Bacon 2008). Many environmental factors influence the
plant-endophyte interactions; however, host plant response to
endophyte infection is mainly mediated by the host genotype,
endophytic strain, resource availability, and environmental
cues (Fig. 3) (Hesse et al. 2003; Malinowski and Belesky
2006; Singh et al. 2011; Qawasmeh et al. 2012). For example,
the endophyte interactions in tall fescue develop a low osmot-
ic potential, primarily in young meristematic and elongating
leaves, which enable tall fescue to remain stable during
drought stress (Elmi and west 1995). Similarly, thermotoler-
ance and salt tolerance is observed in certain plants colonized
with endophytes (Redman et al. 2002; Waller et al. 2005).
Fungal endophyte colonization significantly affects both pri-
mary and secondary metabolism of its host plant, clearly dem-
onstrating the need for wider metabolic studies beyond alka-
loid accumulation to understand ecosystem functions of this
association (Vandenkoornhuyse et al. 2002; Rudgers et al.
2012). It has been reported that a shift in C to N ratios and
in secondary metabolite production due to endophyte coloni-
zation are likely to have impacts on herbivore and plant path-
ogen responses to grasses infected with Neotyphodium sp.
(Rasmussen et al. 2008). Recent studies have shown that plant

Fig. 3 Endophytism derived niche specialization of plants leading to their adaptation to varied environmental conditions and bio-geographical regions
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microsymbionts may produce a range of different types of
metabolites that not only play a role in defense and competi-
tion, but also take part in specific interactions and communi-
cation with the host plant (Brader et al. 2014). Further,
metagenomic studies in rice found that endophytic root bac-
teria contain several groups of genes involved in motility,
plant polymer degradation, iron acquisition (e.g.,
siderophores), quorum-sensing, and detoxification of reactive
oxygen species, indicating that control over those pathways is
important for colonization by the root microbiome (Sessitsch
et al. 2012). Also, the phenotype and functional traits of most
plants in nature are product of the multitrophic interactions of
plants with other organisms, mainly microorganisms, sharing
the same habitat and resulting in complex and transient meta-
bolic flux across the interacting partners essential for their
survival (Kusari et al. 2014). It has also been found that pos-
itive effects of the endophyte on plant performance depend on
genetic variation in the host and endophyte and on nutrient
availability (Cheplick 2007; Gundel et al. 2012). This link
between resource availability and beneficial or neutral versus
detrimental effects on plant performance suggests a metabolic
cost of the endophyte to the host plant (Rasmussen et al. 2008;
Lahrmann et al. 2013). Thus, fungal symbionts might be a
drain (net cost) on plant metabolism or might upregulate me-
tabolism, but endophyte hosting plants have been reported to
have increased tolerance to drought, heat, metal toxicity, low
pH, and high salinity, thereby invoking an ecological signifi-
cance to the plants (Waller et al. 2005; Rodriguez et al. 2008;
Singh et al. 2011; Nagabhyru et al. 2013).

Why is there a differential recruitment of endophytes?

Plants growing in different geographical regions are
confronted with different environmental challenges (Arnold
2007). These environmental cues, in combinatorial effect with
host genotype, may shape the endophytic diversity harbored
by the host plants (Vega et al. 2010). The diversity of endo-
phytes associated with the plants varies not only temporally
but spatially as well (Herrera et al. 2010; Ek-Ramos et al.
2013). For instance, studies showed that endophytes may in-
crease in incidence, diversity, and host breadth as a function of
latitude (Arnold and Lutzoni 2007). Furthermore, endophyte
communities from higher latitudes were characterized by rel-
atively few fungal species representing several classes of
Ascomycota, whereas tropical endophyte assemblages were
dominated by a small number of classes but a very large num-
ber of different endophytic species (Arnold and Lutzoni
(2007).

Also, the different plants growing in similar environmental
conditions do not harbor same endophytes. It was observed
that none of the endophytes isolated from cottonwood were
identical to any of the endophytes of willow, even though both

tree species were growing at the same site within a meter of
distance from each other (Doty et al. 2009). This differential
Brecruitment^ of endophytes has been noted in other studies of
endophytic populations from plants growing in the same lo-
cation. Ulrich et al. (2008), while studying the diversity of
endophytes within four clones of poplar, noted that the four
poplar clones harbored four distinct endophytic populations,
supporting the hypothesis that plant genotype plays a role in
determining which endophyte can colonize the host (Ulrich
et al. 2008). A recent metagenomic study of root-associated
microbiomes of rice, using plants grown under controlled con-
ditions as well as field cultivation, showed that the composi-
tion of the microbial consortia varies with root-associated
compartments viz. endosphere (root interior), rhizoplane (root
surface), and rhizosphere (soil close to the root surface).
Under controlled conditions, microbiome composition varies
with soil source and genotype, while as in field conditions,
geographical location and cultivation practice were the factors
responsible for microbiome variation. This differential recruit-
ment of microbes across the rhizocompartments is a result of
active selection of microbial consortia at different steps
and each step involving molecular signals (general plant
metabolites, cell wall components or membrane proteins,
small molecule hormones particularly jasmonic acid,
salicylic acid, and ethylene) from the plant. These re-
sults suggest that a core microbiota can be recruited
from very diverse microbial surroundings, narrowing
down both the most relevant community members and
pointing to the host detriments controlling the mecha-
nisms of assembly (Lebeis 2014; Edwards et al. 2014).

The above-mentioned findings suggest that the endophytic
community of the plants is determined by the combinatorial
effect of the host genotype and the environment consistent
with a coevolutionary process whereby the endophytes may
have evolved in a coordinated fashion with the host plants
(Saikkonen et al. 2004; Heath 2010). There is the evidence
for multiple horizontal transfers of genes between the
symbionts, as an important ecological event that con-
ferred a selective advantage on the interacting partners
(Saikkonen et al. 2004). However, the interactions be-
tween plant and symbiotic microbial genomes (i.e.,
intergenomic epistasis, or genotype (G)×genotype (G)
interactions) can have important effects on the rate and
direction of coevolutionary selection (Wade 2007).
Thus, it can be hypothesized that differential recruitment
of endophytes in plants is a result of coevolutionary
selection process determined by intergenomic interac-
tions of both the interacting partners with environmental
conditions acting as a catalyst in this evolutionary se-
lection process. However, the genetic principles
governing the differential recruitment of endophytes by
a specific host and in a particular environment are poor-
ly understood and need to be deliberated in future.
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Endophytic technology and its ecological implications

The complexity of association of endophytes with its host
plant is of great ecological significance owing to their com-
patibility, ease of reinfection, and pattern of colonization
(Backman and Sikora 2008; Sikora et al. 2010). Whenever
we think of a microbial infection to plants, symptoms of dis-
eases or detrimental effects come to our mind, but this is not
true in case of endophytes. However, research work in this
aspect of plant-microbe interactions, with respect to the endo-
phytes, is in infancy, and the molecular mechanism to under-
stand this unique relationship is yet to be explored. Interests
are often also dictated by more immediate socioeconomic im-
pulses because microbes are responsible for many plant dis-
eases that cause substantial economic losses in agriculture or
have a substantial aesthetic impact. These harmful effects are
often manifested directly through pathogen-mediated damage
to the plants and a consequent reduction in plant vigor and
yield or quality of crops. However, there is a diverse commu-
nity of microorganisms (endophytes) which interact positively
with plants in agricultural systems in relation to their nutrition
and ability to resist biotic and abiotic stress and have the po-
tential to bemanipulated such that the benefits of their positive
effects are harnessed. Endophytes can be genetically
engineered, and these engineered endophytes have the poten-
tial to provide an alternative to plant transgenic technology by
conferring plants a new pathway to benefit from foreign genes
(Li et al. 2007). For example, an endophyte Leifsonia xyli
subsp. cynodontis, a xylem inhabiting bacterium, was geneti-
cally modified with a gene form Bacillus thuringensis, pro-
ducing Delta-endotoxin which is active against insects in na-
ture, especially Lepidoptera and Coleoptera. When inoculated
in the plant, it secretes the toxin inside the plant tissues
protecting it against attacks from the target insects (Fahey
et al. 1991; Tikhonovich and Provorov 2009; Porras-Alfaro
and Bayman 2011; Selim et al. 2012; Saikkonen et al. 2013).
Endophytes are especially interesting for integrative pest man-
agement as innovative biological control agents (BCAs)
(Scherwinski et al. 2008; Berg 2009; Li et al. 2012). An im-
portant advantage of endophytes as BCAs over the conven-
tional BCAs is that they can be applied directly to seeds or
seedlings, thereby avoiding treatment to large quantities of
soil or large numbers of already established plants. Recently,
an Enterobacter sp. has been reported as a potent biocontrol
agent against Verticillium dahliaeKleb, which is the causative
agent of verticilliumwilt of cotton (Li et al. 2012). Few fungal
endophytes are already being produced on large scale as com-
mercial BCAs for example Trichoderma harzianum,
Paecilomyces lilicinus, Beauveria bassiana, Fusarium
oxysporum etc. (Mendoza and Sikora 2009; Sikora et al.
2010). However, so far, single microorganisms have been
used as BCAs, and the use of multiple organisms in a consor-
tium imitating the complexity of associations within the plant

system has just begun to be explored (Friesen 2012; Kiers
et al. 2013). As the world becomes wary of the ecological
damage done by synthetic agrochemicals, endophytes contin-
ue for the discovery of powerful, selective, and safe alterna-
tives. The other important aspect of biotechnological implica-
tion of endophytes is in phytoremediation process either di-
rectly through degradation and/or accumulation of environ-
mental pollutants or indirectly by promoting the growth of
plants having the ability of phytoremediation (Stepniewska
and Kuzniar 2013). For example, plants inoculated with
genetically engineered endophytes were more tolerant to
toluene, and they also reduced the transpiration of
toulene to the atmosphere (Newman and Reynolds
2005). Some endophytes have been found to help the
host plant in nitrogen acquisition, either by tapping at-
mospheric nitrogen directly (Sherameti et al. 2005) or
by translocating the insect-derived nitrogen indirectly
(Behie et al. 2012) and thereby may play a larger role
in nitrogen cycling. One of the most potential functions
of endophytes is the facilitation of nutrient uptake.
Some endophytes have been observed to mobilize phos-
phorous uptake in plants (Yadav et al. 2010), while
others have been found to impact the growth and devel-
opment of the plants by producing useful phytohor-
mones (Khan et al. 2012; Waqas et al. 2014).

Many of the fungal endophytes have been found to produce
antimycotic volatile organic compounds (VOCs). VOCs pro-
duced by microorganisms are regarded important
infochemicals in the biosphere which influence the dynamics
of the ecosystem and vice versa (Wheatley 2002). Microbial
species produce consistent and reproducible VOC profiles un-
der standard culture conditions (Strobel et al. 2008; Mallette
et al. 2012; Riyaz-Ul-Hassan et al. 2012). Several of these
endophytes may find applications in agriculture, aroma indus-
try, food processing, and as potential biofuel molecules (Ezra
et al. 2004; Strobel et al. 2008; Bitas et al. 2013; Riyaz-Ul-
Hassan et al. 2013). Endophytes like Muscodor spp. produce
bioactive VOCs that inhibit or kill important plant pathogens,
thus may be used for mycofumigation, postharvest preserva-
tion of agricultural produce, and decontamination of animal
waste (Strobel 2006; Bitas et al. 2013). It seems reasonable
that the VOC-producing microorganisms may be preferential-
ly establishing symbiotic associations with higher plants as
they contribute to the host defense mechanism by inhibiting
the plant pathogens. Production of VOCs may also help them
to compete with other microbes for space, nutrients, and mak-
ing associations with plants.

Greater utilization of microorganisms of endophytic origin
in agricultural systems could possibly allow reductions in the
use of inorganic fertilizers, herbicides, and pesticides with no
impact on crop vigor and yield. Thus, in future, endophyte
technology holds the key for a potential gateway to sustain-
able agriculture development.
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Conclusions

The microbiota associated with the plants shape their health,
growth, and development as well as their secondary metabo-
lism. Endophytes are most intimately associated with plants,
being present inside the plant tissues; thus, they impact the
development of the host significantly. Plant-endophyte inter-
actions may be species specific, shaped by the coevolution of
both the partners together to impart essential benefits to each
other. Recent studies on plant-endophyte mutualism involving
B-omics^ coupled to the systems biology approache have
started providing insights into different facets of plant-
endophyte interactions and the dynamics of multispecies mu-
tualism network with a high level of significance. Endophytes
can be explored as a bio-resource for drug discovery in phar-
maceutical industries, as plant growth-promoting regulators
(PGPRs), bio-control agents (BCAs) for disease and pest man-
agement in agricultural industry, and as important technology
in environmental remediation. Thus, endophyte research
holds a potential gateway for sustainable development provid-
ed that we harness their potential in a holistic way.
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