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Abstract On the basis of achieving shortcut nitrification
in a lab-scale SBR, the effects of constant pH and un-
steady pH at different free ammonia concentrations on
shortcut nitrification for landfill leachate treatment was
investigated. The results indicate that under the condi-
tion of DO of 0.5±0.2 mg/L and temperature of 30±
2 °C, the absolute value of nitrite accumulation in-
creased significantly with the increase in free ammonia
(FA) concentration from 5.30 to 48.67 mg/L; however,
the nitrite accumulation rate remained almost constant at
a constant pH of 8.0±0.1. Ammonia oxidation and the
nitrite accumulation become slow with the pH decreased
from 8.0±0.1 to 7.5±0.2, and the activities of ammonia-
oxidizing bacteria (AOB) and nitrite-oxidizing bacteria
(NOB) were severely inhibited when the pH further de-
creased to 6.5. More importantly, this study confirmed
that the pH decrease from 8.0 to 6.5 within a short time
exhibited significant negative effect on the ammonia ox-
idation rather than the FA concentration.
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Introduction

Landfill leachate treatment has received significant attention
in recent years as it contains high concentration of organics,
ammonia, and other toxic pollutants. The conventional bio-
logical process for leachate treatment is nitrification and deni-
trification, which is widely studied (Renou et al. 2008; Sri
Shalini and Joseph 2012). However, some problems have
been encountered in this traditional nitrogen removal process,
such as high oxygen and energy consumption, high land re-
quirement, and high sludge production (Guo et al. 2009; Khin
and Annachhatre 2004; Yang et al. 2007). The shortcut bio-
logical nitrogen removal (SBNR) utilizes the concept of direct
nitrite reduction to nitrogen gas (Turk and Mavinic 1989;
Hellinga et al. 1998). The SBNR process can reduce 25 %
of oxygen supply needed for nitrification and approximately
40 % of electron donors needed for denitrification, compared
to the conventional biological nitrogen removal (BNR) pro-
cesses (Hellinga et al. 1998; Yoo et al. 1999; Turk and
Mavinic 1986). These characteristics of SBNR make it appro-
priate for ammonia-rich wastewaters treatment such as landfill
leachate. The SBNR process is strongly influenced by envi-
ronmental factors, such as pH, free ammonia (FA), dissolved
oxygen (DO), temperature, mixed liquor suspended solids
(MLSS), and so on (Morgenroth et al. 2000; Vadivelu et al.
2007; Wu et al. 2007). It is generally accepted that the optimal
pH range for ammonia-oxidizing bacteria (AOB) and nitrite-
oxidizing bacteria (NOB) are 7.0 ~8.5 and 6.0 ~7.5
(Groeneweg et al. 1994), respectively. And both AOB and
NOB are inhibited by FA, but the NOB is more sensitive to
FA than AOB, giving the inhibition range of 0.1~1.0 and 10~
150 mg/L (Anthonisen et al. 1976), respectively. According to
Anthonisen et al., the pH value is the key factor that deter-
mines the FA concentration in equilibrium with NH4

+-N
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concentration. Therefore, pH value and FA concentration are
the important parameters to achieve stable shortcut
nitrification.

The purpose of this study was to investigate the comparing
effects of constant pH value and unsteady pH value at differ-
ent FA concentrations on ammonia oxidation and nitrite accu-
mulation by using batch experiments.

Materials and methods

Cultivation and domestication

The seeding sludge was obtained from an activated sludge
tank of Lijiao municipal wastewater treatment plant in
Guangzhou. The concentration of synthetic landfill leachate
(after dilution) fall within the range of real landfill leachate in
China (Peng et al. 2006; Yang and Zhou 2005; Li et al. 2009),
with COD of 400~800 mg/L, NH4

+-N of 50~450 mg/L, and
other inorganic medium (in mg/L): PO4

3+ 8.5~77.6; Ca2+ 1.0
~5.0; Fe2+ 0.8~2.0; K+ 3.2~3.6; Mg2+ 5.0~9.6; Zn2+ 0.4~
1.5; Cr3+ 0.12~0.2; and Cu2+ 0.1~0.2. The experiment was
carried out in the lab-scale sequencing batch reactor (SBR)
shown in Fig. 1. The working volume was 10 L, with an
internal diameter of 18 cm and a liquid height of 40 cm. The
SBRwas operatedwith a 12-h cycle, consisting of five phases:
transient filling; 8 h aeration, 0.5 h settling, 0.5 h drawing, and
3 h idle. The air was provided by an air pump through an
aeration diffuser placed at the bottom of the reactor with the
DO concentration of 0.5±0.2 mg/L, and the temperature was
kept at 30±2 °C by using a cartridge heater. The pH was
regulated constantly at 8.0±0.1 by titrating NaHCO3 solution.
Sample and analyze every cycle.

Analytical methods

NH4
+-N, NO2

−-N, NO3
−-N, and MLSS were measured ac-

cording to Standard Methods (N. E. P. A. 2002).
NH4

+-N concentration was determined colorimetrically.
Nitrate nitrogen (NO3

−-N) and nitrite nitrogen (NO2
−-

N) concentrations were measured with an ion chromato-
graph (ICS-1000, Dironex, USA). Samples of NH4

+-N,
NO2

−-N, and NO3
−-N were obtained via a 0.45-μm fil-

ter paper. DO and pH were measured online by WTW
pH/OXi 340i meters with a dissolved oxygen electrode
and a pH electrode. Free ammonia (FA) concentration
was estimated using the following equation (Anthonisen
et al. 1976):

FA ¼ 17

14

NHþ
4 −N

� �þ 10pH

exp
6334

273þ T

� �
þ 10pH

where FA is the free ammonia concentration (mg NH3/L),
[NH4

+-N] is the ammonia concentration (mg/L), and T is the
temperature (°C).

Batch experiments

The activated sludge was washed and settled in fresh
water before use. All batch experiments were conducted
in a 2-L reactor containing synthetic landfill leachate,
which had the same substrate concentration as that of
the cultivation experiment except NH4

+-N concentra-
tions. For all the batch tests, the concentration of
MLSS was designed as 3,800±500 mg/L, and the tem-
perature and DO concentration were kept at 30±2 °C and
0.5±0.2 mg/L, respectively, as same as that of the culti-
vation experiment. The effects of constant pH and un-
steady pH on shortcut nitrification were studied with the
initial FA concentrations of 5.30, 12.19, 33.19, and
48.67 mg/L. Each initial FA concentration gradient test
was triplicate and divided into two groups: the pH at
group I was regulated constantly at 8.0±0.1 by titrating
NaHCO3 solution during aeration, while no steps were
taken to regulate the pH at group II. Samples were ana-
lyzed every 30 mins. The NH4

+-N concentrations de-
signed for the batch experiments at different initial FA
concentrations are listed in Table 1.

Fig. 1 Schematic diagram of SBR

Table 1 NH4
−-N concentration designed for the batch experiments in

different FA at pH=8.0±0.1

FA 5.3a 12.19 33.19 48.67

NH4
+-N 58.43 a 134.39 365.90 536.55

a Unit: mg/L
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Results

Start-up of the shortcut nitrification

Figure 2 presents NH4
+-N removal performances during start-

up period. The influent NH4
+-N concentrations increased

stepwise from 50.1 to 405.7 mg/L during the start-up period,
and the effluent NH4

+-N concentrations were below
16.42mg/L during the first 20 cycles, then increased gradually
with the NH4

+-N concentration increased to 405.7 mg/L, giv-
ing the maximum value of 45.51 mg/L. Excellent treatment
efficiencies were obtained during the whole period, as we can
see in Fig. 2. In general, an increasing trend was observed in
NH4

+-N removal rate from 73.69 % at the beginning of the
period to 90.94 % at the end of the period with the increasing
influent NH4

+-N concentration.
The NO2

−-N and NO3
−-N accumulation performances dur-

ing start-up period are shown in Fig. 3. It was clear that plenty
of effluent NO2

−-N concentration was detected during the
start-up period, and the NO2

−-N concentration increased rap-
idly from 7.61 to 116.99 mg/L, with the increasing influent
NH4

+-N concentration from 50.1 to 405.7 mg/L. While at the
same time, the effluent NO3

−-N concentration decreased step-
wise from 16.30 to 2.89 mg/L. In the case of NO2

−-N accu-
mulation rate, it increased significantly from 31.83 to 86.44 %
during the first 20 cycles, and then maintained between 90.27
and 98.01 % during the last 14 cycles. It indicated that AOB
showed high activities and that of NOB has been inhibited
severely.

Nitrification at different FA concentration under constant pH
and unsteady pH

Figure 4 shows the results of NH4
+-N removal performances

of constant pH and unsteady pH at different FA concentration.
The initial FA concentrations were set as 5.30, 12.19, 33.19,
and 48.67 mg/L, respectively. As shown in Fig. 5, the NH4

+-N

concentration decreased in a linear manner with relative high
regression coefficients (R2>0.93) in all FA concentration gra-
dient test in group I. While in group II, the NH4

+-N concen-
tration decreased become slow when it appear 3 points on the
NH4

+-N curves, point A1, A2, and A3 in subpanels b, c, and d
of Fig. 4, which corresponded to FA concentration of 12.19,
33.19, and 48.67 mg/L, respectively. An exception was at FA
concentration of 5.30 mg/L, where the NH4

+-N curves almost
has the same decreasing trend.

The pH value in group I was kept constantly at 8.0±0.1 by
titrating NaHCO3 solution during aeration, while no steps
were taken to regulate the pH value in group II. The pH value
decreased continuously during the aerobic phase in all case. In
Fig. 4a, the pH value decreased slowly to a minimum value of
7.21. However, in subpanels b, c, and d of Fig. 4, the pH value
decreased very fast from 8.0 to less than 6.5. It should be noted
that points A1, A2, and A3 on the NH4

+-N curves correspond
to pH values of 7.31, 7.25, and 7.37, respectively. Meanwhile,
the FA concentrations decreased rapidly to 0 with the fast
decreasing pH in all case in group II, as well as the cases of
initial FA concentration of 5.30 and 12.19 mg/L in group I.
However, the FA concentration maintained relative high level
all along at initial FA concentration of 33.19 and 48.67 mg/L
in group I.

Nitrite accumulation at different FA concentration
under constant pH and unsteady pH

The NO2
−-N accumulations at different FA concentration un-

der constant pH and unsteady pH are shown in Fig. 6.
Considerable NO2

−-N accumulation was observed regardless
of FA concentration in group I, and the absolute value of
NO2

−-N accumulation increased with the increase in FA con-
centration from 5.30 to 48.67 mg/L, giving the maximum
value of 48.08, 86.83, 85.21, and 121.54 mg/L, respectively.
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Fig. 2 NH4
+-N removal performances during start-up period
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Fig. 3 NO2
−-N and NO3

−-N accumulation performances during start-up
period
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Similar with Fig. 4, the NO2
−-N accumulated began to

become slow when it appears 3 points on the NO2
−-N curves

in group II, points B1, B2, and B3 in subpanels b, c, and d of
Fig. 6, corresponding to FA concentration of 12.19, 33.19, and
48.67 mg/L, respectively. As for the initial FA concentration
of 5.30 mg/L, the NO2

−-N curves had a similar increasing
trend in group I and II.

Figure 7 presents the effluent NO2
−-N and NO3

−-N at dif-
ferent FA concentrations in group I and group II. The absolute

value of nitrite accumulation increased significantly with the
increase in FA concentration from 5.30 to 48.67 mg/L in
group I, while the value varies irregularly in group II.
Although the absolute values of effluent NO2

−-N and NO3
−-

N in group II were lower than that in group I, the NO2
−-N

accumulation rate has little difference between group I and
group II, in addition, it varies insignificantly with the increase
in FA concentration, averaging 94.03, 94.78, 94.31, and 95,
51% in group I and 95.37, 94.29, 91.76, and 91.54% in group
II, respectively, at FA concentration of 5.30, 12.19, 33.19, and
48.67 mg/L.

Discussion

The primary environmental parameters to obtain a shortcut
biological nitrogen removal process are the pH value, free
ammonia, temperature, and DO concentration. Many studies
have been conducted to investigate the start-up of shortcut
nitrification, under a variety of environmental and operational
conditions, such as low DO level (Blackburne et al. 2008),
high temperature (Hellinga et al. 1998), and free ammonia
(Park et al. 2009). In this study, during start-up period, the
temperature and the DO concentration in the reactor were kept
at 30±2 °C and 0.5±0.2 mg/L, respectively. The pH value was
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regulated constantly at 8.0±0.1. As a result, excellent treat-
ment efficiencies, both NH4

+-N removal rate and NO2
−-N

accumulation rate, were obtained during the whole period.
The NO2

−-N accumulation rate increased significantly from
31.83 to 86.44 %within 20 cycles, and then stably maintained
between 90.27 and 98.01 % at the end of the start-up period. It

is generally accepted that the optimal pH range for AOB and
NOB are 7.0~8.5 and 6.0~7.5 (Groeneweg et al. 1994), re-
spectively. In addition, NOB have been shown to have lower
affinity for oxygen than AOB, and the half-saturation constant
(Ko) for dissolved oxygen is 0.16 and 0.54 mg O2/L for AOB
and NOB, respectively (Laanbroek et al. 1994; Hunik et al.
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1994). Therefore, the SBR system can achieve stable shortcut
nitrification soon in the operation conditions of 30±2 °C,
pH 8.0±0.1, and DO of 0.5±0.2 mg/L, and the result confirm
that high temperature, high pH, and low DO strategy was
feasible for the start-up of shortcut nitrification.

FA concentration has a large influence on ammonia oxida-
tion as it is the actual substrate for AOB instead of NH4

+-N,
and the equilibrium between FA and NH4

+-N is strongly de-
pends on the pH value (Suzuki et al. 1974; Anthonisen et al.
1976). Oxidation of ammonia to nitrite is an acidifying pro-
cess, in this study, a great amount of ammonia was oxidized to
nitrite, resulting in the greatly decrease in pH and the subse-
quently decrease in FA concentration. NH4

+-N decrease began
to become slow with the pH value decreased to 7.30±0.1, as
the further decrease in pH to 6.5 the NH4

+-N concentration
almost no longer decreased, indicating the activities of AOB
have been inhibited severely. This was in good agreement
with the observations made by Hellinga et al. (1999) and
van Dongen et al. (2001), who stated that at pH lower than
6.5, nitrification does not take place. However, when the pH
value was regulated constantly at 8.0±0.1, the FA concentra-
tion maintained relative high level all the time, even so NH4

+-
N concentration decreased in a linear manner with relative
high regression coefficients (R2>0.93), meaning that the rela-
tionship of NH4

+-N consumption and time was linearly fitted
and ammonia oxidation rate remained almost constant, these
indicated that the oxidation of ammonia follows the zero-order
reaction kinetics. Therefore, we can conclude that the FA con-
centration in the range of 5.30~48.67 mg/L had a limited
effect on NH4

+-N oxidation, that the great decrease in pH
within a short time had a significant effect on NH4

+-N oxida-
tion. Similar with this study, Kim et al. (2008) studied the
comparison study of the effects of temperature and free am-
monia concentration on nitrification and nitrite accumulation,
demonstrated that at a given temperature, the specific ammo-
nium oxidation rate remained almost constant in spite of the
variation in FA concentration. Despite a wide divergence of
the reported effects of pH on nitrification, there seems to be a
consensus that the optimal pH for ammonium oxidizers lies
between 7 and 8 (Van Hulle et al. 2010). The experiments
presented herein confirm that the greatly decrease in pH with-
in a short time had a significant effect on NH4

+-N oxidation,
thus, to maintain a stable pH range has great significance for
the biological nitrogen removal process, especially in the case
of ammonia-rich wastewater such as municipal landfill
leachate.

Comparing Fig. 4 with Fig. 6, it is clear that there was a
high correlation between NH4

+-N oxidation curve and NO2
−-

N accumulation curve, that is to say, the NH4
+-N almost ox-

idized to NO2
−-N completely. We define nitrite accumulation

rate as the NO2
−-N to NOx

−-N ratio in the effluent. Our result
demonstrated that the absolute value of NO2

−-N accumulation
increased with the increase in FA concentration from 5.30 to

48.67 mg/L at a constant pH of 8.0±0.1, and even though the
pH decreased rapidly to 6.5, the NO2

−-N accumulation rate
varies insignificantly. It indicated that both different FA con-
centrations and greatly decrease in pH have a negligible effect
on the NO2

−-N accumulation rate. This result is consistent
with that reported by Kim et al. (2008), who showed that there
was no significant difference in the nitrite accumulation rate
among different FA concentrations at a certain temperature.
Moreover, Bae et al. (2001) reported that when the FA con-
centration was relatively low, the accumulated nitrite was rap-
idly converted to nitrate. But according to our result, even
though the FA concentration decreased into 0, the NO2

−-N
accumulation rate remained a high value; this was due to the
inhibition of activities of both AOB and NOB by a low pH
value of 6.5.

In summary, shortcut nitrification can be achieved rapidly
under the operation conditions of 30±2 °C, pH 8.0±0.1, and
DO of 0.5±0.2 mg/L in 50 cycles. When pH value was below
6.5, activities of both AOB and NOB were inhibited severely.
The absolute value of nitrite accumulation increased signifi-
cantly with the increase in FA concentration from 5.30 to
48.67 mg/L at a constant pH of 8.0±0.1. The greatly decrease
in pH within a short time had a significant effect on NH4

+-N
oxidation, while had a limited effect on the NO2

−-N accumu-
lation rate. In addition, FA concentration was confirmed as a
relative unimportant role on the NH4

+-N oxidation and the
NO2

−-N accumulation rate almost remained constant with
the increase in FA concentration from 5.30 to 48.67 mg/L.
Therefore, pH value is an important parameter on SBNR pro-
cesses, to maintain a stable pH range has great significance for
landfill leachate treatment by SBNR.
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