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Abstract The incidence of shrimp disease is closely associ-
ated with the microbial composition in surrounding water, but
it remains uncertain whether microbial indicator phylotypes
are predictive for shrimp health status (healthy or diseased).
To test this idea, we combined the data from our previous
works, to investigate the feasibility of indicator phylotypes as
independent variables to predict the health status during a
shrimp culture procedure. The results showed linearly in-
creased dissimilarities (P<0.001) of the bacterioplankton
community over time, while the communities dramatically
deviated from this defined trend when disease occurred. This
sudden shift in the bacterial community appears to cause
severe mass mortality of the shrimps. In particular, we created
a model to identify indicators that discriminated ponds with
diseased shrimp populations from these with healthy shrimp
populations. As a result, 13 indicative families were screened,
in which seven are healthy indicator and six are diseased
indictor. An improved logistic regression model additionally
revealed that the occurrences of these indicator families could

be predictive of the shrimp health status with a high degree of
accuracy (>79%). Overall, this study provides solid evidences
that indicator phylotypes could be served as independent
variables for predicting the incidences of shrimp disease.

Keywords Bacterioplankton community . Indicator
phylotypes . Incidence of disease . Logistic regression
model

Introduction

To sustain a high production, the feed supply generally ex-
ceeds the required level in shrimp culture ponds. This practice
causes a gradual deterioration of water quality, particularly in
the mid- to late periods of shrimp cultivation (Sugiura et al.
2006; Ma et al. 2013). The deteriorated water quality exerts
strong pressures on shrimp health, often leading to severe
disease outbreaks and economic losses, which has become a
major threat to aquaculture (Defoirdt et al. 2011; Ferreira et al.
2011). For these reasons, it is urgently needed to establish
reliable strategies for forecasting the incidences of shrimp
disease. Considering the innumerable and complicated varia-
tions in water parameters, monitoring multiple geochemical
factors has been wildly employed to generate water quality
indices (Ferreira et al. 2011; Ma et al. 2013) for disease
forecasting. However, in practice, it is generally difficult to
set a threshold value for a specific abiotic parameter to eval-
uate the disease risk precisely. Thus, the application of only
traditional physicochemical variables to assess the shrimp
health status may be inadequate.

Recently, ample evidences have shown that there is an
inextricable correlation between plankton community and
shrimp health, with distinct microbial communities between
ponds with healthy shrimp populations (PHS) and diseased
ones (PDS) (Lucas et al. 2010; Boutin et al. 2013; Zhang et al.
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2014). Thus, the microbial assemblages that preferably oc-
curred in PHS or PDS may serve as diagnostic species or
indicator species (a concept initially referred in macroecology,
McGeogh 1998; Chytrý et al. 2002), for indicating the inci-
dences of shrimp disease. Recently, the determination indica-
tor of species has become an active research topic in microbial
ecology (Paerl et al. 2003; Berry et al. 2012; Fortunato et al.
2013; Xiong et al. 2014a), which has provided solid evidences
that microbial indicators were strongly associated with health
status or habitat condition. For example, Berry et al. (2012)
revealed that shifts in the bacterial intra-family structure can
be indicative for dextran sodium sulfate (DSS)-induced dis-
ease. Similarly, Fortunato et al. (2013) showed that indicator
taxa characterized the dynamics of seasonal condition.
However, these findings center on the discriminative pattern
by indicator taxa between groups (i.e., healthy or diseased,
disturbance states), rather than prediction over time (De
Cáceres and Legendre 2009; Hilbe 2009; Zhang et al. 2014).
In other words, to date, there is no model-based approach to
predict the incidence of shrimp disease on temporal scale.
Consequently, it is unclear whether indicator phylotypes could
be used as independent variables for predicting the health
status over an entire duration of shrimp culture.

Indeed, we have found that the bacterioplankton com-
munities could discriminate PHS from PDS (Zhang
et al. 2014) and that bacterial temporal dynamics are
predictable to a certain extent (Xiong et al. 2014b).
These findings address the idea to apply bacterial indi-
cator phylotypes for predicting health status (healthy or
diseased) during shrimp cultivation. It is known that
stressful conditions such as those occurring in ponds
induce changes in bacterial community, thus enhancing
the virulence of opportunistic pathogens to cause shrimp
disease (Boutin et al. 2013; Zhou et al. 2012). We,
therefore, speculate that dramatically shifts in bacterial
community would cause the occurrences of shrimp dis-
ease; thus, the indicator phylotypes could provide a
warning of the increased risk of disease outbreak.
However, this idea has never been tested directly by
experimental data in aquaculture ponds. To test this
hypothesis, we collected bacterial community data from
our previous works (Xiong et al. 2014b; Zhang et al.
2014) and created a model to screen indicator phylo-
types at different taxonomic levels. Further, we applied
an improved logistic regression model (Hilbe 2009; De
Cáceres et al. 2010), based on the occurrence of indi-
cator phylotypes to predict the health status over dura-
tion of shrimp farming, rather than a simple t test to
discriminate ponds with healthy and diseased shrimps
(Zhang et al. 2014). To our knowledge, this is the first
s tudy that shows evidence that the indica tor
bacterioplankton assemblages are reliable for predicting
the incidence of shrimp disease.

Materials and methods

Experimental design and water sample collection

The shrimp ponds investigated in this study are located at the
Zhanqi, Ningbo, eastern China (29° 32′ N, 121° 31′ E). These
30 ponds are approximately the same size (2,000 m2) and are
identically managed. Shrimp (Litopenaeus vannamei) juve-
niles were introduced into the ponds on 25 March, 2012. The
surface water samples (25–50 cm) were collected at various
time points separated by 7 to 10 days (over a span of 42 days,
from 29April to 10 June) in six selected ponds, corresponding
to 35, 45, 55, 63, 69, and 77 days after shrimp inoculation.
This duration covers the periods during which the risk of a
disease outbreakwas high (58±8 days after the introduction of
juvenile shrimp) (Lemonnier et al. 2006). Consistently, a
disease outbreak caused massive mortality of shrimp in six
ponds (independent of our monitored ponds) on 27 May,
63 days after inoculation. Farmers exchanged 80 % water
and applied antibiotics in disease ponds. We designed to take
samples from diseased ponds over time, while the shrimps
were harvested on day 80, and additional sampling was
stopped. We collected water samples from these six ponds
with disease shrimp populations.Water samples were stored at
4 °C during transportation to the lab.

Data collection and deposition

Water biogeochemical variables and bacterial 16S rRNA gene
(V4-V5 region) pyrosequencing data were collected from our
previous works (Xiong et al. 2014b; Zhang et al. 2014). See
abiotic information in Table S1. The combined sequences data
were deposited in the DDBJ (http://www.ddbj.nig.ac.jp/)
Sequence Read Archive and are available under the
accession number DRA001853.

Statistical analysis

The sequence reads were low in eight samples from
ponds with healthy shrimps, which were entirely re-
moved for further analysis. Nonmetric multidimensional
scaling (NMDS) analysis was implemented to evaluate
the overall differences of microbial community structure
to determine changes in beta diversity (Clarke, 1993).
Parametric permutational multivariate analysis of vari-
ance (perMANOVA) was conducted to quantitatively
evaluate the effects of disease and sampling time on
the composition of microbial community using the
“adonis” function (Anderson 2001). A permuted multi-
variate analysis of variance (MANOVA) was used to
disentangle the effects of disease and sampling time
on the variations at phyla level in R v.2.11.0 with the
“vegan” package (www.R-project.org).
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Indicator phylotype identification and prediction model
construction

In total, 34 samples were collected in this study, with six
samples from PDS and 28 samples from PHS. We created a
model to identify the indicator phylotypes that efficiently
discriminate the bacterioplankton composition from PHS to
PDS. The temporal dynamics of bacterial communities in
shrimp culture ponds (Xiong et al. 2014b); we used the
samples from healthy and diseased ponds at D63 to minimize
unequal sampling size and then applied the indicative assem-
blages to predict the health status across the 34 samples. The
match rate of test sample to modeling sample is the predictive
accuracy. Bacterial communities were analyzed at different
taxon levels that can be, for instance, genus, family, or class
level. The community tables at different taxon levels were
generated during Qiime workflow (Caporaso et al. 2010). The
indicator phylotypes analysis determines the strength of the
association between a given taxon and its target condition (De
Cáceres and Legendre 2009).

1. Basic principles

(a) The sum of the relative abundances of indicator
phylotypes (hereafter called “SRAIP”) for a given
sample is employed as an indicator to evaluate the
health status (healthy or diseased) of shrimp popula-
tions at corresponding pond;

(b) The inner-group variation coefficient of SRAIP
should be as small as possible, that is, the SRAIP is
relatively stable for a specified group (PHS or PDS);

(c) The inter-group differences of SRAIP should be as
great as possible, i.e., the difference is obvious
enough to distinguish the groups;

(d) The relative abundance of each characteristic phylo-
type should be relatively high for practical detection
purpose.

2. Algorithm

(a) Given that there are n samples (i=1, 2…, n), and m
phylotypes ( j=1, 2…,m), which were separated into
two groups, bacterial communities from PHS or
PDS, calculate the mean relative abundance of phy-
lotype j in each group, that is, adj and ahj;

(b) If adj>ahj (had an arithmetic mean difference of
0.5 % relative abundance between PHS and PDS),
phylotype j is initially defined as quasi-diseased com-
munity; conversely, defined as quasi-healthy com-
munity. As a result, we obtain md quasi-diseased
phylotypes and mh quasi-healthy phylotypes;

(c) For all the md quasi-diseased phylotypes, remove
phylotype j and calculate the sum of the relative
abundances (sij) of the residual quasi-diseased

phylotypes for each sample. Using sij to estimate
the significant difference ( pjd) between PHS and
PDS based on t test;

(d) If the pjd value is the lowest among the md quasi-
diseased phylotypes when phylotype j has been re-
moved (that is, phylotype j contributes negligible
differences between groups), phylotype j is deleted
in subsequent analysis, thus generating a combina-
tion that contains md-1 quasi-diseased phylotypes;

(e) Repeat steps (c)–(d); each cycle removes one phylo-
type; the k-th step makes a combination combx con-
taining md−k phylotypes. Repeat until md−k reaches
the pre-given minimum number x of diseased indi-
cator phylotypes;

(f) For the combination of x (combx, x=md−k) from steps
(c)–(e), calculate the sum of the relative abundance of
the combx, sdx, and shx for each sample; the mean,
adx, and ahx; the variation coefficient, vdx, and vhx of
the combx within the samples from PDS; and the
PHS (each group with six samples on day 63), re-
spectively. Using adx and ahx to estimate the signif-
icant difference (Pn) between PDS and PHS based on
t test;

(g) Using sum of the relative abundance to classify all
the samples into PDS or PHS, i.e., if the sdx of
sample i greater than adx, it is categorized into
PDS; conversely, categorized into PHS. Calculate
the accuracy rates, Rdx, and Rhx for PDS and PHS,
respectively;

(h) Specify the following parameters: the accuracy rate
R for distinguishing PDS from PHS, themean ad and
the coefficient of variation vd of SRAIP, and the
maximumnumber xdmax andminimum number xdmin

of indicator phylotypes. According to those parame-
ters and the results above, screening out the optimum
combination of diseased phylotypes, named the dis-
eased indicators (DI);

(i) In steps (c)–(h), replacing the quasi-diseased phylo-
types with quasi-healthy phylotypes to acquire the
healthy indicators (HI) from the residual m - md

phylotypes.
3. Prediction method

We used an improved logistic regression model to
predict the shrimp health status with following formula

(Hilbe 2009): P ¼ exp β0þβ1X 1þ…þβnX nð Þ
1þexp β0þβ1X 1þ…þβnX nð Þ , where P is the

health status, X1, X2,…, Xn (the relative abundances of the
DI or HI) are independent variables, and β1, β2,…, βn are
parameters for logistic regression model. P is the health
status of sample, P=1 for healthy and P=0 for diseased
ponds.

This model was used to predict the health status based on
the occurrence of indicator phylotypes (independent
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variable) over the duration of shrimp culture. The match rate
of test sample to modeling sample is the predictive accuracy.

Results

Distribution of taxa and phylotypes

Across all water samples, we collected a total of 241,689 high-
quality sequences and 4,502–8,731 sequences per sample
(mean=7,108). We were able to classify 94.1 % of those
sequences at the phylum level. The dominant phyla were
Bacteroidetes, Alphaproteobacteria, Actinobacteria,
Gammaproteobacteria, and Cyanobacteria (relative abun-
dance>5 %), representing more than 79 % of the bacterial
sequences (Fig. S1). In addition, Acidobacteria, Chloroflexi,
and Firmicutes were present in most samples at low abun-
dance (data not shown). Particularly, the occurrences of sev-
eral phyla significantly changed between ponds with healthy
and diseased shrimps. Specifically, the relative abundances of
F l a v o b a c t e r i a , Gamma p ro t e o b a c t e r i a , a n d
Betaproteobacteria dramatically decreased at PDS relative to
that of PHS; by contrast, those of unclassified bacteria,
Planctomycetes and Gemmatimonadetes, displayed the oppo-
site trend (Fig. S2).

Sudden shift in the bacterioplankton communities
was associated with shrimp disease outbreak

Based on the detected operational taxonomic units (OTUs)
across the samples, a NMDS ordination analysis clearly re-
vealed a continuous succession of bacterioplankton assem-
blages during our monitored shrimp-farm procedure. At the
diseased ponds, specifically, bacterial community structures
were distinct from that of healthy ones, primarily separated by
the second axis (Fig. 1a), although the community richness
and diversities did not vary dramatically over time (Fig. S3).
The linear function showed a significant correlation
(P<0.001) between NMDS axis 1 (as a proxy for the bacterial
community dissimilarity) and sampling time, but that incre-
mental dissimilarities in diseased ponds dramatically deviated
from the trend (Fig. 1b). In particular, this marked shift in the
bacterioplankton composition was associated with severe
shrimp mortality. It seems that the bacterial communities
between PDS and PHS were mainly separated by NMDS axis
2; thus, values of NMDS axis 2 were regressed against geo-
chemical factors. There were significant correlations (P<0.05)
between community distances and TN, TP, or COD (Fig. S4),
which is in concert with the notion that the stressful environ-
mental parameters usually induce the virulence of shrimp
disease (Boutin et al. 2013; Zhou et al. 2012).

Note that the community composition did not vary signif-
icantly between consecutive sampling points, such as H45 vs.

H55 and H63 vs. H69. However, the bacterioplankton assem-
blages were dramatically changed from PHS to each PDS
(Table S2). This was still true when compared with
bacterioplankton communities between PHS and PDS on the
same sampling day (H63 vs. D63, P=0.005, Table S2).
Furthermore, we used a two-way ANOVA to evaluate the
effects of sampling time and disease on the occurrences at
phylum level and found that more phyla were affected by
disease outbreak, including the predominant phyla of
Bacteroidetes and Alphaproteobacteria (Table 1).
Additionally, permutational multivariate analysis of variance
(perMANOVA) showed that sampling time and disease out-
break significantly affected the bacterial community structure;
specifically, sampling time (8.3 %, P=0.001) exerted stronger
effects on the dynamics of the bacterial community than
disease outbreak did (6.1 %, P=0.001). However, when the
samples (before the emergences of shrimp disease) were

Fig. 1 Nonmetric multidimensional scaling (NMDS) plot derived from
the Jaccard distances between water samples (a) with symbols coded by
sampling time, and the first component from NMDS of the Jaccard
distances regressed against sampling time using a linear function for the
bacterial community (b). H healthy, D diseased
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stepwise deleted in the analysis, the relative importance of
disease outbreak successively increased (Table 2), suggesting
that disease outbreak is an independent factor that triggers the
shifts in bacterial communities. Overall, the results demon-
strated that the occurrence of disease was closely associated
with shifts in bacterioplankton composition, concomitantly
with a moderately temporal dynamics.

Model-based approach for predicting the shrimp health status

To determine if the degree of phylotype kinship influences
predictive accuracy, we identified indicator phylotypes at

different taxonomic levels (that is, at phylum, class, order,
family, and genus levels) as proposed before (Berry et al.
2012). The occurrences of the indicator phylotypes were
served as independent variables to evaluate the predictive
accuracy by an improved logical regression model (Hilbe
2009). The results showed that family-level characterization
revealed the highest predictive accuracy (Table 3). Therefore,
a family-level indicator phylotype was employed for subse-
quent indication of the shrimp health status. Specifically, there
were seven numerically dominant healthy indicator phylo-
types; their relative abundances were substantially (P<0.05)
decreased at PDS (Fig. 2a). In contrast, six diseased indicator
phylotypes were identified, whose relative abundances were
significantly (P<0.05) increased relative to those at PHS
(Fig. 2b). Applying the healthy indicator phylotypes to predict
the health status across the 34 samples, the accuracy was
88.0 % (the accuracy for PHS was 85.0 %, and PDS was
100 %, see detail in Table 3), while the predictive accuracy of
diseased indicator phylotypes was 79.4 % (75.0 % for PHS
and 100% for PDS). Notably, the predictive accuracy is higher
at the mid- to later stages than that at the initial stage during
shrimp farming, that is, the improperly predicted samples
mainly originated in early stage samples (Fig. 3).

Strikingly, the regression between the sum of the relative
abundance of diseased indicator phylotypes in a given sample
with that of healthy indicator phylotypes was negatively cor-
related (r=−0.847, P<0.001) across the samples (Fig. 4).
Thus, these indicator phylotypes could be used to accurately
estimate the shrimp health status, particularly for predicting
shrimp disease outbreak.

Discussion

Awidely accepted paradigm on the disease in aquaculture is
the result of the unbalanced interactions among the host,
environmental variables, and the surrounding microflora, that
is, dramatic changes in bacterioplankton community could
negatively affect host health (Snieszko 1974; Boutin et al.
2013; Engering et al. 2013). Consistently, we observed a
robust dynamics of bacterial assemblages during the moni-
tored period, with especially pronounced separation between
PHS and PDS (Fig. 1). In this study, we tested whether
indicator phylotypes could be served as independent variables
to predict the incidences of shrimp diseases.

Multiple lines of evidence have indicated that aquatic mi-
crobial communities are highly temporal dynamics (Gilbert
et al. 2009; Or et al. 2012; Teeling et al. 2012; Xiong et al.
2014b). Similarly, we found a modest contribution of OTU-
level dynamics over time, reflected by the bacterial commu-
nities that appeared to be more cohesive (i.e., H45 vs. H55 and
H63 vs. H69) between consecutive sampling points than

Table 1 Permuted multivariate analysis of variance (MANOVA) tests of
significance of sampling time and disease effects on the relative abun-
dance at phyla level

Time Disease

F P F P

Bacteroidetes 0.39 0.851 4.18 0.049

Alphaproteobacteria 0.88 0.504 4.79 0.037

Gammaproteobacteria 3.04 0.026 2.60 0.118

Unclassified bacteria 0.01 0.993 2.91 0.031

Cyanobacteria 2.47 0.058 5.14 0.032

Deltaproteobacteria 3.08 0.025 0.01 0.921

Planctomycetes 2.18 0.086 6.16 0.019

Betaproteobacteria 2.13 0.092 0.92 0.345

Verrucomicrobia 2.17 0.086 0.83 0.372

BD1-5 4.93 0.002 0.46 0.502

Acidobacteria 4.25 0.005 0.56 0.459

Fibrobacteres 3.35 0.017 19.8 <0.001

Firmicutes 2.35 0.068 16.2 <0.001

Gemmatimonadetes 0.30 0.909 5.34 0.023

Flavobacteria 0.56 0.726 8.56 0.007

Italicized P values indicate significant effects (P<0.05) among categories

Table 2 Quantitatively evaluates the effects of disease and sampling time
on the composition of bacterial community by parametric permutational
multivariate analysis of variance (perMANOVA)

Data Time Disease

R2 P R2 P

All samples 0.083 0.001 0.061 0.001

Deleted D35 0.083 0.001 0.063 0.002

Deleted D35+D45 0.081 0.001 0.064 0.002

Deleted D35+D45+D55 0.086 0.001 0.093 0.002

To minor unequal sampling size, the samples (before the emergences of
shrimp disease) were stepwise deleted in the analysis. R2 value is the
constrained percentage of the parameter

Bold P values indicate significant effects (P<0.05) of sampling time or
health sates
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others (Fig. 1). However, the bacterial communities were
significantly distinct (P<0.05) between PDS and every PHS
(at different sampling points), even within the same sampling
point (D63 vs. H63, Table 1). These variations could be
partially caused by the temporal changes in geochemical
variables (Fig. S3), but likely also by the outbreak of shrimp
disease. In addition, more phyla are affected by the emergence
of shrimp disease than sampling time effects, including the
predominant phyla of Bacteroidetes and Alphaproteobacteria
(Table 1). Therefore, it is most likely that sudden shifts in the
bacterioplankton community result in the shrimp disease out-
break, which is consistent with the notion that microorganisms
regulate system processes important for shrimp health
(Beardsley et al. 2011). The distinct bacterial assemblages
associated with the two types of the health status leading us
to speculate that the compositional shifts in microbiota could
be predictive for the incidences of shrimp disease.

Disentangling the correlations between shrimp disease and
surrounding microflora composition will enable a prediction
of the incidence of disease, which is the ultimate goal of such
microbiome studies. In accordance with this concept, we
developed a method to identify indicator phylotypes and
consequently obtained 13 indicator families that discriminate
the bacterial communities between PDS and PHS, with a high
degree of certainty (Fig. 2). This finding is not unexpected
because we can generate reasonable proposes based on the
knowledge of the biology and ecology of these indicator
families. For example, Flavobacteria are heterotrophs that
specialize in the degradation of complex organic matter and
offer bioavailable substrates to other taxa (Teeling et al. 2012;
Williams et al. 2013). Accordingly, a significant decrease of
Flavobacteriaceae populations potentially unbalance the mi-
crobial loop (Fig. 2), corresponding with chemical oxygen
demand (COD) peaked in PDS (Table S1). In contrast,

Table 3 The predictive accuracy
based on the occurrence of
healthy indicator (HI) and dis-
eased indicator (DI) phylotypes
over the duration of shrimp
culture

Taxonomic level HI to predict disease (%) DI to predict health (%)

All Healthy Diseased All Healthy Diseased

Phylum 68.0 68.0 67.0 65.0 65.0 67.0

Class 76.5 71.4 100 79.4 75.0 100

Order 79.4 75.0 100 61.7 57.1 83.3

Family 88.0 85.5 100 79.4 75.0 100

Genus 70.6 64.3 100 70.6 64.3 100

Fig. 2 Bacterial indicator phylotypes of ponds with healthy and diseased
shrimp populations. Indicator families are presented with their mean
relative abundance±standard deviation (N=6) in water bodies with
healthy or diseased shrimp populations. The mean relative abundances

of specific family that significantly decreased (P<0.05, unpaired t test) in
ponds with diseased shrimp populations are designated by the term
healthy indicator (a). The corresponding mean for the other families is
designated by the term diseased indicator (b)
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Rickettsiales are known to be parasitic habitants and can result
in severe diseases (Parola and Raoult 2001). Further support
for this comes from the notion that the functional potential of
microbial community could be predictable from phylogenetic
structures (Gilbert et al. 2009; Langille et al. 2013). Thus, an
increase in relative abundance of these potential pathogenic
Rickettsiales could cause the emergences of shrimp disease.
Interestingly, about half of the identified indicators affiliated
with uncultured families (Fig. 2), suggesting that more efforts
should be paid on the characterization of pathogenic bacteria
in shrimp aquaculture. Importantly, the accuracy of applica-
tion of diseased indicator (DI) phylotypes to predict disease is
100 % (relative high accuracy for prediction health, 75 %,
Table 3), which, in turn, indirectly confirmed the reliability of
our created model for screening indicator phylotypes. In par-
ticular, the inaccurately predicted samples were mainly from
the initial stages, such as H35 and H45 (Fig. 3), which may be

due to the high dynamics of bacterioplankton community over
time.

In particular, the combination of those families could indi-
cate shrimp health status. Specifically, if the sum of the
relative abundance of the families that represent healthy indi-
cators is greater than 15%,we could confidently conclude that
shrimp population in those ponds is healthy. By contrast, the
sum of the relative abundance of the families that represent
diseased indicators is much higher (>45 %) for predicting the
occurrence of disease (Fig. 4). One potential explanation of
this outcome is that some microbial groups show metabolic
flexibility and functional redundancy (Wohl et al. 2004;
Allison andMartiny 2008); thus, a slight replacement between
healthy and diseased bacterial groups does not sufficiently
result in the occurrences of disease. Alternatively, disease
emergence is usually a consequence of major shifts in the
bacterioplankton assemblages that perturbs the natural bal-
ance (Woo and Bruno 2011) and subsequently leads to signif-
icant changes in the biology of infection (Walker and Mohan
2009). If this is the case, it is reasonable to require much
greater proportion (i.e., >45 %) of potential pathogenic popu-
lations to accurately predict the explosive emergence of dis-
ease. Overall, in a given pond, the sums of the relative abun-
dance of these indicator phylotypes (bio-indicators) show
great promise in predicting its health status.

In conclusion, understanding the relationship between
changes in bacterioplankton communities and shrimp health/
disease could shed light on the pathogenesis and disease
prediction. This study contributes the first attempt to apply
bacterial indicators for predicting the increased risk of disease
occurrence in aquaculture ecosystem. Importantly, family-
level variations in phylotype dynamics provide the highest
discrimination. From a practical point, this information would

Fig. 3 The predictive accuracy based on the occurrence of healthy
indicator (HI) and diseased indicator (DI) for healthy samples over the
duration of shrimp culture. If the health status of the test sample matches
corresponding modeling sample, the accuracy is 1, otherwise, the accu-
racy is 0. Because of the accuracies for predicting diseased samples are
100 % by HI or DI (Table 2), the biplot is not shown

Fig. 4 The relationship between the sum of the relative abundances of
healthy indicators and the sum of diseased indicators for water bodies
with healthy (open circles) and diseased shrimp populations (solid
triangles). Diseased shrimp populations expected in water bodies with a
sum of diseased indicators >45 % and a sum of healthy indicators of
<15 %, while healthy shrimp populations expected at diseased indicators
<45 % and healthy indicators >15 %
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be of great importance for designing family-specific primers,
then applying quick and cheap qPCR to quantitatively assay
the relative abundances of these indicator families (Fig. 4) for
predicting the occurrences of shrimp disease. Together, this
study exemplifies that the indicator phylotypes could be
served as independent variables to predict the incidence of
disease with a high degree of accuracy, although additional
works are needed to evaluate the utility of this approach.
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