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Abstract Molecular methods for the analysis of biomole-
cules have undergone rapid technological development in
the last decade. The advent of next-generation sequencing
methods and improvements in instrumental resolution enabled
the analysis of complex transcriptome, proteome and metab-
olome data, as well as a detailed annotation of microbial
genomes. The mechanisms of decomposition by model fungi
have been described in unprecedented detail by the combina-
tion of genome sequencing, transcriptomics and proteomics.
The increasing number of available genomes for fungi and
bacteria shows that the genetic potential for decomposition of
organic matter is widespread among taxonomically diverse
microbial taxa, while expression studies document the impor-
tance of the regulation of expression in decomposition effi-
ciency. Importantly, high-throughput methods of nucleic acid
analysis used for the analysis of metagenomes and
metatranscriptomes indicate the high diversity of decomposer
communities in natural habitats and their taxonomic compo-
sition. Today, the metaproteomics of natural habitats is of
interest. In combination with advanced analytical techniques
to explore the products of decomposition and the accumula-
tion of information on the genomes of environmentally rele-
vant microorganisms, advanced methods in microbial eco-
physiology should increase our understanding of the complex
processes of organic matter transformation.
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Introduction

Recently, rapid technological improvements have allowed the
development of molecular methods for the analysis of bio-
molecules. In particular, the advent of next-generation se-
quencing methods enabled the scientific community to reduce
the costs of large-scale sequencing (Glenn 2011; Mardis
2011), and increases in instrumental resolution enabled the
analysis of complex proteome and metabolome data
(Keiblinger et al. 2012; Wallenstein et al. 2013).

The potential of these methodological developments is
demonstrated by advances in decomposition research. Micro-
bial decomposition receives extraordinary attention for two
major reasons: (1) on the level of individual microorganisms,
it is driven by the biotechnological need to find microorgan-
isms or enzymes for lignocellulose transformation useful for
the production of biofuels, for example, and (2) the interest in
complex decomposition processes in the environment by the
fact that decomposition represents an important part of the
global carbon cycle and affects global climate change through
CO2 release rates. The applications, results and present possi-
bilities of these complementary omics methods in the study
and understanding ofmicrobial decomposition are highlighted
in this review, focused mainly on fungi and fungal
decomposition.

Omics methods for the exploration of decomposition
by individual microorganisms

In the early 2000s, after decades of research on fungal decom-
position using physiological and biochemical methods, the
picture of decomposition pathways was detailed for a limited
number of model organisms, especially wood-rotting fungi.
There was a good knowledge of the enzymes produced by
individual fungi, the corresponding genes and their regulation,
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including their activity on lignocellulose (Decelle et al. 2004;
Guettler et al. 2003; Martínez et al. 2005). The biochemical
exploration of decomposition-related enzymes allowed in-
formed conclusions about the decomposition potential of in-
dividual fungi and the properties of their enzymes (Baldrian
2006; Lynd et al. 2002; Baldrian et al. 2008). This knowledge
was rapidly advanced in subsequent years, thanks to the novel
possibilities associated with genomics, transcriptomics and
proteomics. The Phanerochaete chrysosporium genome se-
quence published in 2004 revealed for the first time the
impressive complexity of the array of genes encoding secreted
oxidases, peroxidases and hydrolytic enzymes that cooperate
in wood decay (Martinez et al. 2004). Analysis of the com-
plete genome sequence of Postia placentamade it possible to
compare the gene pools of ligninolytic (white-rot) and cellu-
lolytic (brown-rot) fungi and to define the genetic features that
distinguish these two ecophysiological groups (Martinez et al.
2009).

Comparisons of genome sequences make it theoretically
possible to define the physiological potential of individual
fungal taxa, taxonomic groups or ecophysiological groups.
In this way, the analysis of fungal genomes revealed the
presence of multiple multi-copper oxidases (the group of
enzymes including laccases) in different ecophysiological
groups of fungi, suggesting that they fulfil a wide variety of
functions (Baldrian 2006; Hoegger et al. 2006; Kües and Rühl
2011). The redundancy of extracellular enzyme families in
fungal genomes was demonstrated to be typical for
ligninolytic peroxidases and hydrolytic enzymes (Eastwood
et al. 2011; Žifčáková and Baldrian 2012). The presence of
multiple gene copies is most likely a result of the complex
regulation of expression that is frequently observed
(Eastwood et al. 2011; van den Wymelenberg et al. 2011),
but it also reflects the evolutionary history of fungi and the
events in evolution that led to the development of specific
ecophysiological groups of fungi (Floudas et al. 2012; Zhao
et al. 2013). Most importantly, the combination of genome
sequencing and comparative transcriptomics shows that the
presence of genes in genomes and their numerical abundance
in individual gene families are insufficient to estimate the
potential of individual taxa to produce corresponding genes
and perform efficient decomposition of individual
compounds.

Secretomes, the pools of secreted proteins, were obtained
from P. chrysosporiumgrown on wood by 2-D electrophoresis
followed by mass spectrometry. The pool of secreted proteins,
mainly represented by oxidases and glycosyl hydrolases, was
described in detail on the background of the available genome
sequence and indicated complex regulation patterns of protein
synthesis (Abbas et al. 2005; Ravalason et al. 2008; Sato et al.
2007). In comparison, the information from proteomes of
fungi without genome sequences was moderate (Zorn et al.
2005) due to the limited ability to assign the detected proteins

to known genes. The advance of next-generation sequencing
methods shifted the preference from proteome to tran-
scriptome analysis. The analysis of tens of thousands of se-
quences transcribed by P. chrysosporium indicated the relative
importance of individual gene products for decomposition
(Sato et al. 2009). As an alternative, transcriptomes of
genome-sequenced fungi can be analysed by RNA
hybridisation with probes targeting functional or hypothetical
genes. The results obtained from P. chrysosporium using
microarray analysis combined with proteomics indicated the
importance of certain oxidative enzymes and suggested the
important role of many new proteins of unknown function,
underscoring the complexity of lignocellulose degradation
(van den Wymelenberg et al. 2009).

At present, quantitative proteomic techniques such as
iTRAQ (Isobaric Tags for Relative and Absolute Quantita-
tion) and LC-MS/MS reveal a picture of the quantitative
composition of fungal proteomes that represent a better proxy
of actual decomposition processes than do expression studies.
This technique, based in the labeling of peptides from protein
digestions with isotope-coded covalent tags of varying mass,
was used to quantify the secretome of P. chrysosporium. Dur-
ing the growth on cellulose, P. chrysosporium produces pri-
marily endoglucanases, exoglucanases, β-glucosidases and
cellobiose dehydrogenase, suggesting both hydrolytic and
oxidative cellulose degradation. When lignin was used as a
major carbon source, oxidative enzymes such as copper rad-
ical oxidase, isoamyl oxidase, glutathione S-transferase,
thioredoxin peroxidase, quinone oxidoreductase, aryl alcohol
oxidase, pyranose 2-oxidase, aldehyde dehydrogenase and
alcohol dehydrogenase were highly expressed (Manavalan
et al. 2011). Transcriptomic studies assisted in the elucidation
of the molecular differences in the composition and regulation
of the decomposition machinery of various wood-rotting fun-
gi (Eastwood et al. 2011; van den Wymelenberg et al. 2010).
These types of studies also revealed that decomposition abil-
ities differ among ectomycorrhizal fungi symbiotic with plant
roots. While Laccaria bicolor is a less efficient decomposer
than related saprotrophic taxa (Martin et al. 2008), Paxillus
involutus is able to substantially decompose organic matter
using a unique enzymatic system (Rineau et al. 2012, 2013).
Moreover, transcriptomic analysis has been used for exploring
the cellulolytic capacity of Trichoderma reesei on lignocellu-
lose biomass, providing the knowledge for the development of
effective methods and adequate conditions for biofuel produc-
tion (Bischof et al. 2013). Biochemical exploration of fungal
cultures also led to the recent discovery of novel enzymes or
better descriptions of those with previously unknown func-
tion. This is the case for novel fungal peroxidases (the dye-
decolorizing peroxidases) and unspecific peroxygenases
(Hofrichter et al. 2010). The exploration of fungal genomes
demonstrated that these novel oxidative enzymes are present
in several species of the wood-rotting Polyporales (Ruiz-
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Dueñas et al. 2013). Biochemical exploration demonstrated
that cellulose cleavage by the enzyme that was formerly
described as glycosyl hydrolase GH61 (recently reclassified
as auxiliary activity family 9, AA9) is not based on hydrolysis
but on the reaction of the polysaccharide with molecular
oxygen, and the enzyme is thus polysaccharide
monooxygenase (Beeson et al . 2011). The AA9
monooxygenase actually belongs to the most widespread
enzyme family active in cellulose degradation, harboured in
the genomes of saprotrophic and parasitic fungi as well as the
mycorrhizal symbionts of plant roots (Žifčáková and Baldrian
2012). Moreover, transcriptomic studies show that polysac-
charide monooxygenases are heavily produced during growth
on wood by both white-rot and brown-rot fungi (Eastwood
et al. 2011; MacDonald et al. 2011) and may perhaps be
responsible for the fast degradation of cellulose by the latter.

Although the involvement of bacteria in decomposition
processes has attracted much less attention than that of the
fungi, the fact that more than 1,500 bacterial genomes are
available compared to just over 100 fungal genomes
(Větrovský and Baldrian 2013; Zhao et al. 2013) represents
an important advantage for genome comparisons in the
prokaryota. Recently, studies indicated that there is a wide-
spread potential in multiple bacterial phyla to decompose
cellulose or to feed on its degradation products (Berlemont
and Martiny 2013). In some bacterial strains, such as
Streptomyces, the biomass-degrading activity was comparable
to a cellulolytic enzyme cocktail from the fungus T. reesei
(Takasuta et al. 2013). Zimmerman et al. (2013) analysed
more than 3,000 annotated bacterial genomes looking for
potential production of extracellular enzymes involved in
nutrient cycling and decomposition of organic matter. In
their study, phosphatases, chitinases and N-acetyl-
glucosaminidases were found in nearly half of the genomes
analysed. The relative ease of obtaining and annotating ge-
nome sequences of bacteria helped to characterise four cellu-
lolytic bacteria associated with woodwasps with respect to
their lignocellulose decomposition potential (Adams et al.
2011).

The integration of resources from genome sequencing pro-
jects covering both the prokaryotic and eukaryotic microor-
ganisms and exploration of individual genes enabled the es-
tablishment of curated databases covering either a wide range
of genes, such as the M5 non-redundant protein database
(M5Nr; Wilke et al. 2012) or Pfam (Punta et al. 2012) or
specific groups of functional genes including those for carbo-
hydrates—CAZy (Cantarel et al. 2009) and lignin-degrading
enzymes—FOLY (Levasseur et al. 2008). The database crea-
tors started an important work on the classification and
categorisation of genes and proteins based either on their 3-
D structure (e.g. CAZY) or sequence features (e.g. M5Nr).
Although this represents an important step forward to the
understanding of both the gene evolution and the genomic

potential of individual microorganisms, it has to be noted that
the content of genes is not a direct predictor of decomposition
abilities.

Exploration of microbial decomposition in complex
environments

Understanding decomposition in the environment, especially
in plant litter and soil, was previously limited to the knowl-
edge of enzyme activities that can be detected in environmen-
tal samples and studies measuring decomposition rates of
natural compounds, for example, using respirometry or
incubation of litterbags. There was also limited knowledge
on enzyme activities in environmental isolates of
microorganisms.

With the accumulation of gene sequence data for
decomposition-related enzymes in public databases, it became
possible in the late 2000s to design degenerate primers capa-
ble of amplifying partial sequences of decomposition-related
genes from a wide range of fungi. This made it possible to
detect genes and transcripts encoding laccase and cbhI
exocellulase from forest floor DNA and RNA (Edwards
et al. 2008; Luis et al. 2005). Subsequently, the diversity of
multiple oxidative and hydrolytic enzymes was demonstrated
in forest topsoil metatranscriptomes (Kellner and Vandenbol
2010). The combination of targeted metatranscriptomics with
next-generation sequencing and stable isotope probing
allowed for estimations of the numbers of exocellulase genes
present in forest litter and soil and the percentage of genes
being transcribed. The results show that forest litter and soil
harbours several hundreds of cbhI genes, of which 25–40 %
are expressed at the same time (Baldrian et al. 2012; Štursová
et al. 2012).

While targeted metatranscriptomics can be used to explore
the diversity of individual genes, analyses of complete
metatranscriptomes make it possible to identify which genes
or gene families are responding to a given environment. The
first general metatranscriptomic studies showed the possibility
of retrieving and characterising eukaryotic genes for decom-
position from soil (Bailly et al. 2007) and also the potential of
using RNA for the simultaneous analysis of the structure and
function of active microbial populations in soils (Urich et al.
2008). Metatranscriptomic exploration of eukaryotic genes in
spruce and beech litter demonstrated that extracellular
decomposition-related enzymes represent <1 % of all
expressed sequences and that multiple families of oxidases
and hydrolases are produced (Damon et al. 2012). Although
the assignment of environmental transcripts to the Ascomy-
cota or the Basidiomycota can be achieved for several genes,
for a closer taxonomic assignment of individual genes to their
fungal producers, it is necessary to analyse more fungal
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genomes, especially of the taxa inhabiting litter and soil
(Marmeisse et al. 2013).

Metaproteomics was first developed for environments of
limited complexity, such as contaminated groundwater
(Benndorf et al. 2007) or co-cultures of individual microbes
(Schneider et al. 2010). Later, in conjunction with the in-
creased amount of information available in public protein
and DNA databases, it was possible to use this technique in
a complex substrate. The analysis of the proteome of
decomposing litter showed the involvement of a complex
community of various eukaryotes and bacteria in decomposi-
tion (Schneider et al. 2012) and indicated the successive
changes of the decomposer community that were later con-
firmed by the metagenomic analysis of the litter-associated
fungal community and by enzyme activity measurements
(Voříšková and Baldrian 2013).

Since the advance of the genomics, transcriptomics and
proteomics of individual microorganisms and their complex
communities, these approaches have dramatically increased
our understanding of decomposition (Table 1). Recently, these
methods have begun to be complemented with advanced
analytical methods, such as analytical pyrolysis or mass
spectrometry-based analysis of metabolism of complex com-
pounds (metabolomics). Some of these methods have been
used to study plant litter (Šnajdr et al. 2011; Valášková et al.
2007; Wallenstein et al. 2010, 2013) and have helped to
describe chemical composition changes at a high resolution.

Table 1 Important advances in the research on microbial decomposition
obtained using (meta)genomics, (meta) transcriptomics and
(meta)proteomics

Decomposition by individual microorganisms

Knowledge obtained using traditional methods

Good knowledge of the gene content in model species and enzymes
in focus, fragmentary knowledge for non-model species and proteins
with putatively lower importance; limited studies on the transcripto-
mics and protein production by a few key model taxa; decomposition
abilities of microbes not exhibiting saprotrophic lifestyle largely absent

Advances made using modern molecular and analytical methods

Complete knowledge of gene
complement in the first genomes of
model saprotrophic and symbiotic
fungi

Martin et al. (2008); Martinez
et al. (2004, 2009)

Detailed description of
Phanerochaete chrysosporium
transcriptome on the background of
whole genome sequence

Sato et al. 2007, 2009

Comparative analysis of the white-
rot and brown-rot mode of fungal
wood decay using a combination of
transcriptomics and proteomics

van den Wymelenberg et al.
(2010)

Genome analysis of
environmental bacterial isolates
demonstrates their ability to
decompose cellulose

Adams et al. (2011)

Comparative genomics and
transcriptomics show differences
among fungal decomposition systems

Eastwood et al. (2011)

Quantitative description of the
proteome of Phanerochaete
chrysosporium

Adav et al. (2012)

Decomposition traits in fungal
genomes help to understand the
evolution of lignin decomposition

Floudas et al. (2012)

Demonstration of specific
decomposition pathways in a
mycorrhizal fungus—Paxillus
involutus

Rineau et al. (2012)

Comparative genomics shows that
the traits of cellulose and chitin
utilisation are widespread in several
bacterial phyla

Berlemont and Martiny (2013);
Zimmerman et al. (2013)

Genome-wide transcriptomic and
proteomic analysis gives a detailed
picture of decomposition abilities of
insect-associated bacteria

Takasuka et al. (2013)

Decomposition processes in the environment

Knowledge obtained using traditional methods

Decomposition in the environment is mainly characterised in terms
of process rates and enzyme activities; scarce information of enzyme
production and gene content in a few environmental isolates; first
reports of environmental gene diversity are obtained by cloning and
sequencing of environmental DNA; the identity of decomposers in
complex environments is unknown

Advances made using modern molecular and analytical methods

High diversity of genes of fungal
laccases and their transcripts is
demonstrated in soil

Luis et al. (2005)

Transcripts of several eukaryotic
phyla are detected in soil with fungal
transcripts prevailing

Bailly et al. (2007)

Table 1 (continued)

The structure and function of soil
microbial community are linked by the
combined high-throughput analysis of
rRNA and mRNA

Urich et al. (2008)

Targeted metatranscriptomics of
soils demonstrates the diversity of
several fungal decomposition enzymes
in forest soils and indicates their
taxonomic position

Kellner and Vandenbol (2010)

Deep sequencing shows that active
and total microbial communities in
forests have similar diversity. The gene
pool of exocellulase is demonstrated to
contain hundreds of molecules with 25–
40 % being simultaneously expressed

Baldrian et al. (2012)

Shotgun metatranscriptomics of
eukaryotic genes in forest litter shows
the composition of the enzymatic
complement in a complex environment

Damon et al. (2012)

Environmental metaproteomics
shows that protein pool shifts during
forest litter decomposition and indicates
the contribution of individual groups of
organisms

Schneider et al. (2012)

Metabolomics indicates different
pathways of litter chemical changes
during decomposition depending on
location

Wallenstein et al. (2013)
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At the moment, these methods are able to identify the trends in
decomposition of various substances and to indicate similar-
ities or differences in decomposition patterns among individ-
ual microbial taxa or microbial communities inhabiting vari-
ous environments (Valášková et al. 2007; Wallenstein et al.
2013).

Future trends and directions

In the future, we can expect that the combination of these
advanced analytical methods with the metatranscriptomic and
metaproteomic approaches will link the activity of microbial
communities and their individual members with biochemical
processes in the complex natural environment. Despite prog-
ress in the molecular methods, the understanding of environ-
mental processes will never be complete if it is not accompa-
nied by the isolation and characterisation of individual micro-
bial taxa. This task is both laborious and technically demand-
ing, and it should receive much more attention frommicrobial
ecologists than it currently does. However, if successful, the
exploration of genomes and transcriptomes combined with
physiological research on relevant environmental taxa will
represent a significant impetus for understanding the data
from complex habitats provided by metagenomics and
metatranscriptomics.
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