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Abstract L-Amino acid oxidases (LAAOs), which catalyze
the stereospecific oxidative deamination of L-amino acids to
α-keto acids and ammonia, are flavin adenine dinucleotide-
containing homodimeric proteins. L-Amino acid oxidases are
widely distributed in diverse organisms and have a range of
properties. Because expressing LAAOs as recombinant pro-
teins in heterologous hosts is difficult, their biotechnological
applications have not been thoroughly advanced. LAAOs are
thought to contribute to amino acid catabolism, enhance iron
acquisition, display antimicrobial activity, and catalyze keto
acid production, among other roles. Here, we review the types,
properties, structures, biological functions, heterologous ex-
pression, and applications of LAAOs obtained frommicrobial
sources. We expect this review to increase interest in LAAO
studies.
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Introduction

L-Amino acid oxidases or deaminases (LAAOs; EC 1.4.3.2)
are widely distributed in mammals (Puiffe et al. 2013; Nakano
andDanowski 1966), snake venom (Du and Clemetson 2002),
insect venoms (Sakurai et al. 2001), sea hare (Yang et al.
2005), fungi (Davis et al. 2005), bacteria (Huang et al.
2011), and algae (Vallon et al. 1993). As a result, LAAOs
form a family of proteins with various enzymatic properties,
similar overall structure, and a wide range of biological func-
tions and applications. First described by Zeller and Maritz in
(1944), LAAOs are predominantly dimeric flavoproteins with
some monomeric types (Yang et al. 2012). They contain non-
covalently bound flavin adenine dinucleotide (FAD) as a
cofactor (Pawelek et al. 2000). LAAOs catalyze the stereo-
specific oxidative deamination of L-amino acids to α-keto
acids that produces ammonia and H2O2 via an imino acid
intermediate (Macheroux et al. 2001). Other LAAOs produce
water instead of H2O2 and are associated with a respiratory
electron transport chain, donating electrons to the quinone
pool that are then transferred to a terminal cytochrome oxidase
to reduce molecular oxygen to H2O. Specifically, membrane-
bound amino acid oxidases are associated with the respiratory
electron transport chain (Anraku and Gennis 1987; Franklin
and Venables 1976; Jones and Venables 1983; Olsiewski et al.
1980; Yu and DeVoe 1981). The membrane-associated
LAAOs in Proteus mirabilis (Pelmont et al. 1972) and
Proteus rettgeri (Duerre and Chakrabarty 1975) are suggested
to interact with the respiratory electron transport chain.
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Until recently, LAAOs in snake venom had been the most
thoroughly investigated member of this enzyme family with
respect to toxicology, biochemistry, physiology, and medi-
cine. LAAOs are attracting increasing attention owing to their
key biological roles, such as keto acid production, anti-tumor
and antimicrobial activity, amino acid consumption, and anti-
insect properties. Some of the biological roles of LAAOs are
associated with the H2O2 produced (Ehara et al. 2002).

In this review, we provide an overview of the types of
LAAOs, their structural, enzymatic, and functional properties,
and recent advances in microbial LAAO production and ap-
plication. Future research directions for the development of
cost-effective fermentation processes using LAAOs on an
industrial scale are also discussed.

Types of LAAOs from microbial sources

From a biochemical point of view, LAAOs from various
sources are distinguished by substrate specificity, molecular
mass, regulation, and post-translational modification. This
assortment suggests that LAAOs have undergone enormous
evolutionary alterations since their split-up from a putative
ancestral protein (Macheroux et al. 2001). To date, different
types of LAAOs have been reported from various microbes,
including bacteria and fungi. Bacteria such as Streptomyces
sp. X-119-6, Rhodococcus opacus , lactic acid bacteria,
Proteus mirabilis , Proteus vulgaris , Proteus rettgeri ,
Pseudomonas sp. P-501, Pseudoalteromonas tunicata ,
Pseudoalteromonas luteoviolacea , Pseudoalteromonas
flavipulchra , Marinomonas mediterranea , Rheinheimera

sp., Streptococcus oligofermentans , Corynebacterium ,
Cellulomonas cellulans , Bacillus carotarum , Providencia ,
Lechevalieria aerocolonigenes , and Synechocystis sp. PCC
6803 produce different types of LAAOs. The fungal LAAOs
from Trichoderma viride , Trichoderma harzianum (Cheng
et al. 2011), Aspergillus oryzae , Aspergillus flavipes ,
Aspergillus nidulans , Aspergillus fumigatus (Singh et al.
2009), Neurospora crassa (Sikora and Marzluf 1982),
Hebeloma cylindrosporum (Nuutinen et al. 2012), and
Laccaria bicolor (Nuutinen and Timoneni 2008) produce
various types of oxidases.

Functional, enzymatic, structural properties, and cellular
localization of LAAOs

Some functional properties and cellular localization of the
different types of LAAOs are shown in Tables 1 and 2,
respectively. One of the main biological functions of
LAAOs is antimicrobial activity. The Pseudoalteromonas
flavipulchra LAAO has broad substrate specificity against
methicillin-resistant Staphylococcus aureus that occurs dur-
ing the stationary phase of the strain growth curve (Chen et al.
2010). The antimicrobial activity of LAAO is likely associat-
ed with H2O2 formation generated by enzyme activity because
its antimicrobial effect is significantly decreased in the pres-
ence of H2O2 scavengers such as catalase and peroxidase.
LAAOs can also be intracellular, membrane bound, or extra-
cellular (Table 2) which depend on their sources as well as
their corresponding functions.

Table 1 Sources of different microbial L-amino acid oxidases and their main functions

Microbial sources Major functions References

Bacillus subtilis Oxidation of L-glycine Nishiya and Imanaka 1998

Escherichia coli Oxidation of L-aspartate Bossi et al. 2002

Rhodococcus opacus Oxidation of L-amino acid Geueke and Hummel 2003

Streptomyces sp. X-119-6 Oxidation of L-glutamic acid Arima et al. 2003

Proteus mirabilis Deamination of L-phenylalanine,

L-histidine, L-glutamic acid

Massad et al. 1995; Baek et al. 2011;
Liu et al. 2013

Proteus vulgaris Deamination of L-methionine Takahashi et al. 1999

Providencia alcalifaciens Oxidation of L-lysine Hanson et al. 1992

Aspergillus nidulans Oxidation of L-amino acid Davis et al. 2005

Trichoderma viride Anti-tumor, oxidation of L-lysine Kusakabe et al. 1980

Trichoderma harzianum ETS 323 Biocontrol agent, oxidation of L-phenylalanine Cheng et al. 2011

Pseudomonas putida Oxidation of L-aspartic acid Leese et al. 2012

Pseudomonas sp . P501 L-phenylalanine deamination Koyama 1982

Marinomonas mediterranea Antimicrobial, oxidation of L-lysine Lucas-Elio et al. 2006

Corynebacterium A20 Oxidation of L-lysine Coudert and Vandecasteele 1975

Neisseria meningitidis Oxidation of L-cysteine Yu and DeVoe 1981
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LAAO of Streptococcus oligofermentans seems to have a
role in competition between species (Tong et al. 2008). A
function of LAAO from the cyanobacteria Aspergillus
nidulans is in electron transfer on the thylakoid membrane
(Pistorius and Voss 1982). The LAAOs found in insects are
cytotoxic, killing tumor cells via H2O2 generation (Ahn et al.
2000). Similarly, the L -tryptophan oxidase isolated from
Chromobacterium violaceum is implicated in the biosynthesis
of violacein, which is believed to have bactericidal and
tumoricidal activities (Genet et al. 1995). As an immunosup-
pressive enzyme expressed in a series of 315 human malig-
nancies, L-phenylalanine oxidase could be involved in a gen-
eral mechanism for the relationship between tumor cells and
the immune system (Carbonnelle-Puscian et al. 2009).
Moreover, α-keto acids, which are the products of LAAO
reactions, have roles as siderophores, as seen in Proteus
mirabilis (Massad et al. 1995).

The enzymatic properties of LAAOs depend on their mi-
crobial sources, and these properties are usually dissimilar.
Generally, the optimum pH of LAAOs depends on substrate,
and enzyme activity is relatively stable within the range from
25 to 45 °C (Arinbasarova et al. 2012; Leese et al. 2012; Liu
et al. 2013). LAAOs can be inactivated by decreasing the pH
and vice versa (Wellner 1966), and inactivation by freezing is
more pronounced between −20 and −30 °C (Curti et al. 1968).
These characteristics suggest that enzyme inactivation is like-
ly due to conformational changes in the protein structure
(Curti et al. 1968). Most LAAOs exhibit a broad range of
substrate spectra. They display a noticeable preference for
hydrophobic amino acid substrates such as phenylalanine,
leucine, tyrosine, and tryptophan (Du and Clemetson 2002;
Mandal and Bhattacharyya 2008). This substrate partiality
perhaps comes from the binding of hydrophobic side chains
of amino acids with the enzyme. The catalysis is proposed to
follow one of two diverse mechanisms: in the first pathway,

the proton is transferred to the FAD cofactor from the α-
carbon atom of the substrate, leaving a negative charge
followed by a two-electron transfer which is also called a
carbanion pathway; and in the second mechanism, an α
hydrogen atom is transferred as a hydride ion carrying two
electrons simultaneously by a hydride transfer pathway
(Fitzpatrick 2004).

The LAAO isolated fromRhodococcus opacus oxidizes 39
L-amino acids, including not only all of the 20 L-amino acids
but also some derivatives (Geueke and Hummel 2002). In
addition, LAAOs of Proteus rettgeri (Duerre and
Chakrabarty 1975), Mytilus edulis (Blaschko and Hope
1956), Proteus vulgaris (Stumpf and Green 1944),
Cellulomonas cellulans (Braun et al. 1992), and
Corynebacterium (Coudert and Vandecasteele 1975) exhibit
broad substrate specificity. Although a few LAAOs accept D-
amino acids as substrates, the reaction rates are relatively low
compared with those using L-amino acids. The LAAO from
B. carotarum 2Pfa accepts 10 L-amino acids and 7 D-amino
acids as substrates (Brearley et al. 1994), among which, 3
aromatic L-amino acids phenyl alanine, tyrosine, and trypto-
phan are preferred. Some LAAOs, such as those from the
fresh water cyanobacteria Synechococcus elongatus PCC
6301, Synechococcus elongatus PCC 7942, Synechococcus
cedrorum PCC 6908 (Gau et al. 2007), and Anacystis
nidulans (Pistorius and Voss 1980), have relatively narrower
substrate specificities, with high preference for only basic L-
amino acids. By contrast, several LAAOs have very firm
preferences for specific substrates and are named according
to their favored substrate—for example, L-glycine oxidase
fromBacillus subtilis (Nishiya and Imanaka 1998), L-cysteine
oxidase fromNeisseria meningitidis (Yu and DeVoe 1981), L-
glutamate oxidases from Streptomyces endus (Böhmer et al.
1989) and Streptomyces sp. (Arima et al. 2009), and L-lysine
oxidases from T. viride (Kusakabe et al . 1980),

Table 2 Cellular localization of
different microbial L-amino acid
oxidases

Cellular localization Sources References

Intracellular

L-amino acid oxidase Rhodococcus opacus Geueke and Hummel 2003

L-glutamate oxidase Streptomyces sp. X-119-6 Arima et al. 2003

L-aspartate oxidase Pseudomonas putida Leese et al. 2012

L-aspartate oxidase Escherichia coli Bossi et al. 2002

Membrane bound

L-amino acid deaminase (pma) Proteus mirabilis Baek et al. 2008

L-amino acid deaminase (pm1) Proteus mirabilis Baek et al. 2011

L-amino acid deaminase Proteus vulgaris Takahashi et al. 1999

Extracellular

L-amino acid oxidase Cellulomonas cellulans AM8 Braun et al. 1992

L-amino acid oxidase Trichoderma harzianum ETS 323 Yang et al. 2011
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Pseudoalteromonas tunicata (James et al. 1996), and
Marinomonas mediterranea (Lucas-Elio et al. 2005).

Structural knowledge about microbial LAAOs is extremely
limited. LAAO from Rhodococcus opacus has been crystal-
lized and examined with preliminary x-ray analysis (Faust
et al. 2006, 2007). LAAOs have a range of isoelectric points
varying widely from pH 4.0 to 9.4 and molecular masses
between approximately 50 and 300 kDa. In general, LAAOs
are first synthesized as precursors carrying a signal peptide
and then form mature proteins via post-translational modifi-
cation through limited proteolysis, possibly owing to their
potential toxicity (Ahn et al. 2000). The LAAO activity that
catalyzes the stereospecific oxidation of L-amino acids along
with the release of ammonia and H2O2 is speculated to be
toxic to or have negative effects on the growth of host cells.
Therefore, LAAO exists in cells as a precursor with low initial
activity and then is secreted with high activity from cells after
digestion by an endopeptidase. For example, the LAAO from
Neurospora crassa consists of 695 amino acids as a precursor,
a length of 129 amino acids longer than that of the mature
enzyme (Neidermann and Lerch 1990). Similarly, the mature
form of L-phenylalanine oxidase from Pseudomonas sp.
P-501 is produced and triggered by the proteolytic cleavage
of a noncatalytic proenzyme (Ida et al. 2008). The
Rhodococcus opacus LAAO gene shows an open reading
frame coding for 534 amino acids, including a signal peptide
of 45 amino acids (Geueke and Hummel 2002). Along with
these structures, L- glutamate oxidase (LGOX) from
Rhodococcus opacus , LAAO from Streptomyces sp. X-119-
6 (Arima et al. 2009), L-aspartate oxidase from Escherichia
coli (Bossi et al. 2002), and L-phenyl alanine oxidase from
Pseudomonas sp. P501 (Ida et al. 2008; 2011) have been
reported. A topological view of those structures shows that
each LAAO subunit consists of three domains: one for FAD
binding, one for substrate binding, and a helical domain. For
example, the structure of L-aspartate oxidase includes a FAD-
binding domain with the classic dinucleotide-binding fold
observed in many flavoproteins, a capping domain with an
irregular α + β topology, and a helical C-terminal domain.
Although the structures of these enzymes are similar to a
certain extent, they have several differences that make them
unique. In the LGOX structure, two funnel-shaped entrances
with distinct functions lead from the surface to the active site
(Arima et al. 2009). The structure of L-phenyl alanine oxidase
suggests that the pro-sequence peptide occupies the funnel of
the substrate amino acid from the outside of the protein to the
interior flavin ring (Ida et al. 2008). However, no funnel
orientating and directing the substrates to the active site is
present in the LAAO from Rhodococcus opacus . This funnel
conformation and the structure of the enzyme are probably
associated with substrate specificity, and the absence of a
funnel may explain the broader substrate specificity of the
Rhodococcus opacus LAAO (Faust et al. 2006). Moreover,

LGOX has a hexameric structure, α2β2γ2, and by recombi-
nant expression, it has been shown to have a homodimeric
structure of its precursor (Arima et al. 2003).

Gene cloning and heterologous expression of LAAOs

The first bacterial heterologous expression of an LAAO of
Rhodococcus opacus was reported by Geueke and Hummel
(2003). The lao gene encoding LAAO was cloned into
E. coli , B. subtilis , and Streptomyces lividans expression
vectors. Expression in E. coli results in the accumulation of
insoluble protein, but Streptomyces lividans is a relatively
suitable host for the heterologous production of LAAO
(Geueke and Hummel 2003; Liu et al. 2013). Comparison of
native and recombinant LAAOs has shown the same specific
activities (Liu et al. 2013), similar spectral properties, and the
same molecular mass. The LAAO isolated from sea hare,
which is not a microbial source, was first functionally
expressed in E. coli , but the expression level for soluble
recombinant LAAO is relatively low—approximately
0.2 mg/L culture medium (Yang et al. 2005). This phenome-
non has several explanations: (1) much of the LAAO is
present in insoluble inclusion bodies, and (2) LAAO inhibits
the growth of E. coli and other bacteria at doses below 1 mg/
L, which also likely inhibits the level of bacterial expression.
Other LAAO genes from Streptococcus oligofermentans and
Proteus mirabilis have been successfully cloned and
overexpressed in E. coli BL21(DE3) strain (Liu et al. 2013;
Tong et al. 2008). The functional expression of LAAO in
heterologous hosts remains an enormous challenge.

To date, a wide variety of LAAO-encoding sequences have
been published, revealing that LAAO family members have
flavin as a common coenzyme, with the exception of the
lysine oxidase of Marinomonas mediterranea (Lucas-Elio
et al. 2006) and two characteristic sequence motifs. One is a
dinucleotide-binding motif comprising a β-strand/α-helix/β-
strand of the secondary structure; the other is a GGmotif (x-G-
G-R-x-x) positioning shortly after the dinucleotide-binding
motif (Vallon 2000). In 1990, the Neurospora crassa LAAO
gene was cloned and sequenced (Neidermann and Lerch
1990). The Synechococcus PCC6301 LAAO nucleotide se-
quence (Bockholt et al. 1995) infers that the protein consists of
355 amino acid residues showing no homology with the
LAAO of Neurospora crassa (Neidermann and Lerch 1990),
in which the expression of LAAO can be induced via addition
of L-amino acids to nitrogen-starved cultures as well as addition
of protein synthesis inhibitors or D-amino acids (DeBusk
and Ogilvie 1984a, 1984b; Neidermann and Lerch 1991;
Sikora and Marzluf 1982). Its gene expression is controlled
by NIT2 and the nmr gene product, and the LAAO gene is
regulated at the transcriptional level. Likely because of the
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post-translational modification requirement of LAAO, only
some heterologous expression systems have been reported.

Methods for measuring LAAO activity
and high-throughput screening

A variety of methods can be used to measure LAAO activity,
including capacity of production of compounds such as am-
monia (Timmer et al. 2005), α-keto acid (Singh et al. 2009),
and H2O2 (Okubo et al. 2012); measurement of oxygen con-
sumption using a classic Warburg manometer or an oxygen-
sensitive electrode (Ralph et al. 2006); and measurement of
amino acid substrate change (Roth 1971). All of these
methods have both benefits and drawbacks. Although detec-
tion methods for the measurement of H2O2 production have
been most widely used for LAAOs assays in which horserad-
ish peroxidase (HRP) acts as an H2O2-sensitive probe, in-gel
detection of L-amino acid oxidases based on the visualization
of H2O2 production is a reasonable and reproducible method
(Rau and Fischer 2011; Yu et al. 2013). However, most HRP
substrates, including 2,2′-azinobis (3-ethylbenzthiazoline-6)
sulfonic acid, o-phenylenediamine, and o-dianisidine are tre-
mendously toxic or carcinogenic, and even HRP is easily
inactivated and costly. Moreover, high-throughput screening
(HTS) is essential for the production of mutant LAAOs with
improved activity and specificity for certain L-amino acids.
Although mutagenesis techniques such as directed evolution
and gene mosaics have become prevalent, the sensitivity and
selectivity of direct enzyme assay has not advanced. In some
cases, a peroxidase/o-dianisidine-based assay has been used to
screen the library of mutant clones on microplates, but the
method is hazardous, labor-intensive, time-consuming, and
requires multiple handling of each clone—namely, cultivation
in microplate wells, cell transfer to assay microplates, cell
lysis, cell separation, and activity determination. Therefore, a
suitable method must be developed for the HTS assay of
LAAO that can detect micro-quantities of the enzyme in
biological fluids and intact cell colonies and is also fast and
cost-effective.

Applications of LAAOs

LAAOs have important potential biotechnological applica-
tions as components of biosensors (Mutaguchi et al. 2011;
Pollegioni and Molla 2011). The fast and precise determina-
tion of amino acid concentrations has become increasingly
important for a varied range of applications including medical,
biological, and food technological analyses. For example, in
case of phenylketonuria (PKU), which is a disorder of phe-
nylalanine metabolism (Huang et al. 1998), abnormal levels of
phenylalanine can be used to diagnose. In case of bioprocess

optimization, amino acid concentrations can be used to mon-
itor and control the state of fermentation processes (Varadi
et al. 1999). In case of animal nutrition, concentrations of
essential amino acids have a vital influence on animal weight
gain. Although, amino acids can be measured by liquid- or
gas-chromatography and spectrometric and colorimetric
methods (Sarkar et al. 1999), the complex laboratory proce-
dures, expensive equipment, and a reasonable time for the
measurements are drawbacks for all of those methods (Pei and
Li 2000). These problems can be overcome by using a simple,
rapid and reliable amino acid biosensor based on the LAAOs.
L-amino acids can be determined using an LAAO/platinum
biosensor (Chauhan et al. 2013). L-Amino acid concentrations
have been measured through amperometric measurement of
oxygen consumed by LAAO using specific potentials and
electrode systems (Kacaniklic et al. 1994; Simonian et al.
1994) or hydrogen peroxide produced (Preuschoff et al.
1993). For rapid determination of the concentration of
L-amino acids, a unique amperometric biosensor has been
deve loped us ing LAAO by immobi l i z ing wi th
poly(carbamoyl) sulfonate hydrogel (Kwan et al. 2002).
LAAOs have also been used as biosensors in the food industry
to determine the quality of many products by their L-amino
acid content (Lee and Huh 1999; Varadi et al. 1999), in
particular, L-lys in maize, rice, and wheat. Although, there
are some drawbacks of LAAO sensors due to their various
sensitivities to different substrates and the variations in their
kinetically limited sensitivity to particular amino acids
(Scheller and Schubert 1989), their applicability is much
simpler and cost-effective compared to other measuring
methods. In food processing, LAAOs can be applied in the
enzymatic treatment of dough to reduce viscosity and provide
better workability (Christiansen and Budolfsen 2002).

LAAOs can be used in textile bleaching and it has been
observed that the bleaching effect of hydrogen peroxide,
which is produced enzymatically by LAAOs in typical wash-
ing, the bleaching and cleaning process can be considerably
improved, even in the absence of any activators. A novel
LAAO of T. harzianum in combination with its substrate
has been used for in situ generation of hydrogen peroxide in
the textile bleaching and may be favorably incorporated into
detergent compositions that include a peroxidase for
preventing the relocation of dye from dyed fabric to other
fabrics during washing (Schneider et al. 1998). It also can be
mixed with toothpaste or used for cosmetic preservation.
Moreover, the enzyme has been mentioned in applications
for wastewater treatment, pulp bleaching in the paper industry,
water treatment in pulp production, and lignin improvement
for particle board production (Schneider et al. 1998).

LAAOs have important potential biotechnological applica-
tions as catalysts in biotransformations of L -amino acids
(Mutaguchi et al. 2011; Pollegioni and Molla 2011). LAAO
from Proteus mirabilis can be used in the production of α-
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ketoglutarate from L-glutamic acid (Hossain et al. 2013; Liu
et al. 2013). The LAAO of Rhodococcus sp. is used in
bioconversion to synthesize amino adipic derivatives that are
precursors for β-lactam antibiotics (Isobe et al. 2008) and for
the biotransformation of L-DOPA to its α-keto acid (Findrik
et al. 2006). LAAOs from Providencia alcalifaciens and
T. viride have been applied as a catalyst in the biotransforma-
tion of Nε-carboxy(CBZ)- L-Lys into the corresponding keto
acid (Hanson et al. 1992).

Since optically pure D-amino acids have industrial signif-
icance as chiral building blocks for the synthesis of pharma-
ceuticals, food ingredients, and drug intermediates, LAAOs
can be used to separate enantiomers from racemic mixtures of
D-/L-amino acids (Jang et al. 2012; Qi et al. 2009; Singh et al.
2009). LAAOs can also be useful as anti-cancer and anti-
tumor drugs. For example, a Trichoderma /L-lysine oxidase
has been tested in vivo on several tumors and cancers and
presented encouraging data on the promising application of
this LAAO in clinical oncology for patients with colorectal
cancer (Pokrovsky et al. 2013; Treshalina et al. 2000). Studies
have also proved the efficacy of sequential pretreatment with
LAAO and LAAO antiserum in the modulation of melphalan
activity against intracranial glioma (Moynihan et al. 1997).

LAAOs can be used as biofertilizers for nitrogen acquisi-
tion and as biocontrol agents. LAAOs that show the capability
to release nitrogen from amino acids (Nuutinen and Timoneni
2008) are present in many soil microorganisms with a variety

of lifestyles. Therefore, LAAO-producing microorganisms
are potential candidates for biological control or biofertilizers.
Most LAAOs from microorganisms have broad substrate
spectra, making them ideal molecular mechanisms for the
acquisition of nitrogen from diverse amino acid sources. For
example, an LAAO of Neurospora crassa can be induced by
L-Arg and L-Phe in the absence of readily metabolizable
nitrogenous compounds (DeBusk and Ogilvie 1984c).
Another LAAO of Chlamydomonas reinhardtii is also induc-
ible if no primary nitrogen source is available to produce
ammonia (Muñoz-Blanco et al. 1990). In 2005, Davis et al.
found that the LAAO of Anacystis nidulans is the primary
route of catabolism for amino acids such as L-cysteine, L-
histidine, L-leucine, L-lysine, L-methionine, L-α-amino buty-
rate, and L-citrulline for growth (Davis et al. 2005). LAAOs
expressed in Hebeloma spp. and Laccaria bicolor can also
catalyze the mineralization of amino acid nitrogen to NH4

+

(Nuutinen and Timoneni 2008). The released inorganic
nitrogen might then be re-assimilated and distributed to
organic compounds, which complements the previously
identified amino acid catabolic machinery, e.g., glutamate
dehydrogenase, aspartate aminotransferase, and alanine
aminotransferase. In general, bacterial LAAOs are assumed
to be necessary in nitrogen and L-amino acid metabolism
for the plants. The necessary steps and research perspec-
tives to develop the LAAOs for the future applications are
summarized in Fig. 1.

Fig. 1 The research perspectives of LAAOs: from molecular engineering to high-level expression to industrial production and applications
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Conclusions and perspectives

The microbial production and application of LAAOs is
gaining increasing attention, and noteworthy progress has
been made to date. In future research, several key topics might
be considered. First, a crucial factor for the successful devel-
opment of biocatalytic processes is the possibility of using an
inexpensive production enzyme with suitable properties (i.e.,
high activity, stability, and selectivity) on a large-scale.
Developing whole-cell biocatalysts with evolvable properties
is a potentially effective strategy to achieve this objective in
industrial processes (Hossain et al. 2013). With whole-cell
biocatalysts, the stability of the dimeric LAAOs could be
increased, and downstream enzyme processing costs could
be decreased significantly. Second, although the production
of LAAOs is low in recombinant E. coli , the gram-positive
bacteria B. subtilis and Streptomyces lividans may be prom-
ising overproducers of LAAOs for industrial use. Finally, to
achieve superior LAAO utilization in biotechnological pro-
duction, structural and protein engineering with mutagenesis
techniques should be applied efficiently.
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