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Abstract Lactic acid bacteria (LAB) are widely used for the
production of a variety of fermented foods, and are considered
as probiotic due to their health-promoting effect. However,
LAB encounter various environmental stresses both in indus-
trial fermentation and application, among which acid stress is
one of the most important survival challenges. Improving the
acid stress resistance may contribute to the application and
function of probiotic action to the host. Recently, the advent of
genomics, functional genomics and high-throughput technol-
ogies have allowed for the understanding of acid tolerance
mechanisms at a systems level, and many method to improve
acid tolerance have been developed. This review describes the
current progress in engineering acid stress resistance of LAB.
Special emphasis is placed on engineering cellular microen-
vironment (engineering amino acid metabolism, introduction
of exogenous biosynthetic capacity, and overproduction of
stress response proteins) andmaintaining cell membrane func-
tionality. Moreover, strategies to improve acid tolerance and
the related physiological mechanisms are also discussed.

Keywords Acid stress . Lactic acid bacteria . Stress
response . Amino acid metabolism . Cell membrane

Introduction

Lactic acid bacteria (LAB) are a heterogeneous group of low-
GC, nonsporulating Gram-positive bacteria, which ferment a
range of carbon sources primarily to lactic acid (Gaspar et al.
2013). In food industry, LAB are mainly used for food and
beverage fermentation, production of add-in ingredients, bac-
teriocins, exopolysaccharides (Zhu et al. 2009; Table 1). In
addition, LAB are also used to produce bulk and fine
chemicals including organic acids, polyols, and vitamins
(Gaspar et al. 2013; Table 1). However, as cell factories,
LAB encounter various stress conditions during the industrial
production and in the gastrointestinal tract. Among various
environmental stresses, acid stress is one of the most impor-
tant survival challenges, and acid tolerance is one of the
criterias to select potential probiotics (Parvez et al. 2006).
During fermentation, the growth of LAB is accompanied by
lactic acid production leading to acidification of the media,
arrest of cell growth, and possibly cell death due to the
entrance of undissociated form of lactic acid into the cyto-
plasm by simple diffusion (Serrazanetti et al. 2009).
Intracellular lactic acid dissociates, changes the intracellular
pH, and disrupts the cytoplasm anion pool, which affects the
integrity of purine bases and results in denaturing of essential
enzymes inside the cells (Warnecke and Gill 2005). Thus,
improving the acid stress resistance is important for the indus-
trial application of LAB.

In response to acid stress, LAB have evolved stress-sensing
systems and employed numerous mechanisms to withstand
harsh conditions and sudden environmental changes, includ-
ing the maintenance of intracellular pH homeostasis, cell
membrane functionality, and upregulation of stress response
proteins (Lebeer et al. 2008; Wu et al. 2012b; O'Sullivan and
Condon 1997; Fig. 1). In addition, acid tolerance response
(ATR) appears to confer protection against environmental

C. Wu (*) : J. Huang :R. Zhou (*)
College of Light Industry, Textile and Food Engineering,
Sichuan University, Chengdu 610065, China
e-mail: cdwu@scu.edu.cn
e-mail: zhourqing@scu.edu.cn

C. Wu : J. Huang :R. Zhou
Key Laboratory of Leather Chemistry and Engineering, Ministry of
Education, Sichuan University, Chengdu 610065, China

Appl Microbiol Biotechnol (2014) 98:1055–1063
DOI 10.1007/s00253-013-5435-3



stresses by prior exposure of cells to moderately acidic con-
ditions (De Angelis et al. 2001). Meanwhile, omics methods
combined with molecular techniques have contributed to the
understanding and validation of the molecular mechanisms
involved in acid tolerance, and many feasible strategies (en-
gineering general stress response proteins, maintaining cell
membrane functionality, and regulating amino acid metabo-
lism) have been proposed to improve the acid stress resistance
of LAB (Wu et al. 2012a, 2013b; Trip et al. 2012). Thus, it is
necessary to timely summarize the progress to further stimu-
late the research interest in this field. In this review, we provide
an overview of the recent progress in engineering acid stress
resistance of LAB, with emphasis on engineering intracellular
microenvironment (engineering amino acid metabolism, intro-
duction of exogenous biosynthetic capacity, and overproduction
of stress response proteins) and maintaining cell membrane
functionality based on physiological and omics analysis.

Engineering intracellular microenvironment of LAB

Regulation of intracellular amino acid metabolism

Regulation of intracellular amino acid metabolism is a com-
mon mechanism utilized by LAB upon environmental stress-
es. Arginine deiminase (ADI) system is a widely reported
regulative system in LAB during acid stress. This system
converts arginine and subsequently leads to the production
of NH3, CO2, and ATP. The generation of ATP enables extru-
sion of cytoplasmic protons by H+-ATPase (Burne and
Marquis 2000). Previous research demonstrated acid stress
induced the accumulation of arginine in Lactobacillus casei ,
and Streptococcus faecium could degrade arginine at extreme-
ly low initial pH of 2.5 and raise the pH to nearly 8.0 with
80 mM NH3 accumulation (Wu et al. 2012a). Moreover, the
addition of arginine improved the survival of L. casei during

Table 1 Application of lactic acid bacteria

Application Products Strains References

Dairy industry Cheese Lactococcus lactis ; Leuconostoc spp. (Zhu et al. 2009)

Yoghurt Streptococcus thermophilus ; Lactobacillus
delbrueckii

(Zhu et al. 2009)

Food fermentation Wine Oenococcus oeni PSU-1; Lactobacillus
acetolerans

(Mills et al. 2005; Zheng et al. 2013)

Pickled vegetables L. lactis ; Leuconostoc mesenteroides ;
Lactobacillus plantarum

(Xiong et al. 2012)

Soy sauce Lactobacillus salivarius; Tetragenococcus
halophilus ; Lactobacillus fermentum;

S. thermophiles

(Yan et al. 2013; Tanaka et al. 2012)

Vinegar Lactobacillus panis ; Lactobacillus pontis (Xu et al. 2011)

Commodity chemicals Lactic acid Lactobacillus rhamnosus; Lactobacillus brevis (Abdel-Rahman et al. 2013; Cui et al. 2011)

2,3-Butanediol L. lactis (Gaspar et al. 2011)

1,3-Propanediol Lactobacillus reuteri (Vaidyanathan et al. 2011)

Ethanol L. plantarum (Liu et al. 2006)

Succinic acid L. plantarum (Tsuji et al. 2013)

Butanol L. brevis (Berezina et al. 2010)

Food ingredients Alanine L. lactis (Ye et al. 2010)

γ-Aminobutyric acid L. brevis (Cho et al. 2011)

Diacetyl L. lactis (Guo et al. 2012)

Acetadehyde L. lactis (Bongers et al. 2005)

Bacteriocins L. lactis (Beshkova and Frengova 2012)

Nutraceuticals Xylitol L. lactis (Nyyssölä et al. 2005; Monedero et al. 2010)

Mannitol L. lactis ; L. mesenteroides (Song and Vieille 2009)

Sorbitol Lactobacillus casei; L. plantarum (De Boeck et al. 2010; Ladero et al. 2007)

Riboflavin L. lactis (Burgess et al. 2004)

Folate L. lactis (Sybesma et al. 2003)

Vitamin B12 L. reuteri (Santos et al. 2008)

Isoprenoids L. lactis (Song et al. 2012)

Phenylpropanoids L. lactis (Martínez-Cuesta et al. 2005)

Polysaccharides Exopolysaccharide L. lactis (Patel et al. 2012)

Hyaluronic acid L. lactis (Prasad et al. 2012)

1056 Appl Microbiol Biotechnol (2014) 98:1055–1063



acid stress by increasing the activity of H+-ATPase and intra-
cellular ATP levels (Zhang et al. 2012b). An example with
Streptococcus suis showed that knockout of arcABC
encoding genes involved in the ADI system resulted in de-
creased ammonia production and decreased cell growth dur-
ing acidic conditions (Fulde et al. 2011).

Intracellular accumulation of aspartate is another response
induced by LAB during acid stress, and the biomass and
survival at low pH were significantly improved in the pres-
ence of aspartate (Wu et al. 2013a). In addition, an aspartate-
dependent acid survival system was also characterized in
Yersinia pseudotuberculosis . The expression of aspartase
(AspA), which catalyzed the deamination of aspartate to form
fumarate and ammonia, increased acid survival of
Y. pseudotuberculosis (Hu et al. 2010).

Regulation of branched-chain amino acids (BCAA) leu-
cine, isoleucine, and valine was also an ATR in LAB. During
acid stress, the enzymes (IlvA, IlvC2, IlvD, and IlvE) involved
in BCAAmetabolismwere overproduced, and deamination of
BCAAwas postulated as a mechanism to maintain the internal
pH of the cells (Sánchez et al. 2007; Ganesan and Weimer
2004). Knockout of the ilvE gene led to decreased F0F1-
ATPase activity and acid tolerance in Streptococcus mutans
(Santiago et al. 2012). In addition, decarboxylation was also
reported to protect cells against acid damage by generation of
ATP and consumption of a single proton (Higuchi et al. 1997).
Trip et al. (2012) heterologously expressed the histidine

decarboxylation pathway in L. lactis , and this pathway en-
abled cells to survive at low pH in the presence of histidine.

Introduction of exogenous biosynthetic pathway

Nowadays, a vast genetic toolbox for the regulation of LAB
gene expression levels is available, allowing the manipulation
of acid tolerance through metabolic engineering (Table 2).
Previous researches showed that glutathione can protect LAB
against a variety of environmental stresses (acid, oxygen, cold
and salt stresses; Kim et al. 2012; Zhang et al. 2010a, b, 2012a;
Li et al. 2003). To further investigate the protective roles of
glutathione during stressed conditions, two genes gshA and
gshB , encoding γ-glutamylcysteine synthetase and glutathione
synthetase, respectively, from Escherichia coli , were expressed
in L. lactis NZ9000. As expected, the recombinant strain
exhibited higher resistance to acid stress compared to the
control strain (Zhang et al. 2007; Fu et al. 2006).

Previous study showed that acid stress led to substantial
accumulation of trehalose in Propionibacterium freudenreichii
during acid stress (Cardoso et al. 2004). Inspired by this obser-
vation, Carvalho et al. (2011) introduced the P. freudenreichii
trehalose de novo biosynthetic pathway into L. lactis to inves-
tigate the effect of trehalose production on the tolerance of host
strain to acid stress. As expected, the mutant exhibited higher
tolerance to acid (pH 3.0) and cold (4 °C) shock, as well as to
heat stress (45 °C; Carvalho et al. 2011).

Fig. 1 Responses of lactic acid
bacteria as a cell factory to acid
stress. S substrate, M
intermediate, P product

Appl Microbiol Biotechnol (2014) 98:1055–1063 1057



Overproduction of stress response proteins by genetic
modification

With the development of genome sequencing and other high-
throughput technologies, it has enabled us to engineer the
robustness of industrial microbes at a global or systems biol-
ogy levels (Zhu et al. 2012). At present, several systems
biology approaches (e.g., genomics, transcriptomics, proteo-
mics, metabolomics), combined with the molecular tech-
niques have been employed to further understand the physio-
logical mechanisms of LAB, and based on these, strategies to
improve the physiological functions and engineer stress toler-
ance of LAB were proposed (Fig. 2). For example, Broadbent
et al. (2010) investigated the acid stress response of L. casei
ATCC334 during acid stress by transcriptional analysis, and
the results showed that the two genes involved in malolactic
fermentation (mleS , malolactic enzyme; mleP, malate/lactate
antiporter) and eight genes cluster for histidine biosynthesis
(LSEI_1426–1434) were significantly upregulated. To further
validate the microarray data, 30 mM malate or 30 mM

histidine were supplemented into the acid challenge medium,
and the presence of either malate or histidine in the medium at
pH 2.5 resulted in a more than 100-fold increase in cell
survival after 60-min incubation, and greater than 107-fold
improvement after 2 h (Broadbent et al. 2010).

Generally, bacteria maintain protein homeostasis under
normal or stressed conditions using various mechanisms in-
cluding the action of a group of regulatory proteins. Likely,
LAB upregulated the expression of general stress response
proteins in response to environmental stress (Wu et al. 2011,
2012a), among which molecular chaperones and DNA repair
proteins were widely investigated (Table 3). Heterologous
expression of dnaK from E. coli in L. lactis NZ9000 resulted
in improved tolerance to lactic acid, NaCl, and ethanol stresses
(Abdullah-Al-Mahin et al. 2010). Tian et al. (2012) expressed
a small shock protein (shsp ) gene from Streptococcus
thermophilus in L. lactis , and the recombinant strain
displayed significantly higher survival rate under acid, heat,
ethanol, bile salt, and H2O2 stresses. In addition, comparative
proteomic analysis with L. casei parental strain and its acid-

Table 2 Improving acid stress resistance of lactic acid bacteria by metabolic engineering

Strains Genetic modifications Phenotype References

Introducing exogenous biosynthetic pathway

Lactococcus lactis Expressed glutathione synthetase genes gshA
and gshB from Escherichia coli

The survival increased 15-fold when challenged
at pH 2.5 for 30 min

(Zhang et al. 2007)

L. lactis Introduction of trehalose biosynthetic pathway
from Propionibacterium freudenreichii

Higher survival to acid, cold, and heat stresses
was obtained

(Carvalho et al. 2011)

Bifidobacterium breve Introduction of betaine-uptake system from
Listeria monocytogenes

Increased tolerance to gastric juice and
osmolarity was achieved

(Sheehan et al. 2007)

Expression of general stress response protein

L. lactis Heterologous expression of E. coli dnaK The maximum biomass increased 1.44-fold in
the presence of 0.5 % lactic acid

(Abdullah-Al-Mahin
et al. 2010)

L. lactis Heterologous expression of shsp gene from
Streptococcus thermophilus

The host cells displayed significantly higher
survival under acid, heat, ethanol, bile salt
and H2O2 stresses

(Tian et al. 2012)

L. lactis Heterologous expression of RecO gene
from Lactobacillus casei

Significantly higher survival during acid, salt,
H2O2 stresses was achieved

(Wu et al. 2013b)

Fig. 2 Schematic representation
of the approach to identify and
validate stress-related genes via
the omics-based technologies
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resistant mutant demonstrated that higher expression of DNA
repair proteins (e.g., MutL, MutS2, UvrC, RecO) were ob-
served in the mutant. Engineering the overproduction of DNA
repair protein RecO in L. lactis NZ9000 was carried out, and
the recombinant strain exhibited higher tolerance to lactic
acid, salt, and H2O2 stresses (Wu et al. 2013b).

The whole-genome sequencing has yielded increasing
numbers of completed genomes of LAB, many of which are
publicly available on the Internet. This allows us to character-
ize their gene expression profiles and to identify the genes
during environmental stresses. In addition, it provides an
effective platform for us to engineer LAB with improved
robustness. However, it should be noted that the strains ob-
tained by genetic engineering may be hampered by legal
issues and the general public opinion during industrial appli-
cation. Therefore, further efforts should be made to ensure the
acceptability of recombinant LAB in industrial manufacture,
especially in food industry.

Engineering cell membrane functionality

As the first barrier of the cell, cell membrane separates cells
from their environments and is a primary target for damage
during environmental stresses. Changes in the cell membrane
can protect the cell from environmental damage by modifying
the physicochemical properties of membrane (Mykytczuk
et al. 2007). Upon acid stress, L. casei increased the fluidity
of cell membrane and increased the proportions of monoun-
saturated fatty acids, as well as mean chain length (Wu et al.
2012b). Therefore, engineering the production of unsaturated
fatty acids could be a potential method to increase the acid
tolerance of LAB. FabM, a novel enzyme, responsible for the
production of monounsaturated fatty acids, was identified in

S. mutans , and the FabM-defective mutant was extremely
sensitive to acid stress compared with the wild type (Fozo
and Quivey 2004). However, the acid-sensitive phenotype
was relieved by growth in the presence of monounsaturated
fatty acids or through genetic complementation (Fozo and
Quivey 2004). In addition, production of cyclopropane fatty
acids (CFA) was also a general stress response to acid stress
(Broadbent et al. 2010; Wu et al. 2012b). Previous work with
E. coli demonstrated that the CFA-defective mutant exhibited
decreased resistance to acid stress, and the acid tolerance was
restored by incorporation of a functional cfa gene (Chang and
Cronan 1999). Conversely, recent work with L. lactis subsp.
cremoris wild-type strain, the cfa mutant, and the
complemented strain showed that the cyclopropanation of
unsaturated fatty acids was not essential for survival under
acidic conditions (To et al. 2011). Thus, further investigation
concerning the detailed protective mechanisms of CFA during
acid stress is necessary.

Adaptive evolution

Adaptive evolution, as a convenient approach to study many
microbial phenomena, such as the emergence of new patho-
gens and the acquisition of environmental resistance factors,
can address fundamental question on adaptation to selection
pressures and evolution, and it has also become a widely used
tool for biotechnological applications, improving yields and
reducing costs in industrial settings (Fig. 3; Portnoy et al.
2011; Fong et al. 2005; Wang et al. 2011). Recently, adaptive
evolution has been used with great success to gain insight into
the genetic basis and dynamics of adaptation (Teusink et al.
2009). An example with L. casei , Zhang et al. (2012b) isolat-
ed acid-resistantmutant lb-2 by adaptive evolution for 70 days,

Table 3 Protectants used for improving acid stress resistance of lactic acid bacteria

Protectant Strains Engineering strategy Phenotype References

Arginine Lactobacillus casei
Zhang

Exogenous addition of arginine
to the media

2.1-fold increase in survival at pH 3.3 was
obtained

(Wu et al. 2012a)

Aspartic acid L. casei Zhang Exogenous addition of aspartate
to the media

The growth and survival during acid stress
increased in the presence of aspartate

(Wu et al. 2013a)

Histidine L. casei ATCC334 Exogenous addition of histidine
to the media

100-fold increase in survival was obtained
during acid stress

(Broadbent et al. 2010)

Glutathione Lactococcus lactis
SK11, Leuconostoc
mesenteroides

Exogenous addition glutathione
to the medium

Significantly higher survival of cells was
observed

(Zhang et al. 2007;
Kim et al. 2012)

Glucose Lactobacillus
rhamnosus GG

Addition of 1–19.4 mM glucose
in simulated gastric juice

Significantly higher survival was obtained
during gastric exposure

(Corcoran et al. 2005)

Tween 80 L. rhamnosus GG Incorporation of 1 g/l tween 80
in the growth media

1,000-fold higher survival was achieved in
simulated gastric juice

(Corcoran et al. 2007)

Gum acacia Lactococcus paracasei
NFBC338

10 % (w/v) gum acacia was
supplemented into the media

100-fold increase in survival when exposed
to porcine gastric juice

(Desmond et al. 2002)

Citrate L. lactis Exogenous addition of 13.2 mM
sodium citrate to the media

Higher cell growth and glucose consumption
were obtained at low pH

(Claudia 2008)
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and the evolved mutant exhibited higher biomass and survival
during acid stress. Analysis of the intracellular microenviron-
ments showed that the acid tolerance mutant displayed higher
intracellular pH and NH4

+ concentration in acidic conditions.
In addition, at least 40.0 % and 23.9 % higher contents of
intracellular arginine and aspartate were observed in the mu-
tant compared with that in the parental strain (Zhang et al.
2012b). Moreover, proteomic analysis showed that higher
expressions of many proteins including chaperonin (groEL),
DNA repair protein (RecO) were observed in the evolved
strain, and the overproduction of RecO in L. lactis led to
increased tolerance to acid and NaCl stresses (Wu et al.
2012a, 2013b). These results suggest that adaptive evolution
might be a useful method to engineer robust LAB.

Pre-adaptation and cross-protection

In response to environmental stress, LAB employ sophisticat-
ed mechanisms to combat stress. In many cases, similar re-
sponses were induced during different stressful conditions
(heat, acid, oxygen, and cold), and as such, these mechanisms
of resistance were interconnected. In this respect, preadapta-
tion (pretreatment of a strain to a sublethal level can improve
its resistance toward a potential severe stress) and cross-
protection (one kind of stress tolerance confers protection
against other stresses). Notably, Broadbent et al. (Broadbent
et al. 2010) enhanced the survival of L. casei ATCC 334 to
severe acidic conditions (pH 2.0) by prior exposure of the cells
at pH 4.5 for 20min.Moreover, a dramatic increase in survival

to a severe acid stress (pH 3.9) was obtained by pre-exposing
the L. lactis subsp. lactis cells for 30min to a mildly acid shock
at pH 5.5 (Hartke et al. 1996). Cross-protection was also
reported as an effective approach to increase the acid stress
resistance of LAB. For example, L. plantarum pre-exposed to
sublethal heat treatment displayed enhanced growth at pH 5.0
(De Angelis et al. 2004). Generally, pre-exposure to mild acidic
condition induced an ATR, which protected cells against
multiple-environmental stresses. Pre-exposure of L. lactis
subsp. cremoris to sublethal acid treatment displayed enhanced
tolerance to acid, heat, NaCl, H2O2, and ethanol stresses
(O'Sullivan and Condon 1997). In conclusion, pre-adaptation
and cross-protection led to significant improvement of LAB to
acid stress. However, the exact molecular mechanisms in-
volved in pre-adaptation and cross-protection are not fully
understood, and further exploration is also needed.

Exogenous addition of protectants

Exogenous addition of protectants is a relatively straightfor-
ward way to protect cells against acid stress or improve acid
tolerance of LAB. Recently, numerous protectants have been
developed to protect LAB against acid stress including amino
acids, fatty acids, and saccharides (Table 3). For example, the
addition of arginine increased the survival of L. casei Zhang at
low pH (Zhang et al. 2012b). Physiological analysis showed
that the exogenous arginine improved the viability of cells
during acid stress by increasing the H+-ATPase activity and
intracellular ATP level (Zhang et al. 2012b). Generally,

Fig. 3 Application of adaptive evolution. a Investigation of the mecha-
nisms to environmental adaptation. b Engineering cellular metabolism
for enhanced biosynthetic capacity of desired product (a) and decreased

amount of by-product (b). c Improved robustness to environmental
stresses. d Schematic representation of the procedure for adaptive
evolution
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regulation of ADI system is a widely reported ATR in a variety
of bacteria including LAB, E. coli , S. mutans , Listeria
monocytogenes , and Bacillus spp. (Zhao and Houry 2010;
Senouci-Rezkallah et al. 2011; Matsui and Cvitkovitch 2010;
Ryan et al. 2009). In another study with L. casei , aspartate was
supplemented into the MRS media, and this led to the incre-
ment of the biomass and survival during acid stress (Wu et al.
2013a). The subsequent analysis of the intracellular microen-
vironment revealed that higher concentrations of intermedi-
ates involved in glycolysis and tricarboxylic acid cycle were
observed, and L. casei shifted the metabolic pathway by
increasing the flux from aspartate to arginine (ADI system)
and decreasing the flux from aspartate to asparagine (Wu et al.
2012a, 2013a). Yet another example revealed that the addition
of Tween-80 to the growth medium of L. rhamnosus resulted
in 1,000-fold higher survival during exposure to gastric juice
(Corcoran et al. 2007). Analysis of the fatty acids composition
of L. rhamnosus revealed a 55-fold higher oleic acid content
and a significantly higher unsaturated/saturated fatty acids
ratio in the membrane of cells in the presence of Tween-80
(Corcoran et al. 2007). These results suggest that exogenous
addition of protectants could be a feasible strategy to improve
acid stress resistance of LAB.

Concluding remarks

Acid stress is a common environmental challenge to LAB, and
improving the acid stress resistance is crucial to the application
of LAB as probiotic. The advent of genome sequencing has
increase our understanding of the molecular biology of LAB,
and based on this, many post-genomic approaches (such as
omics method) have accelerated the identification of genes/
proteins involved in stress response and tolerance. This knowl-
edge contributes to the design of rational approaches to engi-
neering LAB with increased robustness. Moreover, specific
fermentation conditions may be employed on the basis of the
understanding of characterization of LAB to increase the stress
tolerance. In conclusion, these systems biology approaches
combined with the molecular techniques have provided us
more opportunities to engineering LAB with improved robust-
ness and industrial functionality.
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