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Abstract Polyhydroxyalkanoates (PHAs) that contain varied
monomers with different chain lengths/structures were nor-
mally synthesized when a structurally-related precursor was
present. The biosynthesis of PHAs from unrelated carbon
sources in microorganisms including Escherichia coli met
many challenges in the past. Recently, with the development
of metabolic engineering and synthetic biology, the produc-
tion of PHAs from unrelated carbon sources obtained a break-
through. Polyesters containing 2-hydroxypropionate, 3-
hydroxypropionate, 4-hydroxybutyrate, 3-hydroxyvalarate,
and medium-chain-length 3-hydroxyalkanoate monomers
can all be synthesized in E. coli by integrating exogenous or
endogenous pathways and/or genes. This review will summa-
rize the progresses in this area. In addition, the strategies that
lead to the production of PHAs with varied monomers and
high polymer content in the cell are discussed.
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Introduction

Polyhydroxyalkanoates (PHAs) are carbon and energy storage
materials synthesized by a variety of bacteria that grows in the
presence of excess carbon sources and if another
macroelement (N, O, P, S) is depleted at the same time
(Anderson and Dawes 1990; Steinbüchel et al. 1995). These
polymers have attracted extensive interest as environmentally
friendly, biodegradable alternatives to petroleum-based plas-
tics (Chen 2009). More than 150 types of PHAs with various

monomer constituents have been reported till now (Hazer and
Steinbüchel 2007; Steinbüchel and Valentin 1995).

Although Escherichia coli do not accumulate PHAs under
natural conditions, it was supposed to be an ideal host for the
production of PHAs due to the absence of an intracellular
depolymerization system and the presence of convenient met-
abolic engineering tools (Li et al. 2007a). The most typical
polyester, poly-β-3-hydroxybutyrate (P3HB), was first heter-
ologously synthesized in E. coli in 1988 (Schubert et al. 1988;
Slater et al. 1988). Since then, many strategies have been
developed to improve the polymer content in the host and to
facilitate the isolation of the polymers (Li et al. 2007b). P3HB
is naturally accumulated by microorganisms from structurally
unrelated carbon sources, while most other polyesters (either
homopolymers or copolymers) that contain the monomers
such as 3-hydroxypropionate (3HP), 4-hydroxybutyrate
(4HB), and 5-hydroxyvalarate etc. cannot be accumulated
under natural conditions from unrelated carbon sources
(Steinbüchel and Valentin 1995). Structurally-related precur-
sors which were used to synthesize PHAs are usually high
cost, toxic to cells, and insoluble in water. Therefore, scientists
have made many efforts to create new metabolic pathways for
such monomers synthesis in E. coli from unrelated carbon
source by combining genes from various organisms. This
review summarized the efforts that have been done in this
area (Table 1).

Polyesters containing the 3HV monomers

Besides P3HB, polyesters containing the 3HVmonomers were
also found in the early days. In initial P(3HB-co-3HV)
(PHBV) production, propionic acid or pentanoic acid had to
be supplied together with glucose (Byrom 1987; Fidler and
Dennis 1992; Law et al. 2004). Since propionic acid is toxic to
cells, researchers tried to find a propionate-independent path-
way. Early efforts on Cupriavidus necator proved that the
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propionate-independent pathway is possible but with a very
low 3HV fraction (Eschenlauer et al. 1996; Steinbüchel and
Pieper 1992). In 2002, Aldor et al. constructed a recombinant
Salmonella enterica serovar Typhimurium strain (Aldor et al.
2002). In this strain, a methylmalonyl-CoA mutase gene sbm
and a methylmalonyl-CoA decarboxylase gene ygfG from E.
coliwere subcloned therefore, succinyl-CoA that derived from
the tricarboxylic acid (TCA) cycle, can be converted to
propionyl-CoA. The resulting S. enterica strain was proved
to accumulate PHBV with a 30 mol% 3HV fraction in the
copolymer from glycerol. However, in recombinant E. coli,
only a 4 % 3HV fraction was obtained in the copolymer even
when threonine was added to the medium (Eschenlauer et al.
1996). We recently engineered a metabolic pathway in E. coli

via threonine to synthesize PHBV from glucose. By
deregulating the feedback inhibition of the threonine and
overexpressing three threonine synthesis genes thrAC1035TBC,
this strain can first accumulate threonine, then convert the
threonine to 2-ketobutyrate by threonine deaminase IlvA,
which was incorporated from Cornybacterium glutamicum.
To increase the propionyl-CoA content, the competitive path-
ways of catalytic conversion of propionyl-CoA to 3-
hydroxyvaleryl-CoA were blocked (Chen et al. 2011). To
further increase the 3HV fraction in the copolymer, the threo-
nine biosynthesis pathway should be optimized. In addition,
new pathways leading to the formation of 3HV is also valu-
able. Nevertheless, it seems that it is not possible to synthesize
the PHV homopolymer in E. coli.

Table 1 Summary of PHAs that was produced in recombinant E. coli from unrelated carbon sources

Strains Carbon source Genes involved in
monomers synthesis

PHA composition Reference

E. coli JM109 Glucose pctMe, engineered PhaC1Ps6-19 P(94 mol%3HB-co-6
mol% LA)

Taguchi et al. 2008

E. coli W3110 Glucose pctMe, engineered PhaC1Ps6-19 P(53 mol% 3HB-co-47
mol% LA)

Yamada et al. 2009

E. coli XL1-Blue ΔackA PldhA::
Ptrc Δppc ΔadhE Pacs::Ptrc

Glucose engineered phaC1Ps6-19, pctCp, PLA Jung et al. 2010

E. coli XL1-Blue ΔackA PldhA::
Ptrc Δppc ΔadhE Pacs::Ptrc

Glucose engineered phaC1Ps6-19, pctCp,
phbABCn

P(30 mol%3HB-co-70
mol%LA)

Jung et al. 2010

E. coli XL1-Blue Glucose engineered phaC1Ps6-19, pctCp,
phbABCn

P(36 mol%3HB-co-6∼
64 mol%LA)

Yang et al. 2010

E. coli HMS174(DE3) Glycerol dhaB1Cb, pduPSe, phbCCn P3HP Andreeßen et al. 2010

E. coli BL21(DE3) Glucose accABCDEc, mcrCa, prpEEc,
phbCCn

P3HP Wang et al. 2012a

E. coli DH5α Glucose sucDCk, 4hbDCk, orfZCk,
phbCABCn

P(97.2 mol%3HB-co-
2.8 mol%4HB)

Valentin and Dennis 1997

E. coli JM109 Δsad ΔgabD Glucose sucDCk, 4hbDCk, orfZCk,
phbCABCn

P(89 mol%3HB-co-11
mol%4HB)

Li et al. 2010

E. coli DH5α Glucose gabTEc, gadAEc, gadBEc,
orfZCk, phbCCn

P4HB Song et al. 2005

E. coli JM109 Δsad ΔgabD Glucose sucDCk, 4hbDCk, orfZCk,
phbCCn, phaP

P4HB Zhou et al. 2012

E. coli DH5α ΔprpC ΔscpC Δpta Xylose thrAC1034TthrBCEc, ilvACg,
phbCABCn

P(82.5 mol%3HB-co-
17.5 mol%3HV)

Chen et al. 2011

E. coli S17-1 Glucose phaGPp, phaC1Pa P-3-hydroxydecanoate
(P3HD)

Rehm et al. 2001

E. coli LS5218 ΔfadE Glucose phaGPp, engineered PhaC1Ps61-3,
CoA ligase PP0763Pp

mcl-PHA Wang et al. 2012b

E. coliΔfadBΔfadR Glucose tesA, phaC2Po P-3-hydroxyoctanoate
(P3HO)

Klinke et al. 1999

E. coli LS1298ΔfadB, E. coli
RS3097

Glucose phaGUc, phaC1Pa P3HD Rehm et al. 2001

E. coli MG1655 ΔaraBAD
ΔfadR ΔfadAB ΔfadIJ

Glucose BTEUc, phaJ1∼4Pa, phaC2Pa,
PP0763Pp

mcl-PHA Agnew et al. 2012

E. coli MG1655ΔaraBAD
ΔfadR ΔfadAB ΔfadIJ::
F(Ptrc_BTE)

E. coli JM109 Glucose Engineered fabHEc, phaCAc or
engineered phaC1Ps61-3

scl-mcl PHA
(mainly C4-C6)

Nomura et al. 2004

E. coli JM109 Glucose Engineered fabHEc, FabGEc,
engineered phaC1Ps61-3

scl-mcl PHA (C4-C12) Nomura et al. 2005
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Polyesters containing the 4HB monomers

In 1988, Doi et al. discovered that C. necator (formerly
known as Ralstonia eutropha, Alcaligenes eutrophus,
Wautersia eutropha, and Hydrogenomonas eutropha) was
able to synthesize P(3HB-co-4HB) when 4-hydroxybutyric
or 4-chlorobutyric acid was fed as the second carbon source
in the medium (Doi et al. 1988). Later, researchers found
that many bacteria including Comamonas acidovorans (Lee
et al. 2004; Park et al. 2005), Alcaligenes latus (Kang et al.
1995), Comamonas testosteroni (Renner et al. 1996), and
Hydrogenophaga pseudoflava (Choi et al. 1999) can all
accumulate P(3HB-co-4HB) and/or P4HB homopolymer.
The capability of polyesters containing the 4HB monomers
formation in wild-type microorganisms inspired researchers
to explore the possibility of P4HB synthesis in recombinant
E. coli. In 1996, a 4-hydroxybutyrate CoA transferase gene
orfZ was discovered from Clostridium kluyveri, a non PHAs
producer, that can transfer the CoA to 4-hydroxybutyrate
(Söhling and Gottschalk 1996), which made it possible for
the heterologous P4HB biosynthesis in E. coli. By cloning
orfZ gene from C. kluyveri, researchers first synthesized
P4HB homopolymer in recombinant E. coli in the presence
of precursor substrate 4HB (Hein et al. 1997; Song et al.
1999). Then, by introducing the whole succinate degrada-
tion pathway genes and P3HB biosynthesis genes phaCAB
from C. necator, recombinant E. coli was proved to accu-
mulate P(3HB-co-4HB) directly from glucose (Valentin and
Dennis 1997). In this recombinant E. coli succinate, a TCA
cycle intermediate was converted to 4-hydroxybutyryl-CoA
via succinyl-CoA: CoA transferase, succinic semialdehyde
dehydrogenase (SucD), 4-hydroxybutyrate dehydrogenase
(4hbD), and 4-hydroxybutyryl-CoA via: CoA transferase.
This was the first example that a copolymer was heter-
ologously synthesized in E. coli from unrelated carbon
source. However, the 4HB fraction in the initial synthe-
sized polymer was very low. Inactivation of E. coli
native succinate semialdehyde dehydrogenase genes
sad and gabD improved the 4HB content up to 11 %
in the copolymer, resulting to the highest P(3HB-co-
4HB) production in E. coli from glucose to this day
(Li et al. 2010). Meanwhile, the biosynthesis of 4HB
homopolymer from unrelated carbon source was
achieved. In 2005, Song et al. engineered a 4HB bio-
synthesis pathway via glutamate in E. coli using glucose as a
sole carbon source with 0.78 g/L yield of P4HB (Song et al.
2005). Significant level of P4HB can now be obtained from
glucose via succinate degradation pathway in sad and gabD
genes deficient strain of E. coli JM109 that coexpressed with
four PHA binding proteins PhaP1, PhaP2, PhaP3, and PhaP4,
respectively. Over 68 % P4HB (11.5 g/L) of the cell dry
weight was produced in a fed-batch fermentation process
(Zhou et al. 2012).

Polyesters containing the LA monomers

Polylactic acid (PLA), the unnatural polyester, is usually
synthesized by chemical polymerization of fermented prod-
uct, lactic acid (2-hydroxypropionic acid, 2HP). Due to its
promising market and drawbacks during the chemical synthe-
sis process (Södergård and Stolt 2002), people had tried to
synthesize this polymer directly by microbial fermentation.
Taking advantage of the wide substrate specificity of PHA
synthase, enzymes/mutants that can incorporate LA monomer
were created and selected. Recombinant E. coli expressing the
mutated propionate CoA-transferase gene pct from
Megasphaera elsdenii, which allows generation of (D)-
lactyl-CoA in the cell, and the mutated type II PHA synthase
gene phaC1 from Pseudomonas sp. 61-3 was proved to syn-
thesize LA copolymer directly by fermentation from glucose.
The polymer composition is 94 mol% 3HB and 6 mol% LA,
and the polymer content in the cell is 19 % of the dry cell
weight. In the following experiments, this group enriched the
LA fraction in the copolymer from the previous 6 mol% to
47 mol% by anaerobic cultivation (Taguchi et al. 2008;
Yamada et al. 2009). Employing a pct gene from
Clostridium propionicum and phaC1 from Pseudomonas sp.
MBEL6-19, Lee Sang Yup group reported that PLA homo-
polymer could be produced up to 11 wt% from glucose (Jung
et al. 2010). Several PhaC1Ps6-19 variants with mutations were
investigated with respect to their PLA biosynthesis capability
in wild-type E. coli XL1-Blue (Yang et al. 2011). Together
with β-ketothiolase and acetoacetyl-CoA reductase genes
phbAB, the recombinant strain can accumulate P(3HB-co-
LA) with 6∼64 mol% LA fraction in the copolymer from
glucose (Park et al. 2008; Yang et al. 2010). Then, they further
engineered the host by knocking out the ackA (acetate kinase),
ppc (phosphoenolpyruvate carboxylase), and adhE
(acetaldehyde/alcohol dehydrogenase) genes and by replacing
the promoters of the ldhA (D-lactate dehydrogenase) and acs
(acetyl-CoA synthetase) genes with the trc promoter to in-
crease the metabolic fluxes at the systems level. The final
P(3HB-co-LA) copolymer contains up to 70 mol% LA frac-
tion with 46 wt% polymer content (Jung et al. 2010). Using
this in vivo PLA biosynthesis system, they can also synthesize
PHAs containing 2-hydroxybutyrate monomer (Park et al.
2012). The conversion of chemical synthesis process to fer-
mentative process opened up a new way for PLA production,
and this process can also generated polyesters that contains
both LA and 3HB fractions. The synthesis of copolymer
containing LA and other types of monomers is expected.

Polyesters containing the 3HP monomers

Polyesters containing the 3HP monomers could be produced
when 3HP, α,ω-alkanediols, or acrylate was added as
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carbon source (Green et al. 2002; Nakamura et al. 1991;
Valentin et al. 2000). Since this kind of polymer was supposed
to have higher rigidity, ductility, and stability, many efforts
have been made in E. coli for the production of P3HP or its
copolymer with high content and controllable compositions
(Meng et al. 2012; Zhou et al. 2011). In 2008, P(3HP-co-3HB)
synthesis from unrelated carbon sources was first achieved in
engineered C. necator by introducing malonyl-CoA reductase
(Mcr) and the 3HP-CoA synthetase domain of trifunctional
propionyl-CoA synthase (Acs) from Chloroflexus
aurantiacus. Strains harboring the two heterologous genes
synthesized P(3HB-co-3HP) only with 0.2–2.1 mol% of
3HP fraction (Fukui et al. 2009). In 2010, an engineered E.
coli was developed by introducing the genes of glycerol
dehydratase (DhaB1) from Clostridium butyricum,
propionaldehyde dehydrogenase (PduP) from S. enterica
serovar Typhimurium LT2, and PHA synthase (PhbC) of C.
necator. This recombinant E. coli accumulated up to 1.42 g/L
P3HP homopolymer in fed-batch fermentation from unrelated
carbon source, glycerol (Andreeßen et al. 2010). In the same
year, production of P3HP from glucose in recombinant E. coli
was achieved by cloning the genes accABCD encoding acetyl-
CoA carboxylase and genes for Mcr, propionyl-CoA synthe-
tase (PrpE), and PhbC from C. necator (Wang et al. 2012a).
However, the polymer content was 1.32 g/L and only 0.98 %
wt/wt of the cell dry weight. Nevertheless, this attempt shows
the feasibility of engineering a P3HP biosynthetic pathway
using a structurally-unrelated carbon source in E. coli. Further
effort towards the improvement of the P3HP production
should be made. Since several 3HP synthetic pathways were
designed and large quantity of 3HP was produced from
unrelated carbon sources, many experiences involved in
3HP production in E. coli should be used for reference (Cho
et al. 2010; Jiang et al. 2009; Rathnasingh et al. 2009;
Rathnasingh et al. 2012).

Polyesters containing the 3HA monomers

Medium-chain-length PHAs (mcl-PHA) are naturally synthe-
sized through fatty acid de novo biosynthesis pathway or β-
oxidation pathway from Pseudomonads (Timm and
Steinbüchel 1990). In 1997, recombinant E. coli expressed
the phaC1 gene fromPseudomonas aeruginosa and was found
to produce mcl-PHA from related carbon source fatty acid
through a β-oxidation pathway by knocking out the fadB gene
(Langenbach et al. 1997; Qi et al. 1997). Later, by introducing
with a transacylase gene phaG from Pseudomonas putida, E.
coli was proved to accumulate 2 to 3 % mcl-PHA of cellular
dry weight through fatty acid de novo biosynthesis from glu-
cose (Rehm et al. 2001). The transacylase phaG catalyzes the
transfer of the (R)-3-hydroxy-acyl moiety from the acyl-
carrier-protein (ACP) thioester to CoA making the

intermediates from de novo fatty acid biosynthesis into the
substrates for mcl-PHA biosynthesis. However, due to the low
efficiency of PhaG, further improvement of mcl-PHA produc-
tion in this pathway was made. A recent study suggested that
PhaG is not a 3-hydroxyacyl-ACP: CoA transferase as
reported but a 3-hydroxyacyl-ACP thioesterase. Based on this,
they overexpressed a predicted mcl-fatty acid CoA ligase
PP0763 from P. putida together with P. putida PhaG and the
engineered Pseudomonas sp. 61-3 PhaC1 in E. coli. The new-
generated strains can accumulate 11.6 % mcl-PHA of the cell
dry weight (about 400 mg/L mcl-PHA) when grown on glu-
cose as a sole carbon source (Wang et al. 2012b). Meanwhile,
some researchers tried to combine fatty acid de novo biosyn-
thesis with β-oxidation by using an acyl-ACP thioesterase,
which hydrolyzes acyl-ACPs and produces enhanced intracel-
lular free fatty acid. Then, fatty acid is channeled into β-
oxidation pathway to form (R)-3-hydroxyacyl-CoA.
Coexpression of the cytosolic thioesterase I gene tesA and a
PHA synthase gene (phaC2 fromPseudomonas oleovorans) in
E. coliΔfadBΔfadR resulted in the synthesis of mcl-PHA
composed mainly of 3-hydroxyoctanoate from the glucose
(Klinke et al. 1999). Another acyl-ACP thioesterase from
Umbellularia californica can also lead to the formation of
mcl-PHA in E. coli fad mutants (Rehm and Steinbüchel
2001). To improve the production of mcl-PHA, a deep-going
reinvent was carried out. They found that E. coli ΔfadRABIJ
expressed with the same acyl-ACP thioesterase (named by
BTE), P. aeruginosa PhaC2, and enoyl-CoA hydratase
(phaJ3), CoA ligase PP0763 from P. putida produced mcl-
PHAwith over 15 % CDW, (Agnew et al. 2012). Mutated 3-
ketoacyl-ACP synthase III genes fabH and 3-ketoacyl-ACP
reductases (FabG) genes from E. coli can channeled the de
novo fatty acid to mcl-PHA biosynthesis but via a different
point (Nomura et al. 2004). In this case, FabH channeled the 3-
ketoacyl-ACP to 3-ketoacyl-CoA, while FabG enhanced the
conversion of 3-ketoacyl-CoA to (R)-3-hydroxyacyl-CoA
(Nomura et al. 2005).

Some PHAs such as P(3HB-co-3HHx) can be synthe-
sized from unrelated carbon source in wild-type bacteria
(Fukui et al. 2002; Qiu et al. 2005) but not in recombinant
E. coli yet. To realize this, the metabolic pathways in wild-
type bacteria should be made clear first.

Perspective

Since the PHA synthase has wide-substrate specificity,
which enabled the incorporation of various monomers into
PHA polymer, many efforts have been done to synthesize
various PHAs with different properties in E. coli. However,
most of the natural microorganism can only synthesize the
PHAs with varied monomers under laboratory conditions by
adding structurally-related precursors (Steinbüchel and
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Lütke-Eversloh 2003). These structurally-related precursors
are usually high cost, poorly miscible with water, toxic to
bacteria at relatively low concentrations, hard control for fed
batch, and/or higher oxygen demand than carbohydrates.
Therefore, more and more researchers have moved their
interest onto inexpensive and renewable unrelated carbon
sources such as glucose. Increasing the efficiency of their
use in PHAs biosynthesis is critical to the overall econom-
ics. (Figure 1 shows the known metabolic pathways so far
which is constructed for PHAs biosynthesis in recombinant
E. coli from unrelated carbon source.)

Therefore, the principal task in this area is to exploit the
metabolic potential of E. coli for the production of PHAs
with tailor-made monomer composition from unrelated

carbon source. Pathways could be constructed via heterolo-
gous and/or combinatorial expression of genes from differ-
ent organisms. In this case, synthetic biology offered us a
conceptual and technological framework to speed up the
creation of new metabolic enzymes and/or pathways (Lee
et al. 2012). Some new creating noninherent pathways for
the synthesis of fuels or chemicals (Dellomonaco et al.
2011; Felnagle et al. 2012) could be used as a bridge to link
unrelated carbon source with PHAs production. Second,
improvement of the PHAs content in the cell is also impor-
tant. The metabolic flux which leads to the PHAs synthesis
can be maximized by optimizing the physiological state of
the cell at the systems level. For this purpose, omics tech-
nology and/or systems biology provide many tools. Third,

Fig. 1 Scheme showing the metabolic pathways leading to the formation of various PHA monomers in recombinant E. coli. Dot line indicates the
engineered pathways
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most of unrelated carbon sources used for PHAs production
is glucose and employment of other cheap, renewable,
unrelated carbon source for PHAs production is necessary.
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