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Abstract Today, methane (CH4), nitrous oxide (N2O), and
carbon dioxide (CO2) emissions represent approximately
98 % of the total greenhouse gas (GHG) inventory world-
wide, and their share is expected to increase significantly in
this twenty-first century. CO2 represents the most important
GHG with approximately 77 % of the total GHG emissions
(considering its global warming potential) worldwide, while
CH4 and N2O are emitted to a lesser extent (14 and 8 %,
respectively) but exhibit global warming potentials 23 and
298 times higher than that of CO2, respectively. Most mem-
bers of the United Nations, based on the urgent need to
maintain the global average temperature 2 °C above prein-
dustrial levels, have committed themselves to significantly
reduce their GHG emissions. In this context, an active
abatement of these emissions will help to achieve these
target emission cuts without compromising industrial
growth. Nowadays, there are sufficient empirical evidence
to support that biological technologies can become, if prop-
erly tailored, a low-cost and environmentally friendly alter-
native to physical/chemical methods for the abatement of
GHGs. This study constitutes a state-of-the-art review of the
microbiology (biochemistry, kinetics, and waste-to-value
processes) and bioreactor technology of CH4, N2O, and
CO2 abatement. The potential and limitations of biological
GHG degradation processes are critically discussed, and the
current knowledge gaps and technology niches in the field
are identified.
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Introduction

Today, CH4, N2O, and CO2 emissions represent approxi-
mately 98 % of the total greenhouse gas (GHG) inventory
worldwide, and their share is expected to increase in this
twenty-first century based on their industrial and organic-
based nature and the forthcoming scenario of increasing
world population (European Environment Agency 2011;
Environmental Protection Agency 2011). CH4, with a global
warming potential 23 times higher than that of CO2 and an
atmospheric concentration increasing at 0.2–1 %year−1, is
mainly emitted from organic waste treatment activities such
as landfilling, composting, and wastewater treatment (95
million tons CO2 equivalent in the European Union [EU])
and livestock farming (166 million tons CO2 equivalent in
the EU) (European Environment Agency 2011). CH4 repre-
sents approximately 14 % of the total GHG emissions
worldwide (Intergovernmental Panel on Climate Change
2007). Emissions from compost piles or animal houses
typically contain 0–200 mg CH4m

−3, while these concen-
trations can increase up to 20–100 g CH4m

−3 in old landfills
(Nikiema et al. 2007). On the other hand, N2O is not only a
major GHG with a global warming potential 298 times
higher than that of CO2 but it is also the most important
O3-depleting substance emitted in the twenty-first century,
with yearly atmospheric concentration increases of 0.3 %
(Ravishankara et al. 2009). In the EU-27, N2O is mainly
emitted in waste treatment activities (10 million tons CO2

equivalent), nitric and adipic acid production (27 million
tons CO2 equivalent), and livestock farming (21 million tons
CO2 equivalent) (European Environment Agency 2011).
N2O contributes to 8 % of the GHG emissions worldwide
(Intergovernmental Panel on Climate Change 2007).
Concentrations ranging from 10 to 2,000 mg N2Om−3 are
common in the emissions of these activities (Xu et al. 2004;
Kampschreur et al. 2008). Even in tanks with novel
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microbial nitrogen removal processes such as nitritation/a-
naerobic ammonium oxidation (anammox), significant
amounts of N2O have been recorded during wastewater
treatment (Kampschreur et al. 2008). Finally, CO2 repre-
sents the most important GHG with approximately 77 %
of the total GHG emissions worldwide and an annual atmo-
spheric concentration increase of 0.5 % over the last decade
(Intergovernmental Panel on Climate Change 2007). CO2 is
mainly produced in electricity and heat production process-
es (1,400 million tons), transport (960 million tons), indus-
trial and fuel manufacturing (700 million tons), and other
sectors (e.g., commercial, residential, or agricultural; with
670 million tons). Typical CO2 concentrations in combus-
tion gases range from approximately 90 to 270 gm−3

(European Environment Agency 2011).
Most members of the United Nations, based on the urgent

need to maintain the global average temperature 2 °C above
preindustrial levels, have committed themselves to signifi-
cantly reduce their GHG emissions (Intergovernmental
Panel on Climate Change 2007). In this context, an active
abatement of these emissions will help to achieve these
target emission cuts without compromising industrial
growth. Besides, the development of cost-efficient GHG
abatement methods might be of paramount importance in
the near future since recent monitoring campaigns in waste
treatment facilities, for instance, have shown that the CH4

and N2O emissions reported might be underestimated by
one order of magnitude (Foley et al. 2010; Ahn et al. 2010).
As a matter of fact, most international GHG inventories
have based their estimations on Intergovernmental Panel
on Climate Change emission factors, and there is increasing
evidence that some of these factors, for instance, those
applied to waste treatment activities, might lack a scientific
basis or be based on studies under very specific and non-
extrapolable conditions (Foley et al. 2010; Ahn et al. 2010).
In addition, the gradual application of the EU Landfill
Directive 1999/31 (enforcing a reduction in the organic
matter content of the solid waste to be disposed) will result
in emissions with lower CH4 concentrations, which will
significantly limit the implementation of conventional ener-
gy recovery-based treatment technologies and will require
the application of cost-efficient abatement methods for di-
luted CH4 streams.

However, despite the environmental relevance of CH4,
N2O, and CO2 emissions, the development of cost-efficient
and environmentally friendly GHG treatment technologies
(especially of those intended for the treatment of emissions
containing low GHG concentrations) has been scarce.
Today, physical/chemical treatment methods for CH4 abate-
ment such as activated carbon adsorption or incineration are
either inefficient or costly at the low concentrations typically
found in emissions from waste treatment and animal farm-
ing and possess a high CO2 footprint as a result of their

intensive energy usage (Melse and Van der Werf 2005). On
the other hand, conventional NOx treatment technologies
such as selective catalytic reduction or selective noncatalytic
reduction present prohibitive operating costs (and large en-
vironmental impacts) when treating large air flow rates
containing low concentrations of NOx as a result of their
intensive energy use (Skalska et al. 2010). Similarly, CO2

sequestration through physical/chemical methods, such as
gas scrubbing with alkaline or amine solutions or direct
injection into subsurface natural reservoirs (storage), entails
prohibitive costs and secondary environmental pollution
(Herzog 2001; Kumar et al. 2011). In this regard, biotech-
nologies can become, if properly tailored, a low-cost and
environmentally friendly alternative to physical/chemical
methods for the abatement of CH4, N2O, and CO2.
Biotechnologies, which are based on the biocatalytic action
of specialized bacteria, microalgae, or fungi, have been
consistently proven as robust and efficient abatement meth-
ods for the treatment of industrial volatile organic com-
pounds and malodors, exhibiting lower operating costs and
environmental impacts than their physical/chemical counter-
parts (Estrada et al. 2011, 2012b). This study constitutes a
state-of-the-art review of the microbiology (biochemistry,
kinetics, and waste-to-value processes) and bioreactor tech-
nology of CH4, N2O, and CO2 abatement. The potential and
limitations of biological GHG degradation processes are
critically discussed, and the current knowledge gaps and
technological research niches in the field are identified.

Biological CH4 removal

Microbiology of CH4 removal

Methanotrophs are methylotrophic bacteria able to utilize
CH4 as the sole carbon and energy source, although several
yeast genera such as Sporobolomyces and Rhodotorula or
even the green microalgae Chlorella have been reported as
methane oxidizers (Enebo 1967; Wolf and Hanson 1979).
Most methanotrophs oxidize CH4 in the presence of O2,
although some strains can couple the oxidation of CH4 to
the reduction of sulfate, nitrate, nitrite, manganese, or iron
(Beal et al. 2009; Knittel and Boetius 2009; Ettwig et al.
2010). Methanotrophs are ubiquitous in the environment
and commonly found in tundra and wetlands, freshwater
and eutrophic lakes, marine sediments and water columns,
sewage sludge, rice paddies, agricultural soils and peat bogs,
preferentially in the interface between aerobic and anaerobic
areas with substantial fluxes of CH4 (Bowman 2006;
Hanson and Hanson 1996). Three types of methanotrophs
are distinguished: type I methanotrophs are characterized by
uniform intracytoplasmic membranes throughout the cell as
bundles of vesicular disks, membrane fatty acids with 14–16
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carbons, and the use of the ribulose monophosphate path-
way (RuMP) for formaldehyde assimilation. These metha-
notrophs belong to the Gammaproteobacteria class and
include genera such as Methylomonas, Methylobacter,
Methylomicrobium, and Methylococcus (Bratina et al.
1992). Encapsulated bacteria of the Clonothrix and
Crenothrix genera within theMethylococcaceae family have
been also recently identified as type I methanotrophs (Op
den Camp et al. 2009). Type II methanotrophs are found
within the Alphaproteobacteria class (Methylosinus and
Methylocystis genera) and are characterized by intracyto-
plasmic membranes along the peripheral part of the cell,
fatty acids with 18 carbons, and the use of the serine path-
way for formaldehyde assimilation (Patt and Hanson 1978;
Scott et al. 1981; Hanson and Hanson 1996). Type X meth-
anotrophs contain membrane fatty acids with 16 carbons,
use the RuMP pathway, posses a ribulose-1,5-bisphosphate
carboxylase, grow at higher temperatures than types I and II,
and belong mainly to theMethylococcus genera (Davies and
Whittenbury 1970; Hanson and Hanson 1996). Despite the
fact that most methanotrophs are included in the
Gammaproteobacteria and Alphaproteobacteria classes,
some of them belong to the NC10 phylum (nitrite-respiring
methanotrophs), Verrucomicrobia, and Euryarchaeota
(Hanson and Hanson 1996; Hou et al. 2008; Op den Camp
et al. 2009; Ettwig et al. 2010; Semrau 2011).

All methanotrophs use methane monooxygenases
(MMOs) during the aerobic oxidation of CH4 to methanol,
utilizing reducing equivalents for the split of the O2 bonds.
Two forms of MMOs have been identified in methano-
trophs: soluble and particulate. The soluble MMO form
(sMMO) was first detected in the cytosol of methanotrophs
II and X and recently identified in type I (Koh et al. 1993;
Hanson and Hanson 1996). This monooxygenase has a
broader range of substrates than other monooxygenases
and it is composed of a hydroxylase, a reductase, and a
regulatory protein (Lipscomb 1994; Hanson and Hanson
1996; Wallar and Lipscomb 2001). sMMOs are synthesized
when levels of Cu2+ are below 0.86 μmolg−1 dry weight
(dw) and contain iron as an important cofactor in the reac-
tion center (Hanson and Hanson 1996; Nielsen et al. 1997;
Choi et al. 2003). On the other hand, particulate or
membrane-bound MMOs (pMMO) are constitutive in all
aerobic methanotrophs at Cu2+ concentrations above
0.86 μmolg−1 dw, except in the genera Methyloferula and
Methylocella (Dalton 1992; Semrau et al. 2010). pMMO is
also composed of three polypeptides, which exhibit a lower
specific activity compared to sMMO, but nowadays, little is
known about its molecular properties (Basu et al. 2003;
Choi et al. 2005). Soluble MMOs employ NADH+H+ as
reducing agent to oxidize the CH4 present in the intracellular
medium (which previously diffused from the extracellular
aqueous medium) to CH3OH, while pMMO requires a

cytochrome complex to oxidize the CH4 present in the
cytoplasm. Then, the periplasmic enzyme methanol dehy-
drogenase catalyzes the conversion of methanol to formal-
dehyde (Fig. 1) (O’Connor 1981; Anthony 1982; Dalton
1992; Hanson and Hanson 1996; Glass and Orphan 2012).
Formaldehyde is then either converted to formic acid by
formaldehyde dehydrogenase or to biomass through the
RuMP pathway in type I and X methanotrophs or through
the serine pathway in type II methanotrophs (Hanson and
Hanson 1996).

Finally, carbon dioxide is produced from formate in an
oxidation step catalyzed by formate dehydrogenase with the
production of the reducing equivalents required at the initial
steps of CH4 oxidation (Hanson and Hanson 1996;
Chistoserdova 2011; Glass and Orphan 2012). Moreover,
type X methanotrophs can assimilate formaldehyde through
the RuMP pathway while fixing CO2 using a ribulose-1,5-
bisphosphate carboxylase (Whittenbury 1981). For a more
extensive discussion of the biochemistry of aerobic CH4

oxidation, readers are referred to specialized reviews
(Higgins et al. 1981; Hanson and Hanson 1996; Semrau et
al. 2010).

In contrast to aerobic CH4 oxidation, the information
available in the literature about anaerobic CH4 oxidation is
scarce. Moreover, anaerobic methane-oxidizing archaea,
which are responsible for 7–25 % of the total CH4 oxidation
worldwide, can undertake this process in symbiosis with
sulfate-reducing bacteria, using CH4 as an electron donor
to convert sulfate into sulfite (Hanson 1980; Hoehler et al.
1995, Reeburgh 2007). On the other hand, aerobic CH4-
oxidizing bacteria can grow concomitantly with denitrifying
bacteria, consuming oxygen and producing electron donors
for denitrification (Bédard and Knowles 1989; Thalasso et
al. 1997). In addition, a recently discovered denitrifying
methanotroph Methylomirabilis oxyfera, from the phylum
NC10, is able to perform intra-aerobic CH4 oxidation utiliz-
ing the oxygen contained in nitric oxide (NO) (Wu et al.
2011).

Microbial CH4 oxidation is often described by both
Monod and Michaelis–Menten models. However, the dif-
ferent experimental setups and models used for the estima-
tion of the kinetic parameters often hinder the direct
comparison of the data available in literature (Table 1).
The Michaelis–Menten constant (KM) determines the rate
of the overall enzymatic activity and ranges from 31.7×10−9

to 2.8×10−5M, the lowest value highlighting the high affin-
ity of some bacterial enzymes for CH4 oxidation (Scheutz et
al. 2009). Similarly, the Monod constant (KS) defines the
affinity of microorganisms for the substrates and, in the
particular case of CH4, ranges typically from 1×10−6 to
4.74×10−4M. pMMO-bearing bacteria have been reported
to exhibit a higher affinity for CH4 (lower KS values) than
sMMO-bearing microorganisms (Bédard and Knowles
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1989). Moreover, the maximum CH4 oxidation rates (Vmax)
are often reported in a wide variety of units, with values
ranging from 0.02 to 0.6 gm−3h−1, from 1.48×10−4 to
25.7 gm−2h−1, from 2.88×10−6 to 0.50 gg−1h−1, and from
3.2×10−15 to 1.44×10−12g cell−1h−1. Varied biomass yields
ranging from 0.02 to 0.8 g biomassg CH4

−1 are also typi-
cally found in the literature (Arcangeli and Arvin 1999).

The rates of CH4 oxidation depend on parameters such as
dissolved oxygen and CH4 concentrations, moisture content
in the media, temperature, pH, type of nitrogen source, or
copper levels. Hence, both types I and II methanotrophs
exhibit their maximum oxidation rate at gas oxygen concen-
trations ranging from 1.5 to 10.5 % v/v (Whittenbury and
Dalton 1981; Wilshusen et al. 2004). Furthermore, high
CH4/O2 ratios stimulated the growth of type II methano-
trophs (high KM), while low CH4/O2 ratios stimulated the
growth of type I methanotrophs (low KM) (Bender and
Conrad 1995; Amaral and Knowles 1995). These findings
support the hypothesis that sMMOs are usually expressed at
high CH4 concentrations and pMMO at low CH4 concen-
trations (Lontoh and Semrau 1998; Henckel et al. 2000).
The optimum moisture content for methanotroph growth
was shown to be packing media specific, which will be
discussed later on in the reactor section. Methanotrophs
are mesophilic microorganisms, although thermotolerant
and thermophilic Methylothermus, Methylocaldum,
Methylococcus, or Verrucomicrobia strains have been iso-
lated from hot springs, with an optimal growth in the range
of 42–65 °C (Bodrossy et al. 1999; Tsubota et al. 2005).
Psychrophilic strains of Methylobacter, Methylosphaera,
and Methylomonas have been isolated from tundra soils,
Antarctic meromictic lakes, and deep igneous groundwa-
ter, exhibiting an optimal growth range of 3.5–15 °C

(Omelchenko et al . 1993; Bowman et al . 1997;
Kalyuzhnaya et al. 1999). Hence, maximum oxidation
rates in composite soils occurred at 31 °C, while in most
peat soils, the optimal temperature was 25 °C (Bédard and
Knowles 1989; Whalen et al. 1990; Dunfield et al. 1993;
Bender and Conrad 1995). On the other hand, low CH4

oxidation rates were recorded in samples from forest and
landfill cover soils at 2–5 °C (Whalen and Reeburgh 1996;
Christophersen et al. 2000). Species from the Methylocella
and Methylocapsa genera or the Verrucomicrobia phylum
exhibiting an optimum growth at pH 2–2.5 have been
isolated from acidic environments, but most methano-
trophs preferably live and oxidize CH4 at pH 7–7.65
(Bender and Conrad 1995; Dedysh et al. 1998, 2002; Pol
et al. 2007; Dunfield et al. 2007). Oxidation rates by
acidophilic methanotrophs have been found to be higher
in samples from acidic peat soils (pH values of 4–5) com-
pared to those from neutral soils (pH values of 6–8) (Born
et al. 1990; Dunfield et al. 1993). Despite type II methano-
trophs being able to express the enzyme nitrogenase at low
O2 levels and perform N2 fixation, nitrate and ammonia are
the preferred N sources (Quayle 1972). Type I methano-
trophs are dominant in environments with low methane
concentrations and high inorganic nitrogen levels, while
type II methanotrophs are often predominant in scenarios
with high CH4/N ratios (Amaral and Knowles 1995).
Microbial stimulation or inhibition mediated by inorganic
nitrogen sources such as ammonia or nitrate depend on the
nitrogen and CH4 concentration, the pH, and the type of
methanotroph. Hence, optimal growth and CH4 oxidation
rates were recorded at 12–61 mM ammonia for some
methanotrophic communities, while some studies revealed
that concentrations of 4–10 mM could reduce CH4
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oxidation by 30 % (Bender and Conrad 1995). Some in situ
investigations suggest that high ammonia concentrations
could inhibit CH4 oxidation either by toxicity or enzymatic
competition, although such detrimental effects could be
also due to a nitrite accumulation from ammonia oxidation
(Bédard and Knowles 1989). In this context, ammonia
fertilizers seem to be more hazardous to type II than to
type I methanotrophs (Mohanty et al. 2006). Copper pos-
itively regulates the activity of pMMO/sMMO and controls
the expression of their genes (Stanley et al. 1983; Dalton et
al. 1984). However, Cu2+ concentrations have to be con-
trolled in order to maintain copper homeostasis and pre-
vent metal toxicity. The optimal growth of most
methanotrophs is achieved at cooper concentrations lower
than 4.3 mM (Bender and Conrad 1995), although a com-
bination of high Cu levels and organic material can favor

the rapid growth of type II methanotrophs (Graham et al.
1993). Besides, in Cu-limiting scenarios, some aerobic
methanotrophs excrete a molecule called methanobactin
able to bind cooper in the extracellular medium and active-
ly transport it into the cell at concentrations as low as 0.7–
1 μM (Kim et al. 2004; Balasubramanian et al. 2011).

Microbial CH4 oxidation can be coupled with the pro-
duction of high added-value biotechnological products.
Thus, some methanotrophs can utilize acetyl-CoA from the
serine or RuMP pathways to form polyhydroxyalkanoates
such as polyhydroxybutyrate (PHB), an important commod-
ity in the bioplastic industry (Higgins et al. 1981; Lidstrom
and Stirling 1990). PHB generation can be stimulated under
N-, S-, or Mg-limiting conditions. For instance, N limita-
tions supported the production of PHB at 39 % (w/w) in
Methylobacterium organophilum in a bioreactor and even at

Table 1 Maximum CH4 oxidation rates and kinetics parameters obtained in different environmental conditions

Vmax Conditions Kinetics Reference

1.48×10−4gm−2h−1 Samples from aerated and temperate forest
soils

– Born et al. (1990)

1.88 gm−2h−1 Samples from landfill cover soils KS=2.5–9.3×10
−6M, Yx=0.19–0.69 g

biomassg−1 CH4

Whalen et al. (1990)

6.93 gm−2h−1 Samples from microcosms KM=31.7×10−9M Kightley et al. (1995)

25.7 gm−2h−1 Samples from deep in landfill soils – Börjesson et al. (1998)

10.08 gm−2h−1 Biocovers with compost and polyestyrene
pellets

– Powelson et al. (2006)

2.88×10−6gg−1h−1 Yeasts with slow generation times ranging
2–7 days

– Wolf and Hanson (1979)

0.50 gg−1h−1 Pure cultures KM=1 or 3×10−6M for pMMO/sMMO,
respectively

Bédard and Knowles (1989)

5.9×10−5gg−1h−1 Preincubated natural oxic soils KM=0.17–2.79×10−5M Bender and Conrad (1992)

1.28×10−4gg−1h−1 Landfill cover soils with compost – Figueroa (1993)

0.08 gg−1h−1 Soils enriched with CH4 and O2 – Brusseau et al. (1994)

1.73×10−4gg−1h−1 Samples of silty loam – Börjesson (1997)

0.1 gg−1h−1 M. organophilum CZ-2 in reactors with
nitrogen limitation

– Zúñiga et al. (2011)

4.16×10−5gg−1h−1 Samples from a biofilter integrated into a
landfill cover system; low affinity
methane oxidizers

KM=15.1×10−6M Gebert et al. (2003)

3.2×10−15g×cell−1×h−1 M. trichosporium – Knowles (1993)

1.44×10−12g×cell−1×h−1 Samples from freshwater sediments – Bender and Conrad (1994)

3.2×10−14g×cell−1×h−1 Concentration range of 10–100 ppmv – Knief and Dunfield (2005)

1.12×10−2gm−3h−1 Samples from Lake Superior sediments KM=4.6×10−6M Remsen et al. (1989)

0.20–0.56 gm−3h−1 Sediment pore water samples from Lake
Michigan

KS=4.38–9.38×10
−6M Buchholz et al. (1995)

0.17 gm−3h−1 Concentrations of 3,000 ppmv; M.
trichosporium OB3b

– Yoon et al. (2010)

0.06 gm−3h−1 Sandy sediments in Brian seep with low
CH4 dissolved

– Treude and Ziebis (2010)

0.15 gm−3h−1 Seep sediments from Coal Oil Point with
a majority of Methylococcus in population

– Håvelsrud et al. (2011)

– Pure cultures without diffusion limitation KS=1–2×10
−6M Joergensen (1985)

– 14,500–27,000 ppmv μmax=0.05 h−1, KS=4.74×10
−4M,

Yx=0.8 g biomassg−1 CH4

Delhoménie et al. (2009)
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57 % (w/w) in serological glass bottles (Zúñiga et al. 2011).
Exopolysaccharides at 62 % (w/w) can be also produced
from CH4 oxidation using Methylocystis parvus (Hou et al.
1978; Chida et al. 1983). CH4-oxidizing bacteria, as well as
algae, fungi, or yeasts, can be also used in single-cell protein
production for human and animal consumption. For in-
stance, Norferm Danmark A/S in Norway produces
8,000 tons proteinyear−1 (BioProtein) from Methylococcus
capsulatus Bath (Winder 2004).

Reactors for biological CH4 oxidation

Several bioreactor configurations such as biofilters, biotrick-
ling filters, airlifts, and stirred tanks have been used for CH4

abatement from air emissions (Fig. 2). Biotechnologies for
CH4 abatement have been implemented in enclosed bioreac-
tors where the polluted air (containing O2) is supplied by
forced ventilation in either upflow or downflow mode and in
open bioreactors where the CH4-bearing emission (e.g.,
landfill gas) is supplied upwards at the bottom of the system,
while O2 diffuses from the air at the top of the bioreactor
(Gebert et al. 2001; Gebert and Gröngröft 2006)

Enclosed laboratory-scale bioreactors are the most popu-
lar CH4 abatement systems reported in the literature likely
due to the fact that operational parameters such as temper-
ature and moisture content can be controlled. On the other
hand, open bioreactors constitute the most implemented
technology to treat real CH4 emissions from landfills at full
scale. Unfortunately, forced air ventilation to provide the O2

needed by aerobic methanotrophs is not recommended when
treating real landfill CH4 emissions to avoid explosion risks
(CH4 concentration in landfill gas in the range of 30–70 %
v/v) (Kallistova et al. 2005; Zamorano et al. 2007).

Therefore, O2 supply in open passively vented biofilters
strongly depends on climate conditions, and O2-limiting
conditions are often encountered in these bioreactors
(Humer and Lechner 1999; Gebert et al. 2001; Berger et
al. 2005). In this regard, a three-dimensional numerical
model has been recently developed, incorporating the effect
of advection–diffusion gas flows, heat, and moisture on CH4

oxidation in open biofilters (Hettiarachchi et al. 2011). This
innovative model allowed for the estimation of CH4 removal
under several environmental conditions confirming that
CH4 oxidation in open biofilters strongly depends on envi-
ronmental factors.

Biofilters are by far the most common bioreactors used
for CH4 removal although innovative multiphase systems
operated in different bioreactor configurations have
emerged in the last 5 years. Despite being relatively simple
systems, biofilters constitute the most studied and imple-
mented technology to date and can support high CH4 re-
moval rates when parameters such as the O2 concentration
or the moisture content are optimized. For instance, biofilter
operation in landfills at O2 concentrations of 18–28 μM
(1.7–2.6 % in the gas phase) resulted in maximum oxidation
rates of 1.78×10−6mol CH4g

−1 dwh−1 (Gebert et al. 2003).
The optimum moisture content was shown to depend on
water activity, which itself is often packing media specific,
with maximum CH4 oxidation rates at a moisture content of
11 % (w/w) in composite soils, 10–20 % in landfill cover
soils, and 20–35 % in other types of soils, while moisture
contents of 5, 56, or 71 % in composite soils supported low
oxidations rates (Whalen et al. 1990; Bender and Conrad
1995). The intensive research conducted on biofiltration
over the last 20 years has resulted in important advances
in packing material technology, evolving from a bed of
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microorganisms and the non-aqueous phase

Gas inlet 
(polluted air)

Gas inlet 
(polluted air)

Gas inlet 
(polluted air)

Gas outlet 
(clean air)

Gas outlet 
(clean air)

Fig. 2 Bioreactor
configurations reported in the
literature for CH4 abatement: a
biofilter, b biotrickling filter, c
stirred tank, and d concentric
tube airlift

2282 Appl Microbiol Biotechnol (2013) 97:2277–2303



simple materials such as compost, pine bark, or perlite to
more sophisticated structured packings such as metallic or
polymeric ring and foams or custom-made nutrients con-
taining polymeric pellets. Besides, optimum environmental
conditions, nutrient requirements, and potential inhibitors of
CH4 oxidation in biofilters have been recently identified
(Veillette et al. 2012). These breakthroughs in biofiltration
technology have resulted in significant reductions in the
EBRTs required to efficiently abate CH4 emissions. For
instance, ECs of 1.2–25 gm−3h−1 have been recorded in
conventional biofilters operated at EBRTs of 10–360 h
(Table 2) (du Plessis et al. 2003; Berger et al. 2005; Melse
and Van der Werf 2005), while third generation enclosed
biofilters operated at EBRTs of 0.3–20 h were able to reach
ECs of 65–280 gm−3h−1 (Gebert and Gröngröft 2006;
Nikiema and Heitz 2009; Park et al. 2009). To the best of
our knowledge, Park et al. (2009) reported the highest
abatement performance in a biofilter treating CH4 with a
maximum EC of 280 gm−3h−1 (corresponding to an RE of
50 %) at an EBRT of 1.2 h. Girard et al. (2011) achieved an
EC of 14.5 gm−3h−1 in a biofilter operated at an EBRT of
0.07 h. Interestingly, a similar EC to that obtained by Park et
al. (2009) would be expected if the ECs obtained by Girard
et al. (2011) were multiplied by 17, which is the EBRT ratio
between these reports.

Several bioreactor configurations and operation modes
have been recently investigated in order to overcome the
typical mass transfer limitations encountered in convention-
al biofilters as a result of the low water solubility of this
GHG (Fig. 2). Rocha-Rios et al. (2009, 2011) studied the
performance of the so-called two-phase partitioning bioreac-
tors (TPPBs) for CH4 abatement, which are based on the
addition of a nonaqueous phase (e.g., a liquid solvent or a
solid polymer) with a high affinity for CH4, resulting in
higher CH4 absorptions and driving forces for mass transfer
(Quijano et al. 2009). Silicone oil, exhibiting 15 times
higher affinity for CH4 than water is one of the most com-
monly used nonaqueous phases in TPPBs. In this context, a
silicone oil-based TPPB implemented in a stirred tank
reached a maximum EC of 106 gm−3h−1 at an EBRT as
short as 0.08 h (corresponding to 4.8 min) (Rocha-Rios et al.
2009). This important reduction in the EBRT dramatically
decreased the size of the abatement unit and consequently
the overall technology cost. In the quest for less energy-
demanding systems than stirred tank reactors, TPPBs have
been also implemented in airlift systems with a maximum
EC of 22 gm−3h−1 at an EBRT of 0.12 h. Nevertheless, a
better performance was reported in a TPPB operated as a
biotrickling filter, exhibiting a maximum EC of 51 gm−3h−1

at an EBRT of 0.08 h (Rocha-Rios et al. 2009). Likewise,
Avalos et al. (2012) recently reported that a biotrickling
filter (without the nonaqueous phase) using stones as pack-
ing material and provided with a nonionic surfactant was

able to reach a maximum EC of 21 gm−3h−1 at EBRTs as
short as 0.07 h (corresponding to 4.2 min). Although prom-
ising results have been obtained in TPPBs and single liquid-
phase biotrickling filters, more research is still necessary to
boost the overwhelming CH4 abatement potential of
biotechnologies.

At this point, it is important to stress that little attention
has been given to the microbiological aspects in bioreactors
devoted to CH4 abatement (Scheutz et al. 2009). In some
studies, the bioreactors were operated for months to stimu-
late the growth of the indigenous methanotrophic micro-
organisms present in the packing materials, which resulted
in either very long start-up periods (du Plessis et al. 2003;
Einola et al. 2008) or in a poor CH4 abatement performance
(Berger et al. 2005). A more efficient performance and
shorter start-up periods were recorded when the bioreactor
was inoculated with methanotrophic biomass from the
leachate (or directly with a portion of the packing material)
of a CH4-treating biofilter (Nikiema and Heitz 2009; Avalos
et al. 2012). The enrichment of methanotrophs from activat-
ed sludge of wastewater treatment plants is also another
common strategy to produce acclimated inocula and to
reduce process start-up periods (Rocha-Rios et al. 2009).
On the other hand, Avalos et al. (2012) found that clogging
issues were very different in a biotrickling filter packed with
clay spheres, polypropylene spheres, and stones, despite
using the same biomass and inoculation protocol, the reactor
packed with stones being more susceptible to clogging and
presenting stability problems. These recent studies, there-
fore, confirm that microbiology and reactor/packing materi-
al design are important research areas to be pursued due
to their key role on bioreactor start-up and abatement
performance.

Biological N2O removal

Microbiology of N2O removal

To date, research on N2O emission control has been mainly
focused on minimizing and/or preventing N2O generation
and its release to the atmosphere. Once N2O is formed,
removal by in situ consumption might be also promoted
before implementing end-of-pipe technologies (Desloover
et al. 2012). The mitigation strategies developed to date
were based on microbiological studies investigating the
influence of process operational conditions on N2O produc-
tion rates, especially in wastewater treatment plants and
composting facilities (Kampschreur et al. 2009; Rassamee
et al. 2011). In this context, the elucidation of the complex
mechanisms governing the microbial production and con-
sumption of N2O is crucial to develop cost-effective end-of-
pipe biotechnologies for N2O abatement.
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N2O may be biologically produced by both nitrification
and denitrification processes (Fig. 3). Nitrification is a se-
quential and predominantly autotrophic process where NH3

is first oxidized to NO2
− by ammonia-oxidizing bacteria and

then further oxidized to NO3
− by nitrite-oxidizing bacteria.

Conventional denitrification involves NO3
− reduction by

heterotrophic denitrifiers to N2 through a stepwise reduction
sequence involving NO2

−, NO, and N2O. Thus, the main
routes for N2O production are hydroxylamine oxidation,
nitrifier denitrification, and heterotrophic denitrification
(Kampschreur et al. 2009; Desloover et al. 2012;
Wunderlin et al. 2012) (Fig. 3).

Hydroxylamine (NH2OH) is an intermediate in the nitri-
tation step (oxidation of NH3 to NO2

−). The oxidation of
NH3 to NH2OH is catalyzed by an ammonia monooxyge-
nase (Wood 1986; Wrage et al. 2001), while the oxidation of
NH2OH to NO2

− is catalyzed by a hydroxylamine oxidore-
ductase (Hooper and Terry 1979). N2O production occurs
via chemical decomposition of NH2OH in a process called
chemodenitrification or through NO2

− reduction with elec-
tron donors such as organic (e.g., amines) or inorganic (e.g.,
Fe2+ and Cu2+) compounds (Wunderlin et al. 2012). During
nitrifier denitrification, NH3 is partially oxidized to NO2

−

and then further reduced to NO, N2O, and N2 in a process
carried out by a very specific group of microorganisms
(Wrage et al. 2001). Since nitrifier denitrification involves
both nitritation and denitrification steps, N2O may thus be
produced in both processes (Colliver and Stephenson 2000).
Finally, N2O production during heterotrophic denitrification
is caused by an interruption in the last reduction step before
reaching the most reduced compound (N2). Thus, imbalan-
ces in the production and consumption of the enzyme ni-
trous oxide reductase (NOS), which catalyzes N2O
reduction to N2, have been pointed out as the main respon-
sible of N2O accumulation (Wunderlin et al. 2012; Glass
and Orphan 2012). In brief, suboptimal conditions for nitri-
fication and denitrification are intrinsically related to N2O
emissions. For instance, when nitrification occurs under
oxygen-limiting conditions, ammonia-oxidizing bacteria
use NO2

− as the terminal electron acceptor instead of O2,
leading to higher N2O emissions (Colliver and Stephenson
2000; Wunderlin et al. 2012). Indeed, emissions of N2O
have been also recorded in anammox tanks, although these
emissions could not be directly attributed to the anaerobic
oxidation of ammonium (Kampschreur et al. 2008).
Likewise, the enzyme NOS catalyzing N2O reduction dur-
ing heterotrophic denitrification is the most sensitive to O2,
causing incomplete denitrification and N2O accumulation at
high O2 concentrations (Tallec et al. 2008; Uggetti et al.
2012). High NO2

− concentrations can also induce an en-
hanced reduction of this compound to N2O during nitrifica-
tion and lower denitrification rates, resulting in an
accumulation of NO and N2O (Kampschreur et al. 2009).T
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Based on the fact that the aerobic oxidation of N2O, to
the best of our knowledge, has not been reported yet, any
biotechnology devoted to N2O removal must focus on re-
ducing N2O to N2 by favoring the activity of the enzyme
(NOS). In this context, the enzyme NOS is known to require
Cu in larger quantities than other enzymes, and the reduc-
tion of N2O is thus feasible when Cu is present above a
certain threshold concentration (Glass and Orphan 2012).
Granger and Ward (2003) observed a low NOS activity in
denitrifiers grown at 0.3 nM of total dissolved Cu and a
complete consumption of N2O when Cu was increased up to
10 nM. Environments rich in sulfides might support low
N2O reduction rates since sulfide scavenging and metal
precipitation may reduce Cu bioavailability. Very few stud-
ies have investigated the potential of microorganisms for
N2O reduction, and the few studies available focused on O2-
free emissions, conditions which are far from those present
in most real N2O emissions. For instance, Apel and Turick
(1992) assessed the ability of nine bacterial species to re-
duce N2O to N2 under anaerobic conditions (headspace
filled with N2O and He) in organic synthetic media. Seven
species were able to successfully consume N2O, with
Pseudomonas denitrificans and Paracoccus denitrificans
exhibiting the best N2O biodegradation performance. The
optimum temperature for those two species was in the range
of 30–35 °C, and maximum N2O removal rates of 0.017 and
0.015 mMmg−1 dwh−1 were obtained for Pseudomonas
denitrificans (initial N2O concentration of 0.9 mM) and
Paracoccus denitrificans (initial N2O concentration of
1.6 mM), respectively. Miyahara et al. (2010) reported that
Pseudomonas stutzeri TR2 was able to aerobically denitrify
with a low production of N2O, suggesting that bioaugmen-
tation with this strain could reduce N2O emissions from
aerobic wastewater treatment systems due to its improved
denitrification ability in the presence of oxygen. P. stutzeri
TR2 grew at a rate of 0.32 h−1, comparable to the specific

growth rates of anaerobic denitrifiers, and was classified by
the authors as an expert anaerobic denitrifier.

Bioreactors for N2O abatement

The implementation of N2O control strategies is likely to
become mandatory in the coming years due to the elevated
contribution of this GHG to global warming and ozone
depletion. To date, only physical/chemical technologies
such as thermal decomposition (Löffler et al. 2002), selec-
tive catalytic reduction (Muramatsu et al. 1997; Satsuma et
al. 2000), or adsorption (Golden et al. 2004) have been used
for the removal of N2O from off-gases. The application of
these abatement methods usually involves the consumption
of expensive and/or hazardous chemicals, generation of
secondary pollution, and high operating costs when treating
high flow rates at the typical low N2O concentrations.
Conversely, biotechnologies offer a more environmentally
friendly and cost-effective platform for the removal of N2O
based on their lower energy requirement, absence of haz-
ardous chemicals or catalyst, and innocuous nature of their
final end products (N2 and biomass) (Devinny et al. 1999;
Boswell 2001).

Although the number of studies on the application of
biological reactors for the removal of N2O is scarce, their
potential has been demonstrated. For instance, Desloover et
al. (2011) recently assessed the performance of a bioelec-
trochemical system with a cation exchange membrane sep-
arating the biological anodic and cathodic compartments. In
this system, the electrons originated in the anode from
sodium acetate biodegradation were supplied to the denitri-
fying bacteria present in the biocathode and promoted the
reduction of N2O to N2 according to the equation: N2O+
2e−+2H+→N2+H2O (E0=+1.36 V). N2O removal rates up
to 1 kgN2ONm

−3
net cathodic compartmentday

−1 were achieved,
with a cathodic coulombic efficiency of ≈100 %. However,
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Fig. 3 Overview of the main metabolic routes involved in N2O pro-
duction and biodegradation in bacterial cultures. The enzymes respon-
sible of each individual reaction are ammonia monooxygenase (AMO),
hydroxylamine oxidoreductase (HAO), nitrite oxidoreductase (NXR),

nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide reductase
(NOR), and nitrous oxide reductase (NOS). Adapted from Wrage et al.
(2001), Desloover et al. (2012), and Glass and Orphan (2012)
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although this technology constitutes a promising alternative
due to its cost efficiency, challenges regarding its scale-up
and sensitivity to aerobic environments still need to be
solved (Desloover et al. 2011). Conventional biotechnolo-
gies for off-gas treatment such as biofiltration, biotrickling
filtration, or bioscrubbing have been rarely applied for N2O
abatement, with most of the studies reported for NO remov-
al based on autotrophic nitrification and heterotrophic deni-
trification (Shanmugasundram et al. 1993; Nascimento et al.
2000; Chou and Lin 2000; Woertz et al. 2001). For instance,
Utami et al. (2012) evaluated the performance of a biofilter
packed with a cow manure-based compost batchwise for 9 h
at different operating conditions, with the highest N2O REs
(61 %) obtained at an EBRT of 58 min and a moisture
content of 50 %. Likewise, Hood (2011) recorded N2O
REs ranging from 14 to 17 % in a biofilter packed with
compost and woodchips (30/70 %) at an EBRT of 7.6 s and
N2O inlet concentrations of 0.68–1.24 mgm−3. Lower N2O
removal efficiencies (0.7 %) were supported by a biofilter
packed with pine nuggets and lava rock operated at an
EBRT of 5 s, a relative humidity of 90 %, and inlet N2O
concentrations of 428±22.2 ppbv (Akdeniz et al. 2011). The
low performance recorded in these biofilters was probably
due to the lack of a specific microbial community acclimat-
ed to N2O biodegradation under aerobic conditions, since
these systems were not specifically designed for the abate-
ment of N2O. Besides, the presence of hydrogen sulfide in
some of these air emissions might had promoted the precip-
itation of metals such as copper, whose presence is manda-
tory for the synthesis of the enzyme NOS and the correct
functioning of N2O-degrading communities. In brief, the
high sensitivity of the biological N2O reduction step to-
wards the presence of O2, which is inherent in most N2O
emissions, and the lack of economic or legislative incentive
for its removal to date have hindered the development of
high performance biological N2O abatement technologies
(Desloover et al. 2012). Nevertheless, the few studies
addressing the biological removal of N2O have shown
promising results but require further process optimization.

Biological CO2 removal

Microbiology of CO2 removal

Biological CO2 fixation is carried out via photosynthesis by
all terrestrial plants, although microorganisms such as
microalgae and cyanobacteria can do it at higher rates and
with 10–50 times better efficiency (Costa et al. 2000).
Among microalgae, Chlorophyta (including genera such as
Chlamydomonas, Chlorella, Dunaliella, Haematococcus,
Botryococcus, or Scenedesmus), Euglenophyta (Euglena),
Bacillariophyta (Nitzschia), Rhodophyta (Porphyridium),

and Eustigmatophyta (Nannochloropsis) rank among the
most investigated for biological CO2 fixation (Richmond
2004; Madigan et al. 2006; Barsanti and Gualtieri 2006).
Despite constituting a phylum of bacteria rather distant
taxonomically, cyanobacteria or blue–green algae are
frequently considered as microalgae because of their ability
to carry out photosynthesis. Cyanobacteria group includes
genera such as Nostoc, Oscillatoria, Synechococcus,
Synechocystis, Spirulina, Arthrospira, Anabaena, or
Pediastrum. Both types of photosynthetic microorganisms,
from now on referred to as microalgae, are ubiquitous in
terrestrial and aquatic environments and can survive in
extreme environments such as geysers and hot water
springs, desert soils, and Antarctic locations (Madigan et
al. 2006; Kumar et al. 2011).

Microalgae use light as the sole source of energy and CO2

as the sole carbon source during photosynthesis. Nevertheless,
some species such as Chlorella vulgaris, Dunaliella salina,
Euglena gracilis, and Tetraselmis tetrathele also exhibit a
concomitant heterotrophic metabolism capable of utilizing
from simple organic substrates like acetate, glucose, gluta-
mate, lactate, or amino acids (Gladue and Maxey 1994,
Ogbonna and Tanaka 1998) to complex aromatics such as
cresols or naphthalene (Semple et al. 1999). Microalgae pho-
tosynthesis involves a redox process considered as oxygenic
when H2O acts as the electron donor:

CO2 þ H2O������!light; plant
CH2Oð Þn þ O2 þWaste heat

At least 8 mol of photons is required to obtain a mole of
CH2O, with 218 KJ energymol−1 photons (Ho et al. 2011).
CO2 assimilation during microalgal photosynthesis involves
two stages: light reactions where H2O oxidation to O2

results in the production of ATP and NADPH and dark
reactions where CO2 is reduced to organic compounds uti-
lizing NADP+/NAD+ as the electron acceptor.

Light reactions are initiated with light harvesting by the
antenna complexes of the thylakoid membranes (Staehelin
1986; Taiz and Zeiger 2002). The excitation energy is then
conveyed to the reaction center, where pigments such as
chlorophyll a absorb a few photons per second with a
conversion efficiency of 25–27 % (Taiz and Zeiger 2002).
These photons mediate the photolysis of H2O with the
subsequent reduction of chlorophyll P680 from the photo-
system II (PSII) (Iverson 2006), the electron transport con-
tinuing through quinones, cytochromes, and plastocyanin,
finally reaching photosystem I (PSI) and reducing the P700
pigment (Hill and Bendall 1960; Cerveny et al. 2009).
Simultaneously, protons are pumped from the thylakoid
lumen in order to obtain ATP (Fig. 4).

Dark reactions, also known as Calvin cycle, imply CO2

fixation and, consequently, the use of the NAD(P)H and
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ATP obtained in the light reactions (Calvin 1989; Taiz and
Zeiger 2002; Nelson and Cox 2005). The Calvin cycle
includes three basic stages: carboxylation of the CO2 accep-
tor ribulose-1,5-bisphosphate to 3-phosphoglycerate by the
enzyme ribulose bisphosphate carboxylase (RuBisCo), re-
duction of 3-phosphoglycerate to glyceraldehydes-3-
phosphate utilizing the obtained ATP and NADPH, and
regeneration of the CO2 acceptor through a phosphorylation
mediated by the enzyme phosphoribulokinase (Fig. 4).
Twelve NAD(P)H molecules and 18 ATP molecules are
needed to produce a molecule of fructose-6-phosphate from
6 molecules of CO2 using the RuBisCo (Hall and Rao 1999;
Taiz and Zeiger 2002, Madigan et al. 2006):

CO2 þ 2NADPHþ 3ATP ! CH2O½ � þ 2NADP þ 3ADPþ 3Pi

RuBisCo also exhibits an oxygenase activity and O2 can
compete with CO2 as substrate, resulting in a process named
photorespiration (Miziorko and Lorimer 1983; Edwards and
Walker 2004). Photorespiration is favored at high O2/CO2

ratios, high temperatures, or high irradiations and can cause
a decrease of up to 30–50 % in the photosynthetic efficiency
(PE) of microalgae, with the subsequent reduction in CO2

assimilation (Zhu et al. 2008; Gioardano et al. 2005). The
enzyme RuBisCo in microalgae exhibits a low affinity for
CO2, since typical C3 plants present KM values in the range
of 15–25 μM, green algae over 30 μM, and cyanobacteria
up to 200 μM (Moroney and Somanchi 1999; Savir et al.
2010). Due to the low affinity of some microalgal species
for CO2, most microalgae and cyanobacteria present specific
organelles hosting key enzymes such as RuBisCo and inor-
ganic carbon-concentrating mechanisms (CCMs) (Matsuda
et al. 1998; Raven et al. 2008). CCMs consist of ATP-driven
plasma membrane pumps induced by low levels of dis-
solved CO2. Inorganic carbon-accumulating pumps (CO2

and HCO3
−) increase the CO2 levels in the vicinity of

RuBisCo and consequently reduce the extent of photorespi-
ration, even at atmospheric CO2 levels (0.035 %) (Fig. 4)
(Moroney and Somanchi 1999). By using these CCMs,
microalgae can concentrate HCO3

− more than 20-folds over
ambient CO2 levels and cyanobacteria more than 100-folds
(Miller et al. 1990). The incorporation of CO2 into the
Calvin cycle requires the conversion of HCO3

− to CO2 by
a carbonic anhydrase, whose level of expression is also
governed by CO2 concentrations (Price and Badger 1989;
Price et al. 1992; Karlsson et al. 1998).

The rates of photosynthetic CO2 assimilation depend on
factors such as the temperature, pH, light intensity, O2 and
CO2 levels, or presence of inhibitory compounds. Optimal
temperatures for microalgae growth and photosynthesis
vary from 15 to 25 °C (Tamiya 1957). Despite higher
temperatures inducing a reduced photosynthesis due to a
decrease in the solubility of CO2, some microalgae species

such as Chlorella have been reported to grow optimally in
the range of 30–35 °C, which are typically encountered in
outdoor cultivations (Pulz 2001). In this context, the isola-
tion of thermophilic species is mandatory in order to imple-
ment microalgae-based CO2 capture methods in power
plants, whose exhaust gas emissions are discharged at high
temperatures. For instance, Synechococcus elongatus was
able to fix CO2 at 60 % v/v and 52 °C at rates comparable to
those recorded at 20 % v/v and 25 °C (Miyairi 1995).
Likewise, thermophilic species of Chlorogloeopsis were
able to fix CO2 at 50 °C (Ono and Cuello 2007).
Microalgae and cyanobacteria preferentially grow at a neu-
tral pH, although species like Spirulina platensis exhibit an
optimum pH of 9 and Chlorococcum littorale a pH of 4
(Kodama et al. 1993; Hu et al. 1998). The effect of pH on
microalgae growth is complex since it is difficult to disso-
ciate the direct effects on microalgae growth from collateral
effects such as the modification in the CO2/HCO3

−/CO3
2−

and NH3/NH4
+ equilibria or in phosphorus or heavy metal

availability (Muñoz and Guieysse 2006). The photosynthet-
ic activity increases linearly with increasing light intensities
up to 400 μmol photonm−2s−1, although some species such
as Scenedesmus or Chlorella exhibit saturation thresholds of
100–200 μmol photonm−2 s−1 (≈5–10 % sunlight)
(Hanagata et al. 1992; Muñoz and Guieysse 2006; Tredici
2009). In this context, S. platensis was able to withstand
light energy fluxes of up to 8,000 μmol photonm−2s−1 at a
culture density of 8.4±1.6 gL−1 under optimum mixing (Hu
et al. 1996). Despite the fact that high light intensities can
cause photoinhibition over PSII, microalgae strategies such
as the reduction in the pigment content, PSII inactivation, or
growth under heterotrophic or mixotrophic conditions can
minimize its pernicious effects (Behrenfeld et al. 1998;
Melis 1999; Ogbonna and Tanaka 2000; Carlsson et al.
2007). Indeed, genetic modifications of microalgae have
emerged as a promising tool to reduce the size of the
antenna complexes to minimum values of 37 chlorophyll
molecules for PSII and 95 for PSI, which can increase
photosynthetic efficiencies by 50 % (Nakajima and Ueda
1997; Mitra and Melis 2008; Eriksen 2008). Despite the
high solar energy fluxes impinging on the earth surface,
microalgae cultivation is often limited by light supply.
Hence, considering the sole absorption of the photosynthet-
ically active radiation from the total impinging solar radia-
tion and the energy losses due to reflection, respiration,
photosaturation, and photoinhibition, the maximum PE in
microalgal culture often decreases from the expected 12.4 %
to values of ≈5 % or even lower (Tredici 2009). Microalgae
and cyanobacteria are able to efficiently grow at CO2 atmo-
spheric levels (≈0.0387 % v/v) but are frequently cultivated
at CO2 levels in the range of 5–15 % v/v in order to increase
microalgal productivities (Kumar et al. 2010a). Microalgae
tolerance to CO2 concentrations is species-dependent with
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optimum ranges of 2–15 % v/v for S. platensis and 15 %
for Nannochloropsis salina (Doucha et al. 2005; Kumar et
al. 2010b). Several strains of the thermophilic red alga
Cyanidium caldarium were even capable of growing at
CO2 levels of 100 % (Seckbach and Ikan 1972). On the
other hand, high dissolved O2 concentrations (>35 mg
L−1) in the cultivation broth favor photorespiration and
O2 radical formation, with the subsequent decrease in
microalgal productivity (Pulz 2001; Carvalho et al.
2006; Ho et al. 2011). Finally, heavy metals, NH3, or
industrial gases such as SOx and NOx can inhibit micro-
algae growth. In the context of CO2 capture from flue
gases, NOx is not as toxic as SOx towards microalgae and
can be even used as nitrogen source. Thus, several
Nannochloropsis species can grow at 100 ppmv of NO,
while Dunaliella tertiolecta can withstand NOx concen-
trations of up to 1,000 ppmv (Yoshihara et al. 1996;
Nagase et al. 1998). In contrast, high levels of SOx

(>400 ppmv) severely reduce the cultivation pH and the
photosynthetic rate (Packer 2009; Kumar et al. 2010b). In
this regard, Tetraselmis species can grow in flue gases
containing 14 % v/v CO2, 185 ppmv of SOx, and 125 ppmv

of NOx (Matsumoto et al. 1995).
The ability of C. vulgaris, Botryococcus braunii, C.

littorale, Scenedesmus sp., Chlamydomonas reinhardtii,
and Spirulina sp. for CO2 capture was recently assessed
based on their high CO2 fixation rates and ability to yield
high added-value products (de Morais and Costa 2007a, b,
c; Packer 2009; Ota et al. 2009; Chen et al. 2010; Yoo et
al. 2010). Moreover, typical maximum specific growth
rates (μmax) of microalgae under photosynthetic, hetero-
trophic, and mixotrophic conditions are 0.110, 0.098, and
0.198 h−1 for C. vulgaris and 0.061, 0.040, and 0.048 h−1

for Scenedesmus acutus, respectively (Ogawa and Aiba
1981).

Microalgae CO2 capture can also be coupled with the
production of high added-value biotechnological prod-
ucts, which would significantly improve the process
economy. Thus, health-promoting molecules from
Chlorella species (Richmond 1990; Gouveia et al.
1996), β-carotenes from D. salina (Metting 1996; Ben-
Amotz 1999), pharmaceuticals and phycobiliproteins
from S. platensis (Spolaore et al. 2006; Raja et al.
2008), ketocarotenoid astaxanthins from Haematococcus
pluvialis (Lee and Ding 1994; Spolaore et al. 2006),
carotenes or cosmetics from Arthrospira (Richmond
1986; Viskari and Colyer 2003; Spolaore et al. 2006),
and eicosapentaenoic acid from Nannochloropsis species
(Boussiba et al. 1987; Chisti 2007; Chen et al. 2010)
rank among the most common high added-value products
marketed nowadays and can significantly contribute to
the economic viability of microalgae-based CO2 capture
technologies.

Photobioreactors for CO2 abatement

Photobioreactors (PBRs) are considered “direct” CO2 cap-
ture methods where a CO2-rich off-gas is directly pumped
into the cultivation medium of the bioreactor in contrast to
higher plant biomass systems based on CO2 diffusion
(Benemann 1997). The first approach to an engineered
microalgae cultivation system dates back to the World
War II, when Germany looked for innovative protein
sources to replace animal proteins during shortage periods
(Carvalho et al. 2006). The concept was further developed
during the 1950s and 1960s, but the focus shifted from
protein production towards bioenergy production during
the first energy crisis in the early 1970s (Chaumont 1993).
Today, algal mass cultivation for bioenergy production is
still perceived as economically nonsustainable by itself
based on the high microalgae production costs (in the
range of 4–70€kg−1 microalgae depending on the PBR
scale) and the relatively low cost of the energy obtained
from them (Norsker et al. 2011; Acién et al. 2012a).
Hence, the integration of microalgal CO2 capture with
the production of high added-value products or wastewa-
ter treatment is nowadays regarded as the only alternative
to make the process economically viable (Morweiser et al.
2010; Wang et al. 2008). In this context, recent studies
have also shown the possibility of recycling the culture
medium after biomass harvesting and a suitable steriliza-
tion in the mass production of microalgae to minimize
nutrient losses (González López et al. 2013).

The most important parameters in PBR design and
operation are light distribution and CO2 supply, the latter
becoming even more relevant when the main goal of the
system is CO2 capture (Morweiser et al. 2010). Scale-up
of PBRs is particularly difficult due to the self-shading of
cells, which causes the nonhomogeneous distribution of
light, and increased mixing rates are sometimes not appli-
cable due to the sensitivity of some photosynthetic strains
to shear stress (García Camacho et al. 2011). Apart from
the parameters mentioned in the “Microbiology of CO2

removal” section, the control of sterile conditions, mixing,
and removal of O2 (by high turbulence or stripping with
inert gases) is also of paramount relevance during PBR
design and operation (Pulz 2001). Moreover, PBR design
can be also tailored in order to increase the illuminated
area-to-volume ratio, reduce the light path, and increase
the frequency of the light–dark cycles, with the subse-
quent increase in microalgae productivity and CO2

removal rates (Pulz 2001; Richmond 2004). In this con-
text, the shorter the light path is, the higher the frequency
of the light–dark cycles and the photosynthetic rates.
These frequencies also depend on the optimal cell density
(OCD) in the cultivation broth due to the increased
mutual shading at increasing microalgae concentrations

2290 Appl Microbiol Biotechnol (2013) 97:2277–2303



(Richmond 2004; Tredici 2009). Since the OCD and light
path are inversely correlated, PBRs with narrow light path
(i.e., 1–2 cm) and high irradiances can support high-
density cultures (Zou et al. 2000). The combination of
both environmental and operational parameters, together
with the selection of the optimum microbial strain, deter-
mines the CO2 capture potential, which can be estimated
from microalgae productivities by applying the stoichio-
metric CO2 requirement factor for microalgae growth of
1.85 g CO2g

−1 biomass (Table 3) (Carvalho et al. 2006;
Posten 2009). The main PBR configurations will be dis-
cussed following the traditional classification into open
and enclosed systems.

Open photobioreactors

Open ponds are the simplest and cheapest technology for
microalgae cultivation and can be classified into natural
water bodies (lakes, lagoons, or ponds) or artificial ponds
(Singh and Sharma 2012). Of them, raceway ponds, also
named as high rate algal ponds (HRAP), are the most
applied configuration due to their higher microalgal produc-
tivities (compared to other open alternatives) at a reasonable
energy cost (200 MJha−1day−1 or 0.03–0.2 Wm−3 for mix-
ing) (Tredici 2009). In these HRAPs, the microalgae broth is
continuously recirculated around a closed loop channel us-
ing a rotating paddlewheel (the most cost-effective mixing
mode), while CO2 (or air) can be injected at different loca-
tions of the PBR via CO2 diffusion pumps or external CO2

bubble columns (Fig. 5a) (Xu et al. 2009; Muñoz et al.

2012). The main advantages of HRAPs are their simplicity
of construction and operation and their lower investment (in
the range of 2.3–20€m−2) and operating costs compared to
enclosed PBRs (Lundquist et al. 2010; Craggs et al. 2012).
However, open configurations present critical disadvantages
inherent to their design such as a high vulnerability to
external contamination with undesired wild microalgae spe-
cies or predators, a poor light utilization as a result of the
low light–dark frequencies supported by the hydrodynamics
of the ponds, a high water footprint by evaporation (up to
40 Lm−2day−1 in desertic climates) (Massey University
2011, large land requirements, and low CO2 transfer effi-
ciencies as a result of the technical limitations for CO2

supply (Xu et al. 2009). Overall, open ponds support lower
biomass productivities than enclosed PBRs (Table 3) and,
therefore, a lower potential for CO2 capture (Ugwu et al.
2008). Nevertheless, despite the previously mentioned lim-
itations, open ponds still hold a promising potential for CO2

capture in particular applications such as biogas upgrading
(the process of enriching biogas in CH4 by removing CO2

and H2S). For instance, Muñoz et al. (2012) achieved re-
moval efficiencies of 90 % for CO2 and 100 % for H2S in a
HRAP coupled with an independent bubble absorption col-
umn (60 cm depth) where the microalgae broth was contin-
uously recycled. Likewise, Mandeno et al. (2005) achieved
reductions in the CO2 content of biogas from 40 to 50 % by
sparging the biogas into a HRAP in a countercurrent pit to
improve CO2 mass transfer (Mandeno et al. 2005). Despite
presenting a lower potential for CO2 fixation (up to 0.20 g
CO2L

−1day−1) than their enclosed counterparts, HRAPs are

Table 3 CO2 capture potential for different PBR configurations

Reactor type Strain Biomass productivity
(gL−1day−1)

CO2 capture
(gL−1day−1)

Reactor
volume (L)

Culture conditions Reference

Raceway open ponds Generic 0.06–0.1 0.12–0.20 – Outdoor sunlight Pulz (2001)

HRAP (treating
piggery wastewater)

Mixed culture 0.083 0.15 464 Outdoor sunlight De Godos et al. (2009)

Bubble column Anabaena sp. 0.86 1.45 18–90 Indoor white lamp González López et al.
(2009)

Vertical tubular (anular) Tetraselmis
suecica

0.42 0.78 120 Outdoor sunlight Chini et al. (2006)

Dome reactor Chlorococcum
litorale

0.095 0.18 130 Outdoor sunlight Sato et al. (2006)

Flat plate Chlorella sp.
HA-1

0.61 1.13 100 Indoor metal halide
lamp

Morita et al. (2000)

Flat plate Not specified 0.5 0.92 35–135 Outdoor sunlight Posten (2009)

Horizontal tubular Phaeodactylum
tricornutum

1.2 2.22 200 Outdoor sunlight Acién Fernández et al.
(2001)

Horizontal tubular Phaeodactylum
tricornutum

2.47 4.57 50 Outdoor sunlight Sobczuk et al. (2000)

Helical tubular Phaeodactylum
tricornutum

1.4 2.59 75 Outdoor sunlight Hall et al. (2003)

Helical tubular Chlorella
sorokiniana

1.5 2.77 12 Outdoor sunlight Morita et al. (2002)
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the PBRs with the highest ratio of CO2 fixed/CO2 emitted
(≈90.6 kg CO2 fixedkg−1 CO2 emitted, considering an en-
ergy consumption of 0.02 kWhkg−1 CO2 assimilated and
the average EU-27 specific CO2 emission factor of
0.46 tonnes CO2 emittedMWh−1) (Covenant of Mayors
2012).

Enclosed bioreactors

Enclosed PBRs are more efficient at maintaining axenic
microalgae cultures, allow for a better control over the
process variables (temperature, pH, and CO2 concentration),
and minimize both CO2 and water losses (Singh and Sharma
2012). In order to improve light penetration and minimize
photoinhibition effect, enclosed PBRs present high illumi-
nated area-to-volume ratios (30–70 m−1 in enclosed systems
vs 3–10 m−1 in HRAPs). In enclosed PBRs, CO2 is supplied
at high concentrations (even pure CO2 is directly supplied)
by means of high-performance diffusion systems at certain
locations of the PBR or directly injected in the recirculating
cultivation broth to avoid inorganic carbon limitations since
most PBRs are always designed considering light supply as
the limiting parameter for microalgae growth (Carvalho et
al. 2006). Finally, the cultivation broth must be mixed with
minimum energy requirements to prevent microalgae set-
tling and facilitate the access of microalgae cells to the
photic zone of the culture, while avoiding cell damage by

excessive shear stress (Carvalho et al. 2006; Posten 2009).
Enclosed PBRs are classified into three major categories,
depending on their configuration:

1. Vertical tubular reactors consists of a vertical pipe made
of transparent materials such as polyethylene or glass
and where a CO2-enriched gas is sparged into fine
bubbles at the bottom of the column for CO2 supply
and culture mixing (Kumar et al. 2011). Typical area-to-
volume ratios in these systems are in the range of 10 to
30 m−1 (Sánchez Mirón et al. 1999). If the liquid flow is
essentially random, the vertical PBR is a bubble column
(Fig. 5b). On the other hand, if a concentric tube is
installed inside the vertical column (namely, riser) and
the CO2-enriched gas is sparged inside the riser creating
a recirculating flow pattern (upwards in the riser and
downwards in the downcomer), the PBRs are named
airlift PBRs (Fig. 5c).

Vertical tubular PBRs are compact and low-cost
alternatives in terms of investment cost, and some
PBRs include dome or annular configurations in order
to minimize the dark zones, since the low illuminated
surface area is their main drawback (Morweiser et al.
2010). The energy input required ranges from 50 to
70 Wm−3 (Béchet et al. 2012). Vertical tubular PBRs
provide an average potential for CO2 capture higher
than open ponds, but lower than that of their horizontal
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counterparts. A recent study reported a maximum CO2

fixation rate of 0.97 gL−1day−1 in a 3-L bubble column
PBR using the microalga Scenedesmus obtusiusculus
(Toledo-Cervantes et al. 2013), while CO2 capture rates
of up to5.4 gL−1day−1 were recorded for Aphanothece
microscopica Nägeli in the same type of PBR (Jacob-
Lopes et al. 2009). The high variability of these results
confirms the high impact of the strain and the opera-
tional conditions on the PBR potential. Furthermore,
estimated CO2 capture rates of up to 1.45 g CO2 L−1

day−1 have been achieved in column PBRs operated
with the cyanobacteria Anabaena (González López et
al. 2009) (Table 3). At these CO2 fixation rates in
vertical tubular PBRs, the ratio of kilograms of CO2

fixed to kilograms of CO2 emitted can be estimated to
be 1.9 (Covenant of Mayors 2012).

2. Flat-plate PBRs are similar to the vertical tubular PBRs
described previously but are designed to minimize the
light path and to provide a homogeneous light penetra-
tion. Flat prisms between 3 and 10 cm deep with a
surface area of ≈1–2 m2 made of a transparent material
are employed, which provide the high illuminated area-
to-volume ratios (20–40 m−1) needed to achieve high
photosynthetic efficiencies and, therefore, high CO2

removal rates (Fig. 5d) (Tredici and Zittelli 1998;
Barbosa et al. 2005). Gas sparging at the bottom is
employed for both pneumatic mixing and CO2 supply,
with energy consumptions similar to those of vertical
tubular configurations, although alternative agitation
methods consisting of panel rotation have been imple-
mented (Kumar et al. 2011). Flat-plate PBRs are mainly
illuminated on one side and can be arranged in optimal
angles facing solar irradiation to maximize microalgae
growth (Xu et al. 2009). Recently, new configurations
such as alveolar and V-shaped panels have been imple-
mented, resulting in increased microalgae productivities
(Carvalho et al. 2006). On the other hand, flat-plate
PBRs require high land areas and supporting structures
when many replicate units are installed in full-scale
applications (Ugwu et al. 2008). The productivities
and, therefore, the CO2 capture rates in flat-plate PBRs
are similar to those recorded in vertical tubular reactors
(≈1 g CO2L

−1day−1) but 10 times higher than that in
HRAPs (Posten 2009; Morita et al. 2000) (Table 3).
Besides, flat-plate PBRs possess ratios of 1.46 kg CO2

fixedkg−1 CO2 emitted (Covenant of Mayors 2012).
3. Horizontal tubular PBRs consist of a set of horizontal

transparent tubes arranged in parallel, closed loop,
coiled around a hollow cylinder, or α-shape, acting as
light collector (Carvalho et al. 2006; Merchuk et al.
2007; Kumar et al. 2011). They are usually equipped
with a centrifugal pump or an airlift system to provide
adequate flow and mixing, with the airlift systems being

employed for the cultivation of shear-sensitive micro-
algae (Fig. 5e). Gas exchange takes place in the tubes or
in especially dedicated CO2 absorption units. The high
illuminated area-to-volume ratios (45–70 m−1) result in
high biomass productivities (Tredici and Zittelli 1998).
The large pH, CO2, and O2 gradients in long tubes and
fouling have been pointed out as the major causes of
process failures in industrial-scale facilities, while the
need to maintain adequate liquid velocities in the tubes
implies high energy consumption (≥100 Wm−3).
Strategies such as water spraying over the tubes, instal-
lation of heat exchangers, tube overlapping, and immer-
sion of the tubes inside a pool are the most cost-
effective alternatives for temperature control in outdoor
facilities (Ugwu et al. 2008; Kumar et al. 2011; Singh
and Sharma 2012). Horizontal tubular PBRs support the
highest biomass productivities and, thus, CO2 capture
potential, with average values higher than 2 g CO2L

−1

day−1 (Acién Fernández et al. 2001; Morita et al. 2002;
Hall et al. 2003), although capture values higher than
4.5 g CO2L

−1day−1 have been occasionally achieved in
a tubular airlift bioreactor (Sobczuk et al. 2000). CO2

capture rates of ≈1 g CO2L
−1day−1 have been recently

recorded outdoors in a 220-L external loop airlift PBR
with Anabaena sp. ATCC 33047 (Sánchez Fernández et
al. 2012). Finally, ratios of up to 4.1 kg CO2 fixedkg

−1

CO2 emitted for these PBRs have been recorded, which
represent the best results so far reported among enclosed
PBRs (Covenant of Mayors 2012).

Despite CO2 solubility in water being relatively high
compared to that of O2, CH4, or N2 (Henry’s law constant
of 3.4×10−2molL−1atm−1), its cost-efficient supply to the
microalgae broth still constitutes a large-scale technical
challenge, affecting the pH and mixing in the system.
Three main CO2 supply systems have been implemented
in the PBR configurations previously described: indepen-
dent gas exchangers, direct gas injection to the cultivation
broth, and membrane-based transfer. Among them, mem-
brane transfer deserves special attention when CO2 capture
is the primary objective of the PBR since mass transfer in
membrane units is no longer affected by the boundary layer
between the gas and the aqueous phase, but a gas-permeable
membrane allows CO2 diffusion from the gas and O2 de-
sorption from the microalgal cultivation medium. This ap-
proach allows for reduced operating costs, since CO2

absorption is decoupled from culture mixing, which repre-
sents a degree of freedom for process optimization
(Morweiser et al. 2010). Theoretically, membrane transfer
avoids CO2 losses to the atmosphere and allows for an
accurate control of the transfer rates. The use of hollow
fiber membranes allows for operation at low pressure drops
since no water column pressure has to be overcome by the
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CO2-laden emission. On the other hand, porous membranes
provide high transfer areas but require high pressures to
force the CO2 through the membrane (especially in highly
salty media), the latter implying thicker membranes and
high-performance materials (Carvalho et al. 2006). A recent
study reported CO2 removal efficiencies of 85 % at a CO2

concentration of 2 % in a hollow fiber membrane PBR
(Kumar et al. 2010a). Finally, another recently proposed
strategy to efficiently capture CO2 from flue gases consists
of absorbing the CO2 in an aqueous solution, which is
further purified by microalgae in a PBR. Alkaline sodium
carbonate and bicarbonate solutions have been proposed as
suitable solutions that can be biologically regenerated as an
alternative to methyl ethyl amine, diethyl amine, or NaOH,
which are used as chemical absorbents and must be regen-
erated by heating in highly energy-demanding processes
(González López et al. 2012).

Limitations in the biological treatment of GHGs
and future research needs

Despite the promising potential of biotechnologies for the
abatement of CH4, N2O, and CO2 emissions, their cost-
efficient application is often limited by the poor mass trans-
port of CH4, and in a lower extent of N2O and CO2, from the
gas to the aqueous phase due to the low aqueous solubility
of these GHGs (dimensionless Henry’s law constants, H,
HCH4=30, HN2O=2, and HCO2=1.2). Thus, these high H
values result in low concentration gradients (low driving
forces) for GHG mass transport from the gas to the aqueous
phase containing or surrounding the microbial communities
and, therefore, in a reduced GHG biodegradation perfor-
mance (Muñoz et al. 2007). In the particular case of CH4

and N2O, this low mass transport entails process operation
at high EBRTs, which significantly increases both the in-
vestment and operating costs of conventional biotechnolo-
gies. In PBRs, this limited mass transport restricts the
implementation of a direct bubbling of the CO2-laden
streams in HRAPs and increases the volume of external
CO2 transfer units or in situ pumps. In this context, the
development of innovative high-performance mass transfer
approaches is mandatory. However, unlike the classical
approach of improving mass transport by increasing the
energy input to the bioreactor, the high-performance trans-
port should be based on increased GHG concentration
gradients (e.g., absence of aqueous phase, high cell hydro-
phobicity, high pH, or presence of a nonaqueous organic
phase) and larger gas–cell interfacial areas.

Under mass transfer-limiting conditions, the poor
knowledge of the GHG biodegradation kinetics at the trace
level concentrations (almost equal to micrograms per liter)
typically present in the aqueous phase when treating real

emissions has also limited the correct design of bioreactors
for GHG abatement (Estrada et al. 2012a). For instance, for
typical emissions containing 10–200 mgm−3 of CH4 and
50–1,000 mgm−3 of N2O, microorganisms would be ex-
posed to maximum aqueous concentrations ranging from
0.3 to 7 μg CH4L

−1 and from 25 to 500 μg N2OL−1,
respectively (Shimizu et al. 2000; Kampschreur et al.
2008; Girard et al. 2011; Gustavsson and la Cour Jansen
2011). In this context, it must be stressed that microbial
characteristics and, in particular, microbial affinity for the
target pollutant quantified as KM and KS play a key role on
the performance of biotechnologies treating poorly soluble
gaseous pollutants (Hernández et al. 2010; Rocha-Rios et
al. 2011). Despite the empirical evidence for the fact that
microorganisms can mineralize pollutants down to the
picograms per liter level, the number of studies evaluating
pollutant biodegradation at the micrograms per liter to
nanograms per liter level is unfortunately scarce (Roch
and Alexander 1997). Besides, the few kinetic studies
reported for methanotrophs were carried out using a meth-
odology based on the estimation of the aqueous CH4 con-
centration by CH4 headspace analyses in closed systems
inoculated at high biomass concentrations and under gentle
agitation, conditions which do not ensure the absence of
mass transfer limitations and, therefore, the validity of the
experimental data (Yoon et al. 2009). As a matter of fact,
while mechanistic model predictions using the available
kinetic data for methanotrophs show that CH4 biodegrada-
tion would not be feasible at atmospheric concentrations
(1.8 ppmv), there are empirical evidence of CH4 removal
from 1.8 to 0.1 ppmv (Whalen et al. 1990). Likewise, in the
particular case of N2O-degrading bacteria or photosynthet-
ic microorganisms, the number of studies conducted to
date is scarce. In light of the current limitations of micro-
biology, novel methodologies for the accurate determina-
tion of microbial GHG biodegradation kinetics at trace
level concentrations must be developed. The quantification
of microbial growth and the measurement of the GHG
concentrations at the micrograms per liter level, in both
the aqueous phase and the biofilm, constitute key analyti-
cal challenges.

The biological abatement of N2O is also limited by the
poor understanding of the microbiology governing N2O
biodegradation under aerobic conditions. The few existing
studies on biological NOx treatment (mainly NO and NO2)
were based on heterotrophic denitrification using O2-free
synthetic emissions (conditions which are far from those
typically found in real N2O-laden emissions) and autotro-
phic nitrification and, in most cases, were mass transfer
limited (Flanagan et al. 2002). In addition, several authors
have concluded that the implementation of nitrogen oxide
removal based on denitrification might be limited by the
need for low O2 concentrations and the use of an exogenous
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carbon source (Kalkowski and Conrad 1991; Sakurai and
Sakurai 1997). In this regard, aerobic denitrification might
constitute the cornerstone for the development of cost-
efficient N2O abatement processes. Thus, despite the con-
troversy that has surrounded aerobic denitrification for
years, there are nowadays consistent research findings to
support the constitutive nature of some NO3

−, NO2
−,

and N2O reductases in bacteria such as P. stutzeri or
Thiosphaera pantotropha (Robertson et al. 1995). As a
matter of fact, N2O reduction coupled to the oxidation of
an electron donor (e.g., acetate) has been reported even at
O2 concentrations twice that of air saturation (Miyahara et
al. 2010). However, apart from this proof of concept carried
out in test tubes, aerobic denitrification has never been
evaluated in a continuous bioreactor configuration, which
constitutes a technological challenge in terms of electron
donor supply and competition with obligate aerobic
heterotrophs.

Finally, microalgae-based CO2 capture is also limited by
the low PE achieved in conventional PBRs (2–5 %) during
outdoors cultivation (which significantly increases both in-
vestment and operation costs) and also by the perishable
nature of microalgal biomass, which does not allow for the
long-term storage of CO2 (Acién Fernández et al. 2012b). In
this context, the development of both innovative PBRs
capable of minimizing the detrimental effects of photores-
piration, photoinhibition, photosaturation, and temperature
on PE and of low-cost microalgae harvesting technologies is
crucial. Today, CO2 capture using microalgae-based pro-
cesses still exhibit high operating costs, despite being lower
than those of their physical/chemical counterparts. In a
recent literature review published by Acién Fernández et
al. (2012b), the cost of CO2 capture in a 100-ha facility of
HRAP was estimated at 0.23€kg−1CO2 by using wastewater
as free nutrient source and flue gases as free CO2 source.
Microalgae harvesting constitutes a significant part of the
overall operating costs and is often carried out by centrifu-
gation, filtration, coagulation–flocculation, flotation, or
gravity sedimentation (Packer 2009). Full-scale algal mass
production plants are often constructed with centrifugation
or filtration units, despite not being recommended for small
species like Chlorella or Scenedesmus (Molina Grima et al.
2003). In this context, Acién Fernández et al. (2012b) esti-
mated the energy requirements associated to microalgae
harvesting by flocculation–sedimentation followed by cen-
trifugation in 0.1 kWhm−3. In brief, most of the CO2 miti-
gation of microalgae-based processes will actually come
from the production of bioenergy from the biomass pro-
duced (with the subsequent reduction in fossil fuel con-
sumption) and from the energy-efficient carbon and
nutrients removal during wastewater treatment in PBRs
(Muñoz and Guieysse 2006; Kumar et al. 2010b; Acién
Fernández et al. 2012b).

Conclusions

To date, biotechnologies for GHG abatement have shown
promising results in terms of elimination capacity and envi-
ronmental impact. The prohibitive treatment costs and the
CO2 footprint of physical/chemical techniques, especially
when dealing with large volumes of air with low GHG
concentration, certainly encourage the development and ap-
plication of high-performance biological methods to miti-
gate this global environmental problem. Despite the fact that
some technical and microbiological limitations must still be
overcome, the potential of biological techniques for GHG
abatement has been consistently demonstrated, high remov-
al efficiencies being so far reached mainly for CH4 and CO2

and in a lower extent for N2O. In this context, the under-
standing of the microbiology underlying GHG biodegrada-
tion was identified as one of the most important knowledge
gaps requiring further research. In addition, the development
of innovative bioreactor configurations to improve both
GHG mass transfer from the gas phase to the microorgan-
isms and light supply (in the case of CO2 abatement pro-
cesses) constitutes a key research niche. Finally, the
feasibility of coupling GHG biodegradation with the pro-
duction of high added-value products such as PHB, single-
cell protein, pharmaceuticals, or biofuels can impact posi-
tively on the overall cost-effectiveness of biological treat-
ment processes.
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