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Abstract Enzymatic hydrolysis of cellulosic material is an
essential step in the bioethanol production process. However,
complete cellulose hydrolysis by cellulase is difficult due to
the irreversible adsorption of cellulase onto cellulose. Thus,
part of the cellulose remains in crystalline form after hydro-
lysis. In this study, after 96-h hydrolysis of Avicel crystalline
cellulose, 47.1 % of the cellulase was adsorbed on the cellu-
lose surface with 10.8 % crystalline cellulose remaining. In
simultaneous saccharification and fermentation of 100 g/L
Avicel with 1.0 filter paper unit/mL cellulase, a wild-type
yeast strain produced 44.7 g/L ethanol after 96 h. The yield
of ethanol was 79.7 % of the theoretical yield. On the other
hand, a recombinant yeast strain displaying various cellulases,
such as 3-glucosidase, cellobiohydrolase, and endoglucanase,
produced 48.9 g/L ethanol, which corresponds to 87.3 % of
the theoretical yield. Higher ethanol production appears to be
attributable to higher efficiency of cellulase displayed on the
cell surface. These results suggest that cellulases displayed on
the yeast cell surface improve hydrolysis of Avicel crystalline
cellulose. Indeed, after the 96-h simultaneous saccharification
and fermentation using the cellulase-displaying yeast, the
amount of residual cellulose was 1.5 g/L, one quarter of the
cellulose remaining using the wild-type strain, a result of the
alleviation of irreversible adsorption of cellulases on the crys-
talline cellulose.
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Introduction

Numerous environmental and social benefits are anticipated
from the replacement of petroleum-based transport fuels
with bioethanol converted from lignocellulosic materials
such as agricultural residues and industrial wastes. Estab-
lishing an economically feasible process for industrial cel-
lulosic ethanol production requires markedly increased
ethanol titers after fermentation due to the high energy
demands of the subsequent ethanol distillation (Galbe and
Zacchi 2007).

Enzymatic hydrolysis of biomass is an essential step in
bioethanol production because sugars released by the hydro-
lysis are then fermented by microorganisms such as yeast.
However, one of major drawbacks of the saccharification
process is insufficient hydrolysis of crystalline cellulose. Cel-
lulases such as cellobiohydrolase and endoglucanase are
adsorbed onto the cellulose surface in hydrolyzing the f(3-
glucoside bond of cellulose, but once adsorbed, the desorption
of the enzyme is not easy (Otter et al. 1989; Palonen et al.
1999; Zhu et al. 2009). The binding is, at least, partly irre-
versible (Ma et al. 2008). It has been assumed that the extent to
which a cellulase becomes denatured is correlated with its
irreversible adsorption to the solid-liquid interface (Palonen
et al. 1999; Zhang and Lynd 2004).

Irreversible protein adsorption on solid surfaces is re-
duced by increased protein stability (Karlsson et al. 2005).
Immobilization of cellulases to solid supports increased
protein stability at non-optimal reaction conditions includ-
ing low temperature, organic solvent composition, and high
and low pH (Lupoi and Smith 2011; Gole et al. 2001).
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So far, recombinant yeast strains, which display cellu-
lases on the cell surface, have produced ethanol from cellu-
losic materials via simultaneous cellulose hydrolysis and
glucose utilization (Matano et al. 2012a; Yamada et al.
2011). Cellulases are genetically self-immobilized on the
yeast cell surface so that the activities of the enzymes are
retained as long as the yeast continues to grow (Ueda and
Tanaka 2000). Thus, cellulases self-immobilized on the
yeast cell surface were expected for alleviation of the irre-
versible adsorption.

In the present study, crystalline cellulose was fermented
to ethanol by the combination of cellulase reagent and a
cellulase-displaying yeast strain. The recombinant strain
demonstrated higher ethanol production based on higher
cellulose utilization compared with a wild-type strain, which
would be caused by the alleviation of irreversible adsorption
of the cellulase reagent on the crystalline cellulose.

Materials and methods
Yeast strains

Saccharomyces cerevisiae wild-type strain, NBRC1440,
was obtained from the National Institute of Technology and
Evaluation. A recombinant cellulase-displaying S. cerevisiae
strain, NBRC1440/B-EC3, was created in a previous study
(Matano et al. 2012a). The yeast strain was used for ethanol
production from Avicel (PH-101, Fluka Chemie GmbH,
Buchs, Switzerland) crystalline cellulose.

Measurement of cellulase activity

Cellulase activity was determined by the NREL procedure
(Adney and Baker 1996; Ghose 1987).

Analysis of cellulase adsorption on Avicel surface

Enzymatic hydrolysis of Avicel was performed at 50 °C
with a commercial cellulase, Cellic CTec2 (Novozymes
Inc., Bagsvaerd, Denmark). Avicel of 50 or 100 g/L was
hydrolyzed in 50 mM citric acid buffer (pH 5.0) and Cellic
CTec2 in a 50 mL polypropylene tube (Corning Inc., NY).
The tube was axially rotated at 35 rpm in a heat block
(Thermo Block Rotator SN-06BN; Nissin, Tokyo, Japan)
as described previously (Matano et al. 2012a). After 96-
h hydrolysis, the hydrolysate and insoluble material were
separated by centrifugation at 4,000 xg for 10 min at 4 °C.
Cellulose content in the insoluble material was quantified by
the method of NREL 2006 (Sluiter et al. 2008) with minor
modifications, as described previously (Matano et al.
2012a). Protein concentration in the hydrolysate was ana-
lyzed by Bradford protein assay (Bradford 1976). The
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amount of irreversibly adsorbed protein was calculated
by subtracting the amount of protein contained in the
supernatant from the amount of total protein input (Gao
et al. 2011; Kumar and Wyman 2009). Sugars contained
in the hydrolysate were analyzed by high-performance
liquid chromatography (HPLC), as described previously
(Hasunuma et al. 2011).

Ethanol production

S. cerevisiae strains used for Avicel fermentation were prop-
agated under aerobic conditions at 30 °C for 48 h in 10 g/L
yeast extract, 20 g/L peptone, and 20 g/L dextrose media.
The yeast cells were collected by centrifugation at 4,000x g
for 10 min at 4 °C and washed twice with distilled water.
Fermentation of Avicel (50 or 100 g/L) was performed in a
50-mL polypropylene tube containing 10 g/L yeast extract,
20 g/L peptone, 50 mM citric acid buffer (pH 5.0), 100 g
wet cell/L yeast cells, and Cellic CTec2 with a rotary fer-
mentation system as described previously (Matano et al.
2012a). The fermentation tube was axially rotated at
35 rpm under a controlled temperature of 35 °C. Ethanol
contained in the fermentation media was analyzed by
HPLC, as described previously (Hasunuma et al. 2011).
The ethanol yield was calculated as follows:

. Ethanol produced (g)
0 =
Ethanol yield(%) Glucan applied (g) x 1.1 x 0.51 x 100
(1)

After 96-h fermentation, insoluble material remaining in
the fermentation medium was collected as a pellet by cen-
trifugation at 4,000xg for 10 min. The residual cellulose
was analyzed as described above.

Results
Cellulase adsorption on cellulose surface

The adsorption of proteins at a solid—liquid interface is a
common phenomenon widely observed in various areas
(Karlsson et al. 2005). Previously, the hydrolysis rate of
cellulase was shown to decrease by irreversible adsorption
of cellulases on cellulose (Eriksson et al. 2002; Karlsson et al.
2005; Ma et al. 2008). In Fig. 1, the amount of Cellic CTec2
adsorbed on Avicel crystalline cellulose was determined. Hy-
drolysis of 50 g/L Avicel was performed with 10 filter paper
unit (FPU)/g cellulose Cellic CTec2 (0.5 FPU/mL) at 50 °C.
The total added protein was 0.68 g/L. After 2 min of hydro-
lysis, the concentration of enzymes present as free proteins in
the soluble fraction was 0.18 g/L. A part of Cellic CTec2
adsorbed was released from Avicel over time, reaching
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0.36 g/L after 96 h. Glucose produced from Avicel reached a
plateau after 72 h of hydrolysis. Glucose released by hydro-
lysis was 89.6 % of the cellulose, indicating that 5.7 g/L
Avicel was retained as cellulose (Fig. 1a). A similar tendency
was found in the 100 g/L Avicel hydrolyzed by 10 FPU/g
cellulose Cellic CTec2 (1.0 FPU/mL) (Figs. 1c, d). In the
presence of 50 and 100 g/L Avicel, 48.0 and 46.4 % of the
total added Cellic CTec2 was adsorbed on the Avicel after
96 h, respectively.

Measurement of cellulose remaining after 96-h hydrolysis

In Fig. 2, the relationship between enzyme concentration and
cellulose remaining after 96-h hydrolysis is plotted. For Cellic
CTec2 concentrations of 0.05, 0.25, and 0.5 FPU/mL, 27.6,
12.1, and 4.2 g/LL Avicel remained after the hydrolysis of 50 g/L
Avicel, respectively, indicating that the residual cellulose de-
creased with increasing Cellic CTec2 concentration. On the
other hand, more than 1.0 FPU/mL did not reduce the content
of residual cellulose. Avicel was not completely hydrolyzed
even if the concentration of Cellic CTec2 increased. The con-
centration of residual cellulose obtained from 100 g/ Avicel
was higher than that from 50 g/l Avicel. According to a
previous report (Xiao et al. 2004), incomplete hydrolysis of
cellulose would be caused by the product inhibition of cellulase.

Simultaneous saccharification and fermentation of Avicel
using the yeast strain NBRC1440

In order to consume glucose, which would inhibit cellulase
activity, simultaneous saccharification and fermentation

(SSF) of Avicel was performed using a suitable yeast strain.
One hundred grams per liter Avicel was fermented by a
laboratory S. cerevisiae strain, NBRC1440, in the presence
of Cellic CTec2 at 35 °C. As shown in Fig. 3, in the presence
of 0.1, 0.5, 1.0, 5.0, and 10.0 FPU/mL, 65.7, 29.3, 6.1, 6.5,
and 6.6 g/L residual cellulose remained after 96-h SSF,
respectively. The cellulose hydrolyzed by 1.0 FPU/mL
cellulase was the same as that by 10.0 FPU/mL. Volumetric
ethanol productivity was 2.0 g/L/h. The remaining cellulose
decreased with the addition of yeast to the reaction. After
4 h of the SSF, glucose was not detected in the fermenta-
tion medium. These results indicate that product inhibition
caused by glucose was avoided. However, some cellulose
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Fig. 2 Amount of residual sugar after 96-h hydrolysis of 50 g/L

(closed circles) and 100 g/L (open squares). Data are expressed as
the mean + SD (error bars) of three independent experiments
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Fig. 3 Amount of cellulose remained after 96-h SSF of 100 g/L
Avicel. Data are expressed as the mean + SD (error bars) of three
independent experiments

still remained after the SSF. Although SSF of 100 g/L
Avicel was performed with a cellulase-secreting yeast
strain, S. cerevisiae NBRC1440/ssB-ssEC3 (Matano et al.
2012b), ethanol produced and cellulose retained by
NBRC1440/ssB-ssEC3 were the same with those by wild-
type strain (data not shown).

Simultaneous saccharification and fermentation of Avicel
using the cellulase-displaying yeast strain NBRC1440/B-EC3

Previously, display of fungal cellulases, such as Tricoderma
reesei endoglucanase and cellobiohydrolase, and Aspergil-
lus aculeatus (3-glucosidase on the yeast cell surface effec-
tively hydrolyzed hydrothermally pretreated rice straw, a
lignocellulosic material (Matano et al. 2012a). In the present
study, the cellulase-displaying yeast strain, NBRC1440/B-
EC3, whose activity of phosphoric acid-swollen cellulose
hydrolysis was 0.51 unit/g dry weight cell (Matano et al.
2012a), was used for the SSF of 100 g/L Avicel. In the
presence of 0.1, 0.5, 1.0, 5.0, and 10.0 FPU/mL Cellic
Ctec2, residual cellulose contents were 62.0, 26.6, 1.5, 4.8,
and 7.5 g/L after 96 h, respectively (Fig. 3). Addition of
1.0 FPU/mL Cellic CTec2 enables utilization of 98.5 % of
the initial cellulose. As shown in Fig. 2, increase of cellulase
did not always increase cellulose hydrolysis. Meanwhile,
addition of NBRC1440/B-EC3 strain improved cellulose hy-
drolysis, although the activity of cellulases displayed on the
cell surface was lower than commercial enzymes. These
results indicate that cellulases displayed on the yeast cell
surface improve hydrolysis of Avicel crystalline cellulose.
Cellulase activity in the fermentation medium was deter-
mined after removal of insoluble materials by centrifugation
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to estimate amount of cellulase adsorbed on the cellulose
as described previously (Gao et al. 2011). As shown in
Table 1, the use of a cellulase-displaying yeast strain
increased the activity of cellulase, which was not adsorbed
on the cellulose during the SSF, compared to the wild-
type yeast strain. These results suggest that adsorption of
Cellic CTec2 was alleviated by cellulases present on the
recombinant yeast strain.

Ethanol production from Avicel crystalline cellulose

The time course of ethanol production from Avicel is shown
in Fig. 4. Volumetric ethanol productivity increased with
increase in cellulase concentration. In the presence of
1.0 FPU/mL Cellic Ctec2, NBRC1440 produced 44.7 g/L
ethanol from 100 g/L Avicel after 96-h fermentation. The
yield of ethanol was 79.7 % of the theoretical yield. On the
other hand, NBRC1440/B-EC3 produced 48.9 g/L ethanol,
which corresponds to 87.3 % of the theoretical yield, in the
presence of 1.0 FPU/mL cellulase. Volumetric ethanol pro-
ductivity of NBRC1440B-EC3 was 2.5 g/L/h. Ethanol titer
showed a positive correlation with the amount of cellulose
utilized, as shown in Fig. 3. These results indicate that the
cell surface display system alleviated adsorption of free
cellulase onto the crystalline cellulose to improve hydrolysis
of cellulose and ethanol production.

Discussion

Improvement of cellulose hydrolysis efficiency is a signifi-
cant target for realization of high titer ethanol production.
However, it has been difficult to completely hydrolyze cel-
lulose for the production of monosaccharides (Yang et al.
2006). The problem could be caused by both product inhi-
bition of cellulase and irreversible adsorption on cellulose
(Yang et al. 2010; Yang and Wyman 2006). As shown in
Fig. 2, cellulose, which was not completely hydrolyzed by
only Cellic Ctec2, was retained after the saccharification
process. When 50 g/L Avicel was hydrolyzed with
5.0 FPU/mL Cellic CTec2, residual cellulose was 10.4 %

Table 1 Residual cellulase activity after simultaneous saccharification
and fermentation of 100 g/L Avicel at 35 °C in the presence of
1.0 FPU/mL cellulase

Yeast strains Residual cellulase activity® (FPU/mL)

2 min 24 h 96 h
NBRC1440 0.31+0.094 0.43+0.020 0.56+0.036
NBRC1440/B-EC3 0.57+£0.088 0.744+0.023 0.85+0.044

 After centrifugation at 4,000xg for 5 min, cellulase activity in the
supernatant was determine
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Fig. 4 Time course of ethanol concentration in the SSF of 100 g/L
Avicel by using NBRC1440 (closed symbols) and NBRC1440/B-EC3
(open symbols). The SSF was performed in the presence of 0.1 FPU/
mL (black circle), 1.0 FPU/mL (red circle), and 10.0 FPU/mL (blue
circle) Cellic CTec2. Data are expressed as the mean + SD (error bars)
of three independent experiments

of total input cellulose after 96 h (Fig. 2). In order to increase
the ethanol yield from cellulosic biomass, enhancement of
cellulose hydrolysis would be required. In the present study,
in the SSF of 100 g/L Avicel, recombinant yeast strains dis-
playing cellulases on the cell surface reduced residual cellu-
lose to 1.5 % to produce 48.9 g/L ethanol, 87.3 % of the
theoretical yield.

As shown in Fig. 1, Cellic CTec2 mixed with Avicel
crystalline cellulose was immediately adsorbed on the cel-
lulose. When 50 g/L Avicel was hydrolyzed with 0.68 g/L
(0.5 FPU/mL) cellulase, the cellulase contained as free
protein in the solution was 0.18 g/L after 2 min of hydrolysis
(Fig. 1b). After 96-h hydrolysis, the free cellulase was
0.36 g/L, corresponding to 52.9 % of cellulase used in the
reaction; 47.1 % of input cellulase was still adsorbed onto
the crystalline cellulose surface. As shown in Fig. 2, Avicel
was not completely hydrolyzed even when the concentration
of Cellic CTec2 increased. Previously, hydrolysis of Avicel
was inhibited by hydrolysis products such as cellobiose or
glucose (Xiao et al. 2004). In order to avoid the product
inhibition, SSF was performed with yeast S. cerevisiae. The
cellulose was simultaneously hydrolyzed and fermented by
wild-type yeast strains with 1.0 FPU/mL cellulase, whereas
5.6 % of cellulose still remained after the SSF (Fig. 3).

Recombinant yeast strains, which displayed three types of
cellulases (cellobiohydrolase 11, endoglucanase, and f3-
glucosidase) on the cell surface, improved ethanol production
from the cellulose. In the presence of 1.0 FPU/mL Cellic
CTec2, 48.9 g/L ethanol was produced by NBRC1440/B-
EC3. Ethanol produced by NBRC1440/B-EC3 was 10 %
higher than that by NBRC1440 (Fig. 4). After the SSF, the
amount of residual cellulose was 1.5 g/L, which is one quarter
of the cellulose remaining after the SSF using NBRC1440.

The higher ethanol production would appear to be attributable
to the highly efficient activity of cellulase displayed on the cell
surface. These results suggest that cellulases displayed on the
yeast cell surface improved hydrolysis of Avicel crystalline
cellulose. Previously, ethanol production from rice straw hy-
drothermally pretreated was improved by a cellulase-
displaying yeast strain (Matano et al. 2012a). The present
study is the first to demonstrate that the display of cellulases
on the yeast cell surface improves hydrolysis of crystalline
cellulose by the alleviation of irreversible adsorption of cellu-
lase onto the cellulose.

Previously, it was shown that reduction of the hydrolysis
rate was caused by irreversible adsorption of cellulase
(Desai and Converse 1997; Eriksson et al. 2002; Ma et al.
2008; Viljamie et al. 1998). In the present study, volumetric
ethanol productivity by NBRC1440/B-EC3 (2.5 g/L/h) was
higher than that by NBRC1440 (2.0 g/L/h). These results
also support the notion that the amount of irreversibly
adsorbed cellulose is decreased by the cellulase-displaying
yeast. Ma et al. (2008) reported that cellulases irreversibly
adsorbed on cellulose were denatured. According to a pre-
vious report (Karlsson et al. 2005), increase in conforma-
tional stability of human carbonic anhydrase II through
protein engineering reduced irreversible adsorption on gold
particles.

Moreover, cellulase immobilized onto nanoparticle led to
an increase in ethanol production from cellulose by the im-
provement of conformational stability of cellulases (Lupoi
and Smith 2011). As described previously (Hasunuma and
Kondo 2012; Ueda and Tanaka 2000), display of proteins on
the yeast cell surface has stabilized their conformation. In the
present study, amount of residual crystalline cellulose was
reduced by using a cellulase-displaying yeast strain (Table 1).
These results suggest that irreversible cellulase adsorption
onto the crystalline cellulose would be alleviated by cellulases
displayed on the yeast cell surface.

In SSF with NBRC1440/B-EC3 (Fig. 4), the highest etha-
nol titer was obtained in the presence of 1.0 FPU/mL cellulase.
Interestingly, cellulase concentrations above 1.0 FPU/mL
decreased the final ethanol titer. The amount of residual
cellulose increased with increasing cellulase concentration
(Figs. 3 and 4). These results suggest that excess amounts
of commercial cellulase might first adsorb onto the cellu-
lose to inhibit the activity of cellulases displayed on the
recombinant yeast cell surface.

Surface-engineered yeast strains displaying cellulases
have the following advantages (Hasunuma and Kondo
2012): (1) the close proximity of multiple cellulases on the
cell surface enable synergistic hydrolysis of cellulose, which
leads to increased sugar availability for ethanol production
(Fujita et al. 2004; Matano et al. 2012a); (2) since the
steady-state concentration of glucose in the medium can be
maintained near zero, glucose repression, which prevents
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the uptake, catabolism, or both of non-glucose sugar, is
alleviated to facilitate consumption of xylose (Nakamura
et al. 2008); (3) reutilization of the yeast cells enables
the reuse of the enzymes displayed on their cell surface
without the need for reproduction of the yeast cells,
which would reduce the cost of yeast propagation as
well as enzyme addition (Kondo et al. 2002; Matano et
al. 2012b), and (4) the display of cellulases on the yeast
cell surface enables a reduction in the amount of added
commercial cellulase (Matano et al. 2012a). In this study,
enhancement of ethanol production from crystalline cel-
lulose was achieved by the alleviation of irreversible
desorption of cellulase with a cell surface-engineered
yeast strain. To our knowledge, this is the first report
of the effective hydrolysis of crystalline cellulose through
a cellulase-displaying yeast strain. Application of cellulase-
displaying yeast for various cellulosic biomasses would be
promising because cellulases displayed on the cell surface
positively impact the hydrolysis of crystalline cellulose.
Moreover, pretreatment of lignocellulosic materials, which
was usually performed at high pressure and temperature
(Taherzadeh and Karimi 2008), could be performed un-
der milder conditions because cellulase-displaying yeast
strains can hydrolyze highly crystalline cellulosic materials.
Finally, an environmentally benign process for bioethanol pro-
duction is conceivable by the use of cell surface-engineered
yeast strains.
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