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Abstract 3-Phenyllactic acid (PLA), which is an organic
acid widely existing in honey and lactic acid bacteria fer-
mented food, can be produced by many microorganisms,
especially lactic acid bacteria. It was proved as an ideal
antimicrobial compound with broad and effective antimicro-
bial activity against both bacteria and fungi. In addition, it
could be used as feed additives to replace antibiotics in
livestock feeds. This article presented a review of recent
studies on the existing resource, antimicrobial activity, and
measurement of PLA. In addition, microorganism strains
and dehydrogenases producing PLA were reviewed in de-
tail, the metabolic pathway and regulation of PLA synthesis
in LAB strains were discussed, and high-level bioproduc-
tion of PLA by microorganism fermentation was also
summarized.
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Introduction

Food safety is generally recognized as a primary public
safety issue in the world. Food microbial contamination is
an important factor to result in food safety problems, which
possibly bring about public health problems and great eco-
nomic losses. Bacterial contamination, especially by
pathogenic species including Listeria, Staphylococcus,
Escherichia coli, and Salmonella, can cause foodborne ill-
nesses (Kaneko et al. 1999). Fungal contamination by yeasts
and moulds, which easily grow and reproduce in food

system with feeble oxygen, can cause food spoilage
(Schnurer et al. 1999) and even can produce toxic secondary
metabolites, namely, mycotoxins, which are capable of
causing disease and death in humans and animals (Riley et
al. 1993). Application of antimicrobial preservatives, which
inhibit the growth of bacteria or fungi, is an effective ap-
proach to bring down the food safety hazards by microbial
contaminations.

3-Phenyllactic acid (2-hydroxy-3-phenylpropanoic acid or
β-phenyllactic acid, PLA), a kind of an organic acid, has been
reported as an antimicrobial compound with broad-spectrum
activity against bacteria including Listeria monocytogenes
(Dieuleveux et al. 1998b), Staphylococcus aureus, and
Escherichia coli O157:H7 (Ohhira et al. 2004), and fungi
including yeasts (Schwenninger et al. 2008) and a wide range
of moulds, such as Aspergillus ochraceus, Penicillium
roqueforti, and Penicillium citrinu (Lavermicocca et al.
2003). The present article is a review of recent studies on
the properties, measurement, antimicrobial activity, and
biosynthesis pathway, as well as its biological production
by microbial fermentation and the possible enzymes pro-
ducing PLA.

PLA

Existing sources

PLA was found widely existing in honey, and its content
was commonly much higher than other phenolic acids in
honey. PLA was suggested as chemical marker for thistle
(Galactites tomentosa Moench) unifloral honeys, in which
PLA content reached 100–800 mg/kg (Tuberoso et al.
2011). It was also found in high concentration in heather,
ling heather, and manuka honeys (820, 875, and 243 mg/kg)
(Tan et al. 1988; Dimitrova et al. 2007). Most of other
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honeys had PLA concentration level of less than 100 mg/kg
(Wilkins et al. 1993 and 1995; Dimitrova et al. 2007), while
it could not be detected in sunflower honey (Dimitrova et al.
2007). Recently, PLA was reported as metabolite of food
microorganism, especially lactic acid bacteria (LAB). So,
PLAwas found existing in fermentation foods using LAB as
starter, such as sourdoughs (Van der Meulen et al. 2007;
Ryan et al. 2009).

Chemical structure

The molecular formula and molecular weight of PLA are
C9H10O3 and 166 g/mol, respectively. PLA has an asym-
metric carbon atom and thus has two chiral isomers: D- and
L-PLA (Fig. 1).

Measurement

Reverse-phase HPLC is a simple and widely applicable
method for measuring PLA. It was adopted in most of
quantitative PLA measurement of microbial fermentation
broth (Armaforte et al. 2006). In addition, it was developed
to quantify the PLA content in rumen fluid (Khan et al.
1998) and honey (Tuberoso et al. 2011) (shown in Table 1).
Regular gas chromatography–mass spectrometry (GC/MS)
and capillary electrophoresis could also be used to measure
PLA (Wilkins et al. 1995; Sarkissian et al. 2000). However,
the aforementioned methods are usually non-stereospecific
and cannot separate and detect the PLA enantiomers, L- and
D-PLA.

Tekewe et al. (2008) reported the stereospecific determi-
nation of PLA using chiral HPLC method, in which
Chiralcel OJ-H column based on cellulose tris-(4-methyl
benzoate) chiral stationary phase was used to separate
PLA enantiomers. In addition, using modified cyclodextrins
as chiral additive during chromatography or capillary elec-
trophoresis process could achieve the separation of PLA
enantiomers (Nardi and Eliseev 1993; Heil et al. 1998).

Antibacterial activity

Dieuleveux et al. (1998b) firstly reported the antibacterial
activity of PLA. They purified and identified the novel anti-
Listeria compound, PLA, produced and excreted from
Geotrichum candidum, and found that D-PLA showed
slightly higher anti-Listeria activity than L-PLA. Then,

PLA was proved to be able to inhibit Listeria monocyto-
genes growth in culture medium, milk, and cheese. It could
reduce the bacteria population by 4.5 log in ultra-high-
temperature treatment whole milk, to give fewer cells than
in the control after 5 days of culture (Dieuleveux and
Gueguen 1998).

In addition, PLA could inhibit a range of Gram-positive
bacteria, such as Staphylococcus aureus, Enterococcuss
faecalis, and Bacillus cereus, and Gram-negative bacteria,
such as Salmonella enterica, Escherichia coli, Providencia
stuartii, and Klebsiella oxytoca (Dieuleveux et al. 1998a;
Ohhira et al. 2004). PLA could show higher inhibitory effect
in acidic pH (Ohhira et al. 2004). The mechanism of anti-
bacterial action is not clear yet, but it was suggested that the
bacterial cell wall should be an action site of PLA. Scanning
electron microscope studies showed that the bacteria ex-
posed to PLA had damaged, even broken cell wall structure.
The bacteria formed aggregates and secreted polysacchar-
ides; then, the cell wall lost rigidity, causing the cells to
swell, even collapse (Dieuleveux et al. 1998a).

Antifungal activity

In addition to antibacterial activity, the inhibitory properties
of PLA have also been demonstrated against yeasts, such as
Candida pulcherrima, Candida parapsilosis, and
Rhodotorula mucilaginosa (Schwenninger et al. 2008) and
a wide range of mould species isolated from bakery prod-
ucts, flour, and cereals, including some mycotoxigenic spe-
cies, namely, Aspergillus ochraceus, Penicillium roqueforti,
Penicillium citrinu, etc. (Lavermicocca et al. 2000 and
2003). PLA has relatively high MIC value for antiyeast
activity (50 to more than 500 mM at pH 4.0 to 6.0), and
the value of PLA decreased with decreasing pH
(Schwenninger et al. 2008). And MIC value against moulds
at pH 4.0 is 45 mM (Strom et al. 2002).

The fungal inhibitory activity of PLA was firstly charac-
terized by Lavermicocca et al. (2000), who purified the
antifungal compounds from Lactobacillus plantarum
Strain 21B, a lactic acid bacterium (LAB) with high anti-
fungal activity. Using the PLA-producing strain, L. planta-
rum 21B, as a starter during sourdough bread fermentation
process, the fungal growth could be delayed for 7 days
(Lavermicocca et al. 2000). PLA has been considered as
antifungal compound marker (Schnürer and Magnusson
2005) and been widely purified and characterized from
various LABs, such as L. plantarum 21B (Lavermicocca et
al. 2000), L. plantarum MiLAB 393 (Strom et al. 2002),
L. plantarum IMAU10014 (Wang et al. 2012), L. plantarum
(Prema et al. 2010), and Weissella cibaria FMF4B16
(Ndagano et al. 2011). And it was presumed that the behav-
ior of the antifungal activity of LAB strains was positively
related to the metabolic content of PLA (Valerio et al. 2004).Fig. 1 Chemical structure of PLA
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Other applications

Like other organic acids, PLA can be used as feed additives
to replace antibiotics in livestock feeds. It may exert some
positive effects to the immune system of laying hens and
then effectively improve production performance and egg
quality (Wang et al. 2009b). When supplemented in long-
term diet of chick feeds, PLA improves the growth perfor-
mance, has antipathogen effect in large intestine, and
reduces yellowness of meat (Wang et al. 2010). Also, it
was reported that PLA may increase immune-related blood
cell counts and potentially reduce E. coli numbers in wean-
ling and growing pigs (Wang et al. 2009a).

In addition, PLA has potential as a pharmaceutical agent
to treat coronary disease since its analogue “Danshensu”
from Chinese medicine is applied presently (Wang et al.
1991). And it also has been patented to be used as a skin-
protecting ingredient to reduce skin wrinkles (Yu and Van
Scott 1997).

Biological PLA production

Microorganisms producing PLA

Lavermicocca et al. (2000) reported the production of PLA
from L. plantarum 21B, which was the first report showing
the production of PLA by lactic acid bacteria (LAB) (2000).
Subsequently, it was found that PLA could be generally
produced by a wide range of LAB species, such as
Lactobacillus, Enterococcus, Weissella, and Leuconostoc,
but the production varied greatly among strains and species.
When grown in DeMan–Rogosa–Sharpe (MRS) medium,
most of LAB strains produced less than 1-mM PLA; however,
L. plantarum 1081, L. plantarum 778, L. plantarum 1073, L.

acidophilus 1063 (Gerez et al. 2010), and L. plantarum
CECT-221 (Rodriguez et al. 2012) could produce 5.2-, 4.1-,
2.6-, 1.1-, and 1.38-mM PLA, respectively (shown in Table 2).

PLA could also be produced by a series of dairy propionic
acid bacteria (PAB) strains, such as Propionibacterium jense-
nii DSMZ 20535, P. thoenii DSMZ 20276, P. acidipropionici
DSMZ 4900, and P. freudenreichii ssp. freudenreichii DSMZ
2027, with the production of 0.01–0.1 mM (Lind et al. 2007).
And cofermentation with P. jensenii SM11 and Lactobacillus
paracasei subsp. paracasei SM20 produced 1-mM PLA
(Schwenninger et al. 2008).

In addition, PLA could be produced by other microorgan-
ism strains, such as bacillaceae (Bacillus coagulans) (Zheng et
al. 2011), fungus (Geotrichum candidum) (Dieuleveux et al.
1998b), and Brevibacteriaceae (Brevibacterium lactofermen-
tum) (Kamata et al. 1986). And both G. candidum and B.
lactofermentum could produce much higher PLA than LAB
and PAB strains (shown in Table 2).

Metabolic pathway and regulation of PLA synthesis in LAB
strains

The synthesis of PLA in LAB strains results from the
catabolism of phenylalanine, in which phenylalanine is
transaminated to phenylpyruvic acid (PPA) and PPA further
reduced to PLA (shown in Fig. 2) (McSweeney and Sousa
2000; Yvon and Rijnen 2001; Li et al. 2007; Vermeulen et
al. 2006). The amino acid phenylalanine had remarkable
effect on PLA production in LAB strains. When cultured
in synthetic medium without phenylalanine, L. plantarum
ITM21B did not produce PLA at all; however, the PLA
fermentation amounts could be observed and gradually in-
creased if phenylalanine was supplemented with concentra-
tions ranging from 0.1 to 0.4 g/L in initial medium (Valerio
et al. 2004). The direct correlation between PLA production

Table 1 PLA measurement methods reported

Assay method Stereospecific determination Test sample Reference

Reverse-phase HPLC No Rumen fluid Khan et al. 1998

Reverse-phase HPLC No Microbial fermentation broth Armaforte et al. 2006

Reverse-phase HPLC No Honey Tuberoso et al. 2011

GC/MS No Mouse brain Sarkissian et al. 2000

GC/MS No Sourdough Ryan et al. 2009

GC/MS No Honey Wilkins et al. 1995

Capillary electrophoresis No Urine Zhang et al. 2010

Enantioselective multidimensional GC/MS
(using modified cyclodextrins as chiral additives)

Yes Urine Heil et al. 1998

Capillary zone electrophoresis
(using modified cyclodextrins as chiral additives)

Yes Standards Nardi and Eliseev 1993

Chiral HPLC Yes Enzymatic catalysis product Tekewe et al. 2008
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and phenylalanine content in medium was also reported in
many other references (Li et al. 2007; Dallagnol et al. 2011;
Rodriguez et al. 2012).

The transamination reaction is the first catabolic step of
phenylalanine and is initiated by an aromatic aminotransfer-
ase (AAT) which has broad substrate spectrum, including
leucine, tyrosine, tryptophan, and methionine (Yvon et al.
1997). AAT catalyzes transferring the amino group from the
amino acid to a suitable α-keto acid acceptor, which

commonly is α-ketoglutarate in most LAB strains (Fig. 2)
(Yvon et al. 1998; Rijnen et al. 2000). Therefore, α-
ketoglutarate has important effect phenylalanine catabolism
and impacts on the regulation of PLA biosynthesis
(Vermeulen et al. 2006; Dallagnol et al. 2011). Vermeulen
et al. reported that the addition of α-ketoglutarate strongly
increased PLA formation in L. plantarum TMW1.468 by 5
to >30 % (2006). On the other hand, α-ketoglutarate is
produced from glutamate by glutamate dehydrogenase, and

Table 2 PLA production by select microorganism strains

Strain PLA
(mM)

Source References

LAB
strainsa

L. plantarum 21B NR Sourdough Lavermicocca et al.
2000

L. plantarum MiLAB 393 NR Grass silage Strom et al. 2002

L. plantarum VLT01 NR DIPROVAL collection (Bologna University) Armaforte et al. 2006

Lactobacillus sp. SK007 0.55 Chinese traditional pickles Li et al. 2007

L. plantarum CECT-221 1.38 Spanish Collection of Type Cultures (Valencia,
Spain)

Rodriguez et al. 2012

L. plantarum CRL 778 0.1 Wheat dough Dallagnol et al. 2011

L. plantarum NR Grass silage Prema et al. 2010

L. plantarum IMAU10014 NR Koumiss Wang et al. 2012

L. plantarum VE56 0.48 Fermented cassava Ndagano et al. 2011

Weissella cibaria FMF4B16 0.1 Mill flour Ndagano et al. 2011

Weissella paramesenteroides LC11 0.13 Fermented cassava Ndagano et al. 2011

L. plantarum 1081 5.2 Culture Collection (CRL) of the Centro de
Referencia para Lac
tobacilos (CERELA-CONICET)

Gerez et al. 2010

L. plantarum 778 4.1 CRL of CERELA-CONICET Gerez et al. 2010

L. plantarum 1073 2.6 CRL of CERELA-CONICET Gerez et al. 2010

L. acidophilus 1063 1.1 CRL of CERELA-CONICET Gerez et al. 2010

L. paracasei 1501 0.6 CRL of CERELA-CONICET Gerez et al. 2010

L. alimentarius ATCC29643 0.37 Fish products Valerio et al. 2004

L. mesenteroides subsp. mesenteroides
ITMY30

0.57 Olive phylloplane Valerio et al. 2004

Leuconostoc citreum ITM22A 0.43 Sourdough Valerio et al. 2004

Weissella confusa ITM14A 0.06 Sourdough Valerio et al. 2004

Enterococcus faecium ATCC882 0.09 Cheese Valerio et al. 2004

Non-LAB
strainsb

B. coagulans SDM NR Soil Zheng et al. 2011

Propionibacterium jensenii DSMZ 20535 0.014c Dairy Lind et al. 2007

P. thoenii DSMZ 20276 0.09c Dairy Lind et al. 2007

P. acidipropionici DSMZ 4900 0.07c Dairy Lind et al. 2007

P. freudenreichii ssp. freudenreichii DSMZ
20271

0.02c Dairy Lind et al. 2007

Brevibacterium lactofermentum 11.6c NR Kamata et al. 1986

Geotrichum candidum 3.6–6.0c Cheese Dieuleveux et al.
1998b

NR not reported
a Production of PLA in regular MRS broth
b Production of PLA in medium without PPA
c The values were converted from the unit mg/L
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the glutamate dehydrogenase activity is influenced by the
redox state of the cell, so PLA formation can be up-
regulated indirectly by adding those compounds, which act
as alternative electron acceptors to increase NAD(P)+ level,
such as citrate, fructose, and glucose (Vermeulen et al. 2006;
Li et al. 2007; Dallagnol et al. 2011).

Actually, phenylpyruvic acid (PPA) is the direct precur-
sor of PLA in PLA biosynthesis of LAB strains (Fig. 2) and
shows much higher effect on PLA production than phenyl-
alanine. When PPA was used to replace phenylalanine as
supplemented substrate at the same concentration, PLA
production increased 14-fold during Lactobacillus sp.
SK007 fermentation (Li et al. 2007). It was suggested that
phenylalanine transamination was the limiting factor in PLA
production in LAB strains, and the bottleneck could be
overcome using PPA as substrate (Li et al. 2007; Mu et al.
2009a and 2009b; Zheng et al. 2011).

Dehydrogenases converting PPA to PLA

There have been several different kinds of dehydrogenases
that were characterized to convert PPA to PLA, and lactate
dehydrogenase (LDH) is the main kind. In nature, there are
two forms of LDH with different catalytic stereospecificity,
L-LDH (EC 1.1.1.27) and D-LDH (EC 1.1.1.28). They have
the highest catalytic activity for pyruvic acid and wide
substrate specificity for α-ketonic acids, such as 2-
ketobutyrate, α-ketoglutaric acid, etc. (el Hawrani et al.

1996). So far, it was found that LDHs from many LAB
strains have the substrate specificity for PPA, including L-
LDH from Pediococcus acidilactici DG302 (Garmyn et al.
1995), L. plantarum SK002 (Jia et al. 2010), and
Lactobacillus helveticus 53/7 (Savijoki and Palva 1997),
and D-LDH from Pediococcus pentosaceus ATCC 25745
(Yu et al. 2012), P. acidilactici DSM 20284 (Mu et al.
2012), L. plantarum SK002 (Jia et al. 2010), Lactobacillus
pentosus JCM1558 (Tokuda et al. 2003) (previously called
L. plantarum ATCC 8041 (Taguchi and Ohta 1991)), and
Lactobacillus confusus 20196 (Hummel et al. 1983). Also, it
was reported that some LDHs from non-LAB organisms
cou ld a l so t r an s fo rm PPA in to PLA, such a s
Thermoanaerobacter ethanolicus JW200 (Zhou and Shao
2010), B. coagulans SDM (Zheng et al. 2011), and
Clonorchis sinensis (Yang et al. 2006).

The optimum pH and temperature for LDH from LAB
strains are in the range of 5.5–7.0 and 30–45 °C, respec-
tively, probably because most of LAB strains are mesophile
and acidophile (Table 3). The LDH from LAB strains gen-
erally showed weak thermostability, especially under more
than 45 °C (Li et al. 2008; Jia et al. 2010; Yu et al. 2012; Mu
et al. 2012). Some LDHs were characterized from thermo-
philic non-LAB strains, which showed higher optimum and
thermostability, such as T. ethanolicus JW200 (Zhou and
Shao 2010) and B. coagulans SDM (Zheng et al. 2011). In
all of the LDHs reported, P. acidilactici D-LDH showed the
highest catalytic efficiency (kcat/Km) value of 105 mM−1 s−1

in D-LDHs, and the kcat/Km of L-LDH was only reported in
B. coagulans L-LDH with 110 mM−1 s−1.

Although natural LDH showed less substrate specificity
to PPA than pyruvic acid, the substrate specificity could be
improved by modification of enzyme. Tokuda et al. (2003)
constructed a mutant L. pentosus D-LDH in which the
single amino acid of Tyr52 was replaced by Leu, and this
mutant D-LDH (Y52L) showed much higher substrate spec-
ificity and catalytic efficiency to PPA than the wild-type D-
LDH.

In addition to LDH, some other dehydrogenases were
also reported exhibiting catalytic hydrogenation activity to
phenylpyruvate, in which D-form dehydrogenases included
D-hydroxyisocaproate dehydrogenase (D-HicDH) from
Lactobacillus casei (Hummel et al. 1985) and the D-
mandelate dehydrogenase (D-ManDH) from Enterococcus
faecalis (Tamura et al. 2002; Wada et al. 2008) and
Lactobacillus curvatus (Hummel et al. 1988). These D-
form dehydrogenases have different optimum substrate;
however, interestingly, all of them show broad substrate
specificity to 2-ketoacids including phenylpyruvate
(Table 4). Especially, L. casei D-HicDH (Hummel et al.
1985) and L. curvatus D-ManDH (Hummel et al. 1988)
show relatively high specificity to phenylpyruvate with Km

of 0.15 mM. In L-form dehydrogenases, L. confuses L-

Fig. 2 Possible pathway of PLA biosynthesis in LAB strains
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HicDH was characterized to have substrate specificity to
PPA with kcat/Km of 2.81×108 s−1 M−1 (Feil et al. 1997).

High-level bioproduction of PLA by microorganism
fermentation

PLA production could be remarkably improved when adding
PPA in initial medium or during fermentation process.
Commercially, PPA can be obtained easily at relatively low
price through organic synthesis from hydantoin (Christidis
and Schouteeten 1985) and has been used to produce phenyl-
alanine which is in high demand for the production of an
artificial sweetener “aspartame” (Matsunaga et al. 1987;
Leng et al. 2006). Therefore, it is an effective approach to
produce PLA in large scale using PPA as material. It was
reported that PLA content increased 14-fold in Lactobacillus
sp. SK007 fermentation, which reached 1.12 g L−1, when PPA
was added in MRS broth (Li et al. 2007). Using response
surface methodology, the medium components containing
PPA were optimized for PLA production of Lactobacillus
sp. SK007, and the PLA fermentation yield increased to
2.30 g L−1 (Mu et al. 2009a).

Further, the fed-batch fermentation of Lactobacillus sp.
SK007 with substrate PPA feeding and pH-control was
reported to be able to produce 17.38-g L−1 PLA, with the
conversion ratio of PPA to PLA of 51.1% and PLA production
rate of 0.241 g L−1 h−1 (Mu et al. 2009b). Recently, Zheng et
al. isolated a thermophilic bacteria, B. coagulans SDM, having
PLA producing ability at a high temperature, which was help-
ful to improve the solubility and dissolution rate of substrate
PPA. Using whole cells ofB. coagulans SDM converting PPA,
PLAwas produced in a high concentration of 37.3 g L−1 and
high productivity of 2.3 g L−1 h−1 (Zheng et al. 2011).

Future

So far, the scientific researches for the antimicrobial activity
of PLA focused on the PLA producing strains in the form of
protective cultures. There were not enough application
researches of PLA in food system as a pure antimicrobial
agent. More researches are needed to verify the effective-
ness of PLA in food system and to compare it with other
typical antimicrobial agents in detail.

Although PLA exists in many ordinary foods such as
honey and LAB-fermented foods, PLA is still not allowed
by legislation to be used as an additive. It is necessary to
implement more human trials to study the metabolism path-
way, health effects, and possible toxicity effects of PLA.
And these data would give a guide to whether it can be
approved as a legal additive.

To our best knowledge, there is no reference reporting the
downstream process of PLA preparation. Therefore, in

addition to optimizing the high-level production of PLA,
the downstream process researches should be strengthened
in the future.
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