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Abstract Recently, many genes involved in the formation
of unsaturated and polyunsaturated fatty acids (PUFAs)
were isolated. In most cases, their activities were confirmed
by expressing them in the well-studied model organism
Saccharomyces cerevisiae because its fatty acid composi-
tions are very simple and it does not contain PUFAs. Taking
advantage of its genetic tractability and increasing wealth of
accessible data, many groups are attempting to produce
various useful fatty acids in the model yeasts, mainly in S.
cerevisiae. This review describes typical such examples
including a very recent study on the expression of a fatty
acid hydroxylase gene in fission yeast Schizosaccharomyces
pombe. Furthermore, the impact of the genetically engi-
neered alteration of fatty acid composition on the stress
tolerance is presented because unsaturated fatty acids have
crucial roles in membrane fluidity and signaling processes.
Lastly, recent attempts at increasing lipid content in S. cerevi-
siae are discussed.
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Introduction

Unsaturated fatty acids are components of biological mem-
branes and are essential for determining membrane struc-
tures and functions. They affect fluidity of phospholipid

bilayer and regulate the mobility and function of embedded
proteins (Sinensky 1974; Macartney et al. 1994; Vance and
Vance 2002: Opekarova and Tanner 2003). They also serve
as precursors for a number of biologically active molecules
like eicosanoids. In mammals, eicosanoids like prostaglan-
dins, leukotrienes, and thromboxanes mediate fever, inflam-
mations, vasodilatation, blood pressure, clotting, pain,
neurotransmission, and modulation of cholesterol metabo-
lism (Funk 2001). Thus, unsaturated fatty acids especially
polyunsaturated fatty acids (PUFAs) are required for the
normal development and function of our body and are
essential in maintaining human health. For instance, arach-
idonic acid (ARA, C20:4n-6) and docosahexaenoic acid
(DHA, C22:6n-3) are essential fatty acids found in brain
tissues. They are also important dietary nutrients for neona-
tal babies owing to their involvement in the development of
neural and retinal functions (Broun et al. 1999; Horrobin
2000; Mills et al. 2005; Napier and Sayanova 2005; Das
2006).

Since mammals including humans cannot synthesize
linoleic acid (LA, C18:2n-6) and α-linolenic acid (ALA,
C18:3n-3), they are called essential fatty acids and many
PUFAs including LA and ALA must be obtained from the
diet. The findings that dietary supplementation of PUFAs,
such as γ-linolenic acid (GLA, C18:3n-6), ARA, eicosapen-
taenoic acid (EPA, C20:5n-3), and DHA, significantly alle-
viates the symptoms of many chronic disease have attracted
a great interest of general public and food manufacturers.
But their natural sources are very limited. The principal
sources for PUFAs (especially n-3 fatty acids) to date are
fish oils. However, due to the increase of fish consumption
and the expansion of marine pollution, fish hauls are de-
creasing. It is therefore highly desirable to produce PUFAs
from alternative sources that are more economical, easier
to handle, and sustainable through genetic engineering
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techniques. One option is to modify oil-seed crops to pro-
duce PUFAs through genetic engineering technique, and the
other option is to produce them in well-studied model
microorganisms such as Saccharomyces cerevisiae. Since
S. cerevisiae has been serving as a model organism for the
development of metabolic engineering strategies to produce
certain metabolites (Ostergaard et al. 2000), the concept of
obtaining PUFAs from S. cerevisiae in commercial and
sustainable quantities is particularly attractive.

Therefore, this review focuses on the current typical
studies on the production of various fatty acids in S. cerevi-
siae, together with one example in fission yeast Schizosac-
charomyces pombe, another well-studied model yeast.
Furthermore, the impact of the genetically engineered alter-
ation of fatty acid composition on the stress response of S.
cerevisiae is also presented, because unsaturated fatty acids
have crucial roles in membrane biology and signaling pro-
cesses, and future prospect of genetic engineering of fatty
acid metabolism in S. cerevisiae is discussed.

Fatty acid composition in yeasts

The primary products of fatty acid biosynthesis in most
organisms are 16- and 18-carbon fatty acids, and fatty acid
desaturation is initiated by introducing a double bond at the
Δ9 position of saturated fatty acids, palmitic (C16:0) and
stearic (C18:0) acids. The relative ratio of chain lengths and
the degree of unsaturation of these fatty acids vary widely
depending on the microorganisms. S. cerevisiae primarily
produces saturated and monounsaturated fatty acids of 16-
and 18-carbon compounds, because it contains only one
fatty acid desaturase, a Δ9-desaturase (OLE1), which is
capable of producing monounsaturated palmitoleic (C16:1)
and oleic (C18:1n-9) acids (Stukey et al. 1989).

Like S. cerevisiae, the fission yeast S. pombe, which is
also well characterized and widely used in the field of basic
research, is unable to synthesize LA (C18:2n-6), either
(Ratledge and Evans 1989; Holic et al. 2012). In some
organisms, however, oleic acid (C18:1n-9) is subsequently
desaturated to LA by introducing the second double bond at
the Δ12 position by a Δ12-fatty acid desaturase and then
making ALA by a ω3-fatty acid desaturase (see Fig. 1). For
instance, other budding yeasts such as Saccharomyces kluy-
veri and Kluyveromyces lactis can produce both the diunsa-
turated fatty acid LA (C18:2n-6) as well as the
triunsaturated ALA (C18:3n-3) (Ratledge and Evans 1989;
Kainou et al. 2006). In addition to S. kluyveri and K. lactis,
Candida albicans and Candida tropicalis are able to pro-
duce up to ALA to a greater or lesser extent, but some other
yeasts such as Candida boidinii and Zygosaccharomyces
rouxii are able to produce only LA (Ratledge and Evans
1989). Among oleaginous yeasts, Yarrowia lipolytica (max

lipid content 36 %) and Trichosporon pullulans (65 %) can
produce around 1 % of ALA, but Lipomyces starkeyi
(63 %), Cryptococcus albidus (65 %), and Rhodotorula
glutinis (72 %) can produce only LA (Ratledge 1993). Fatty
acid and lipid compositions in other yeasts are also summa-
rized in the review by Ratledge and Evans (1989). For the
fatty acid compositions in other lower eukaryotes such as
fungi, algae, and protozoa, readers are referred to the review
of Pereira et al. (2003) and the book of Ratledge and
Wilkinson (1993).

Genetic manipulation of S. cerevisiae for the production
of polyunsaturated fatty acids

PUFA synthesis in mammals proceeds predominantly by a
Δ6-desaturation pathway, in which the first step is the Δ6-
desaturation of dietary LA and ALA to yield GLA and
stearidonic acid (STA, C18:4n-3), respectively. Then C20
fatty acids are synthesized by sequential desaturation and
elongation (Broun et al. 1999; Napier et al. 1999; Huang et
al. 2004; Ratledge 2004). Further fatty acid elongation and
desaturation steps give rise to ARA (C20:4n-6) via dihomo-
γ-linolenic acid (DGLA, C20:3n-6) in the n-6 pathway, and
EPA and DHA via eicosatetraenoic acid (ETA, C20:4n-3) in
the n-3 pathway (Fig. 1).

Desaturase enzymes are specific to the location, number,
and stereochemistry of double bonds already present in fatty
acids (Heinz 1993). Hence, various desaturases, together with
elongases, which elongate carbon chain length of fatty acids,
are required to introduce a series of desaturations and elonga-
tions into the fatty acyl to generate various PUFAs. Therefore,
to make various fatty acids in S. cerevisiae, it is necessary to
introduce appropriate desaturase and elongase genes.

Production of linoleic, α-linolenic, and γ-linolenic acids
in S. cerevisiae

Animals in general are unable to produce LA (C18:2n-6)
and ALA (C18:3:n-3) because of the lack of Δ12- and ω3-
desaturases. Thus, these fatty acids are considered to be
essential for us and must be obtained from the diet. In
contrast, many plants and some fungi are able to synthesize
these fatty acids. Hence, the genes encodingΔ12-desaturase
(FAD2) and ω3-desaturase (FAD3) have mainly been
reported from plants and fungi. For instance, Δ12-
desaturases were isolated from Arabidopsis (Okuley et al.
1994), Mortierella alpina (Huang et al. 1999; Sakuradani et
al. 1999), Mucor rouxii (Passorn et al. 1999), and Aspergil-
lus nidulans (Calvo et al. 2001), and ω3-desaturases were
isolated from Arabidopsis (Arondel et al. 1992; Yadav et al.
1993) and Mortierella alpina (Sakuradani et al. 2005; also
see reviews by Tocher et al. 1998 and Pereira et al. 2003).
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Reports on the isolation of Δ12- and ω3-desaturase
genes from yeasts are fewer. First such desaturases reported
were FAD2 (Watanabe et al. 2004) and FAD3 (Oura and
Kajiwara 2004) from S. kluyveri. K. lactis can also produce
LA and ALA (Ratledge and Evans 1989; Kainou et al.
2006). Based on the draft genome sequence of K. lactis
(Dujon et al. 2004), two sequences (KlFAD2 and KlFAD3),
which encode proteins with the highest degree of homology
to the FAD2 and FAD3 gene products of S. kluyveri, were
identified. Co-expression of KlFAD2 and KlFAD3 in S.
cerevisiae resulted in the endogenous production of both
LA and ALA (Kainou et al. 2006). From fungus M. alpina,
Δ6-desaturase cDNA was isolated in addition to Δ12-
desaturase, and their co-expression in S. cerevisiae resulted
in the endogenous production of GLA (Huang et al. 1999).
The yield of GLA reached as high as 8 % to total fatty acids
when the cells were grown at 15 °C for 2 days in 2 %
galactose synthetic medium (Huang et al. 1999).

Production of long-chain PUFAs

To produce long-chain PUFAs in a heterologous host, genes
encoding Δ4-, Δ5-, and Δ6-fatty acid desaturases are re-
quired. These genes have been cloned from a variety of
organisms including higher plants, algae, mosses, fungi,
nematodes, and mammals (reviewed by Pereira et al. 2003;
Huang et al. 2004; Warude et al. 2006). In addition to
desaturase genes, elongase genes are also required to pro-
duce fatty acids containing 20 carbons and more. S. cerevi-
siae also has three ELO genes, but they do not function to
produce PUFAs described above, because Elo1p mainly
elongates C14:0 to C16:0, and Elo2p and Elo3p are

involved in the formation of very long-chain saturated fatty
acid moiety of sphingolipids (Oh et al. 1997). The first
elongase gene that can produce fatty acids containing 20
carbons was isolated fromM. alpina cDNA library by directly
measuring the elongation activity of GLA to DGLA in ap-
proximately 750 transformants of S. cerevisiae (Parker-Barnes
et al. 2000). Subsequently, elongase genes were isolated from
Caenorhabditis elegans (Beaudoin et al. 2000), moss Phys-
comitrella patens (Zank et al. 2002), rat (Inagaki et al. 2002),
mouse (Leonard et al. 2002), and humans (Leonard et al.
2002; also see reviews by Leonard et al. 2004 and Warude
et al. 2006).

To reconstitute PUFA synthesis pathways in S. cerevi-
siae, various combinations of multiple desaturase and elon-
gase genes were attempted. Typical examples are shown
below. Since Δ5- and Δ6-fatty acid desaturases can accept
both n-3 and n-6 fatty acids as substrates as shown in Fig. 1,
their transgenic S. cerevisiae strains produce either n-3 or n-
6 fatty acids depending on the substrate fatty acid added in
media. Beaudoin et al. (2000) produced ARA from exoge-
nous LA and EPA from exogenous ALA in S. cerevisiae by
using C. elegans elongase, M. alpine Δ5-desaturase, and
borage Δ6-desaturase. By growing cells for 4 days at 25 °C
in 2 % galactose synthetic medium with 0.5 mM of exoge-
nous LA as a substrate, the composition of GLA, DGLA,
and ARA to total fatty acids reached 6.8, 1.4, and 0.25 %,
respectively. And with 0.5 mM of exogenous ALA as a
substrate, 0.2 % of EPA was produced.

Domergue et al. (2002) produced ARA from exogenous
LA and EPA from ALA in S. cerevisiae by using Physcomi-
trella patens Δ6-specific elongase, Phaeodactylum tricor-
nutum Δ5- and Δ6-desaturases. The contents of DGLA and

Fig. 1 Biosynthetic pathway
for the production of long-chain
PUFAs. Biosynthetic pathway
for the production of long-chain
PUFAs is indicated. Two steps
indicated by dotted arrows
(Δ12- and ω3-desaturases
steps) do not exist in mammals
and they need external supple-
mentation of LA (C18:2) and
ALA (C18:3n-3) (essential fatty
acids). Ricinoleic acid is pro-
duced by introducing a hydrox-
yl group (−OH) to the 12th
carbon of oleic acid by an oleate
Δ12-hydroxylase (FAH12). S.
cerevisiae and S. pombe are
able to produce only up to oleic
acid (C18:1n-9), but other
yeasts such as S. kluyveri and K.
lactis are able to produce up to
ALA (C18:3n-3)
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ARA were 1.7 and 0.17 %, respectively, by growing cells
for 4 days at 20 °C in 2 % galactose synthetic medium with
0.5 mM of exogenous LA. The content of EPA was 0.23 %
when exogenous ALAwas used as a substrate. Domergue et
al. (2003) also produced ARA from exogenous LA by using
algal Δ5- and Δ6-desaturases and moss Δ6-elongase and
DGLA from exogenous LA by using human Δ6-desaturase
and moss Δ6-elongase by growing cells for 2 days at 20 °C
in 2 % galactose synthetic medium in the presence of
0.5 mM of the respective precursor fatty acids. Co-
expressed of M. alpina elongase with M. alpina Δ5-
desaturase cDNA in S. cerevisiae produced 0.5 % of ARA
from GLA and 0.7 % of EPA from STA, respectively, by
growing cells at 25 °C for 1 day in 2 % galactose synthetic
medium in the presence of 0.025 mM of the respective
precursors (Parker-Barnes et al. 2000).

A further long fatty acid, DHA, was also produced by
introducing four genes into S. cerevisiae. Meyer et al. (2004)
cloned alga Ostreococcus tauri elongase specific for the elon-
gation of (Δ6-)C18-PUFAs, alga Thalassiosira pseudonana
elongase specific for (Δ5-)C20-PUFAs, and fish Oncorhyn-
chus mykiss bifunctional elongase (elongates both C18- and
C20-PUFAs). Co-expression ofΔ6-elongase (T. pseudonana)
and Δ5-elongase (O. tauri) with the algal Δ5-desaturase
(Phaeodactylum tricornutum) and Δ4-desaturase (Euglena
gracilis), or three genes of the bifunctional elongase (O.
mykiss) with the algal Δ5-desaturase (Phaeodactylum tricor-
nutum) and Δ4-desaturase (Euglena gracilis), they observed
around 0.5 % of DHA synthesis to total fatty acids by growing
cells at 20 °C for 4 days in 2 % galactose synthetic medium in
the presence of 0.25 to 0.5 mMSTA as a precursor. In the two-
gene co-expression of marine microalgae Pavlova elongase
with Isochrysis Δ4-desaturase in S. cerevisiae, 3.1 % DPA
and 3.8 % DHAwere produced from EPA by growing cells at
20 °C for 2 days in 2 % galactose synthetic medium in the
presence of 0.1 mM EPA (Pereira et al. 2004).

Li et al. (2011) isolated C18-Δ9-PUFAs-specific elon-
gase from a DHA-rich microalga, Isochrysis galbana H29,
and reconstituted in S. cerevisiae “Δ8 desaturation” path-
way, an alternative pathway for the biosynthesis of C20-
PUFAs in organisms that lack the Δ6-desaturase activity.
Co-expression of this elongase with Δ8-desaturase from
Euglena gracilis resulted in the production of DGLA
(C20:3n-6) and ETA (C20:4n-3) from LA and ALA, respec-
tively. The yields of DGLA and ETA were 7.2 and 2.0 %
when the cells were grown in 2 % galactose synthetic
medium at 22 °C for 2 days in the presence of 0.1 mM of
LA and ALA precursors, respectively.

In all studies described in this section, substrate fatty
acids were exogenously supplied in the media for the pro-
duction of the desired fatty acids. In spite of the presence of
a large excess of precursor fatty acids, their yields were
generally low. One reason might be a difference of substrate

specificity for desaturases and elongases. Elongation reac-
tion adds two carbon units to the carboxyl end of the fatty
acid chain and this reaction is initiated by the condensation
of malonyl-CoAwith a long-chain acyl-CoA (Leonard et al.
2004). In contrast to elongases that use fatty acid moiety of
an acyl-CoA ester as substrates, fatty acid desaturases are
classified into three types depending on their substrates:
acyl-CoA, acyl-lipid, and acyl-acyl carrier protein (ACP)
desaturases. The acyl-CoA desaturases are membrane-
bound enzymes that desaturate fatty acids esterified to Co-
enzyme A (CoA) and they are present in animals, yeasts,
and fungi. The acyl-lipid desaturases are membrane-bound
enzymes that introduce unsaturated bonds in lipid-bound
fatty acids and they are found in plants, fungi, and cyano-
bacteria. The acyl-ACP desaturases desaturate fatty acids
linked to an ACP, and they are found in plant plastids in a
soluble form (Pereira et al. 2003; Uttaro 2006). Meyer et al.
(2004) speculated that the low yield of DHA was largely
attributed to the low activity of Δ5-desaturase because of
the limited substrate availability. The Δ5-desaturase from P.
tricornutum requires fatty acids acylated at the sn-2 position
of phosphatidylcholine as substrates, whereas the elongase
produces ETA, the substrate for Δ5-desaturase, as an acyl-
CoA ester before being transferred to the various lipids,
making the consecutive reaction of the elongase and the
desaturase inefficient.

Construction of the complete pathway for the production
of C20-PUFA from the endogenous oleic acid in S. cerevisiae

S. cerevisiae contains a Δ9-desaturase (OLE1) as the only
one desaturase and cannot produce PUFAs. Thus, to con-
struct a complete pathway to produce various PUFAs from
the endogenous oleic acid, the first fatty acid desaturase to
be introduced is a Δ12-desaturase gene that converts en-
dogenous oleic acid to LA to produce n-6 fatty acids, and an
additional ω3-desaturase gene to produce n-3 fatty acids.

To construct a complete pathway that allows DGLA
biosynthesis without the need to supply exogenous fatty
acids in the media, Yazawa et al. (2007a) introduced Δ12-
desaturase from K. lactis (KlFAD2), rat Δ6-desaturase
(rFADS2), and rat elongase (rELO1) genes in S. cerevisiae.
DGLA is an encouraging target because it has unique bio-
logical activities (Stone et al. 1979; Horrobin and Huang
1987; Iversen et al. 1991, 1992; Rotondo et al. 1994;
Williams et al. 1996; Vassilopoulos et al. 1997; Kahler and
Du Plooy 1998; Dooper et al. 2003; Das 2006), but its
natural sources are very limited. Media composition, culti-
vation temperature, and incubation time were examined to
improve the yield of DGLA. Fatty acid content was in-
creased by changing the medium from a standard synthetic
dropout medium to a nitrogen limited minimal medium
(NSD). Production of DGLA was higher in the cells grown
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at 15 °C than those grown at 20 °C, and no DGLA produc-
tion was observed in the cells grown at 30 °C. When the
cells were grown in NSD for 7 days at 15 °C, the yield of
DGLA reached 2.2 mg/mg of dry cell weight (DCW) and
the composition of DGLA to total fatty acids was 2.7 %
(Yazawa et al. 2007a), comparable to the values obtained in
the systems of Beaudoin et al. (2000) and Domergue et al.
(2002) as described above. This is the first case for S.
cerevisiae of producing C20-PUFA without supplying the
exogenous fatty acids. Construction of the complete meta-
bolic pathway from the endogenous oleic acid of S. cerevi-
siae to the desired product would have a great advantage
from the application point of view.

A similar entire biosynthetic pathway for ETA was dem-
onstrated by using four genes. Tan et al. (2011) cloned a Δ6-
desaturase cDNA (CoD6) and a Δ6-elongase cDNA (CoE6)
from Conidiobolus obscurus, an entomopathogenic fungus
able to infect aphids. Co-expression of CoD6 and CoE6
from C. obscurus, together with Δ12-desaturase (CpDes12)
andω3-desaturase (CpDesX) from Claviceps purpurea in S.
cerevisiae, resulted in the endogenous production of the end
product ETA, although its yield was very low (around 0.1 %
to total fatty acids) when the cells were grown in 2 %
galactose synthetic medium at 20 °C for 2 days.

Effect of cytochrome b5 on the activity of desaturases

In addition to desaturase and elongase genes that directly
synthesize PUFAs, genes that facilitate their activities
should also be considered. For instance, cytochrome b5 is
required for the electron transport in desaturation reaction
(Tamura et al. 1976; Certik and Shimizu 1999). While
Ole1p and certain other desaturases contain their own cyto-
chrome b5 domain (Mitchell and Martin 1995; Sperling et
al. 1995), other desaturases, including Fad2p and Fad3p, do
not (Mitchell and Martin 1997) and hence require an inter-
acting cytochrome b5 (Mitchell and Martin 1995; Petrini et
al. 2004).

DGLA production from endogenous oleic acid by using
Δ12- and Δ6-desaturases and elongase demonstrated that
its production was higher in the cells grown at 15 °C than
those grown at 20 °C, and no DGLA production was ob-
served in the cells grown at 30 °C (Yazawa et al. 2007a).
The low temperature enhanced the activity of the Δ12-
desaturase to produce LA from oleic acid. Since the double
bond insertion into fatty acids is performed by a microsomal
membrane-bound three-component enzyme system involv-
ing cytochrome b5, NADH-dependent cytochrome b5 re-
ductase, and fatty acid desaturases, Yazawa et al. (2010)
speculate that the increasing amount of cytochrome b5
would promote the complex formation between Δ12 fatty
acid desaturase and cytochrome b5 and enhance the activity
of fatty acid desaturase. Based on this idea, the effects of

overexpression of K. lactis and S. cerevisiae cytochrome b5
(CYB5) genes on LA production by KlFAD2 were examined
in relation to incubation temperature. Without extra cyto-
chrome b5, while LA synthesis was significant at 20 °C, it
was marginal at 30 °C. Overexpression of CYB5 at 20 °C
did not affect the fatty acid synthesis much, but it signifi-
cantly enhanced the synthesis of LA at 30 °C especially with
KlCYB5. The higher activity of Δ12-desaturase with
KlCYB5 is presumably due to a better interaction between
the desaturase and the cytochrome b5 of the same species,
especially at 30 °C where unstable interaction was predicted
between K. lactis desaturase and Cyb5p of S. cerevisiae
(Yazawa et al. 2010). The enhancement of the desaturase
activity at 30 °C is important to reduce the production cost
in industrial application.

Production of ricinoleic acid in S. cerevisiae

In addition to PUFAs, which have biological functions,
biological syntheses of fatty acid derivatives that can be
petrochemical replacements are also drawing attention. Rici-
noleic acid (12-hydroxy-octadeca-cis-9-enoic acid: C18:1-
OH) is an important natural raw material with great values
as a petrochemical replacement in a variety of industrial
processes. Its derivatives have a considerable range of appli-
cations, especially in the production of lubricants, nylon,
dyes, inks, soaps, adhesives, and plasticizers. The major
source of ricinoleic acid is the seeds of castor-oil plant
(Ricinus communis), in which ricinoleic acid constitutes
approximately 90 % of the total fatty acids of the seed oil.
However, castor bean is not an ideal source crop, because its
cultivation is limited to tropical and sub-tropical regions,
and their seeds must be harvested by hand. Furthermore, a
highly poisonous protein (ricin) and strongly allergenic 2S
albumins contained in castor seeds cause health problems
for workers involved in planting, harvesting, and process-
ing. Because of these problems, alternative sources that are
more economical, easier to handle, and sustainable are high-
ly desirable.

Ricinoleic acid biosynthesis is catalyzed by an oleate
Δ12-hydroxylase (FAH12), which adds a hydroxyl group
(−OH) to the 12th carbon of oleic acid moieties (Galliard
and Stumpf 1966). The first hydroxylase gene was cloned
from R. communis using EST sequencing/similarity searches
(van de Loo et al. 1995), and soon afterward, a similar
hydroxylase from Lesquerella fendleri involved in the first
step of lesquerolic acid (14-hydroxyeicos-cis-11-enoic acid
or 14-OH-C20:1-11c) biosynthesis was isolated by degen-
erate RT-PCR (Broun et al. 1998). Recently, by using de-
generate RT-PCR targeted to conserved regions of fungal
oleate desaturases, Meesapyodsuk and Qiu (2008) isolated
the first non-plant Δ12-oleate hydroxylase from the sclero-
tium tissue of C. purpurea (CpFAH12), which has a high
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sequence similarity to fungal desaturases, but a low similar-
ity to plant fatty acid hydroxylases.

So far, several groups have attempted to produce ricinoleic
acid in transgenic plants such as tobacco and Arabidopsis (van
de Loo et al. 1995; Broun and Somerville 1997; Smith et al.
2003; Lu et al. 2006; Kumar et al. 2006; Meesapyodsuk and
Qiu 2008). S. cerevisiae was also used to characterize the
function of putative hydroxylase genes (Smith et al. 2003;
Meesapyodsuk and Qiu 2008). Smith et al. (2003) expressed
Ricinus and Lesquerella hydroxylase genes (RcFAH12 and
LfFAH12) under the control of GAL10 promoter, but their
activity was very low and only 0.8 and 1.6 % of ricinoleic
acid to total fatty acids were produced, respectively, by grow-
ing cells at 30 °C for 5 days on 2 % galactose. Meanwhile,
Meesapyodsuk and Qiu (2008) expressed CpFAH12 under the
control of GAL1 promoter. They managed to boost ricinoleic
acid production by adding 0.25 mM oleic acid, a substrate for
hydroxylase, tomedia, and produced 19% of ricinoleic acid to
total fatty acids by growing cells at 20 °C for 2 days in the
synthetic medium containing 2 % galactose.

Production of ricinoleic acid in S. pombe

In addition to S. cerevisiae, fission yeast S. pombe is also
widely used as a model organism. Like S. cerevisiae, Δ9
fatty acid desaturase (OLE1) is the only desaturase in S.
pombe (Wood et al. 2002); thus, it does not contain unsat-
urated fatty acids with two or more double bonds. However,
the fatty acid compositions differ greatly between them.
Palmitoleic acid (C16:1) is the major fatty acid in S. cerevi-
siae, but oleic acid (C18:1) is the major one (around 75 % of
total fatty acid) in S. pombe (Ratledge and Evans 1989;
Holic et al. 2012).

Since Fah12p converts oleic acid to ricinoleic acid, it was
considered that S. pombe, in which around 75 % of total
fatty acid is oleic acid, would accordingly be an ideal
microorganism for high production of ricinoleic acid. Thus,
Holic et al. (2012) introduced C. purpurea oleate Δ12-
hydroxylase gene (CpFAH12) to S. pombe, putting it under
the control of inducible nmt1 promoter. Unfortunately, at the
normal growth temperature 30 °C, S. pombe cells harboring
CpFAH12 grew poorly when the CpFAH12 gene expression
was induced, perhaps implicating ricinoleic acid as toxic in
S. pombe. However, thermo-instability of Fah12p in S.
pombe was discovered, and by contrast with 30 °C and
lower temperatures, almost no growth inhibition that corre-
lated with a very low level production of ricinoleic acid was
observed at 37 °C. Accordingly, by taking advantage of the
thermolabile characteristic of the hydroxylase, various opti-
mization steps led to a regime with preliminary growth at
37 °C followed by 5-day incubation at 20 °C, and the level
of ricinoleic acid reached 137.4 μg/ml of culture, that cor-
responded to 52.6 % of total fatty acids (Holic et al. 2012).

To demonstrate the advantage of S. pombe, Holic et al.
(2012) also expressed CpFAH12 in S. cerevisiae. The
CpFAH12 gene was expressed under the control of a strong
glycolytic promoter TDH3 (glyceraldehyde-3-phosphate de-
hydrogenase, isozyme 3), and 9.9 and 7.2 % of ricinoleic
acid were obtained by growing cells at 20 and 30 °C for
5 days, respectively. These values were comparable to that
of Meesapyodsuk and Qiu (2008) described in the previous
section, because exogenous oleic acid was not provided in
the media. Obviously, we cannot simply compare the values
of S. pombe to those of S. cerevisiae, because many factors
such as promoters and media were different, but these
results clearly showed the advantage of S. pombe, in which
more than 50% of ricinoleic acid was produced in the absence
of oleic acid in the media.

The higher hydroxylase activity of CpFah12p in S. pombe
compared to S. cerevisiaemakes this system a good candidate
for use inmetabolic engineering of ricinoleic acid, which has a
specialized industrial use, in yeast. This is the first case of
using S. pombe for the production of a useful fatty acid.

Effect of fatty acid compositions on stress response of S.
cerevisiae

Unsaturated fatty acids have crucial roles in membrane
fluidity and signaling processes, and fatty acid desaturases
are functioning in most living organisms to help regulate the
fluidity of membrane lipids. Thus, in addition to the pro-
duction of useful fatty acids, manipulation of fatty acid
composition and production of PUFAs in S. cerevisiae
strains have a possibility to improve their stress response.
Two such examples are presented.

Ethanol tolerance

S. cerevisiae is well known to produce a high concentration
of ethanol and is commonly used for brewing and fuel
ethanol production. Since ethanol is toxic to cells, the eth-
anol tolerance of S. cerevisiae, which is closely related to
ethanol productivity (Jones 1989), is one of its most desir-
able characteristics. Despite many physiological, genetical,
and the recent genome-wide gene expression studies
(Attfield 1997; Casey and Ingledew 1986; Lloyd et al.
1993; Alexandre et al. 1994, 2001), the mechanism of
ethanol tolerance still remains unclear. It has been known
for a long time that the fatty acid composition of the mem-
brane plays an important role in ethanol tolerance, although
the correlation between ethanol tolerance and the increased
degree of unsaturated fatty acyl residues in the membrane
phospholipids is not yet completely understood (Thomas et
al. 1978; Beavan et al. 1982; reviewed by Casey and
Ingledew 1986; Mishra and Prasad 1989; Jones 1989). Some
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researchers reported that the increase in any unsaturated fatty
acids is sufficient for the acquisition of ethanol tolerance
(Thomas et al. 1978; Beavan et al. 1982; reviewed by Casey
and Ingledew 1986; Mishra and Prasad 1989). Rather than the
first reports suggesting the importance of unsaturation but not
of its specificity, the most recent reports point to oleic acid
(C18:ln-9) but not palmitoleic acid (C16:1n-7) as important
for ethanol tolerance (You et al. 2003; reviewed byMa and Liu
2010). Genome-wide screening of ethanol tolerant mutants
also suggested that the increase in oleic acid content was the
factor in ethanol tolerance as well as the enhancement of the
cell wall integrity (Yazawa et al. 2007b), and it was confirmed
that the content of oleic acid increased as the initial concentra-
tion of ethanol in media increased (Yazawa et al. 2011).

To clarify the importance of oleic acid, and to create an
alcohol stress tolerant S. cerevisiae by artificially altering the
fatty acid composition of the cells instead of searching and
isolating mutant strains, Yazawa et al. (2011) have attempted
to make the content of oleic acid predominant even under the
normal growth condition by introducing rat elongase genes
that elongate C16 fatty acids to C18. Rat has two elongase
genes (rELO1 and rELO2): rELO1 catalyzes the elongation of
mono- and polyunsaturated fatty acids of C16-C20 size, while
rELO2mainly catalyzes elongation of C16:0 to C18:0 (Inagaki
et al. 2002). Introduction of rELO1 produced vaccenic acid
(C18:1n-7) instead of oleic acid (C18:1n-9) and did not affect
ethanol tolerance. On the other hand, rELO2 drastically in-
creased oleic acid content without changing the unsaturation
index and did contribute to the increase of ethanol tolerance,
emphasizing the specific role of oleic acid. Furthermore, the
transformant of rELO2 also conferred tolerance to n-butanol,
n-propanol, and 2-propanol.

Their result that oleic acid is a very efficacious unsatu-
rated fatty acid in overcoming the toxic effects of ethanol
agrees well with the observation by You et al. (2003) that
showed introduction of extra desaturases increased the
amount of oleic acid and enhanced the ethanol tolerance.
The unique point of this approach was to have employed
elongase genes instead of desaturase genes and demonstrat-
ed that the rEOL2 expression was more effective for en-
hancing oleic acid accumulation: overexpression of OLE1
from its own promoter and glycolytic TDH3 promoter in-
creased the content of oleic acid to 35.0 and 37.6 %, respec-
tively, whereas the expression of rELO2 from glycolytic
ADH1 promoter increased that to 44.0 %.

As for PUFA production, it has been reported as effective
in conferring ethanol tolerance (Kajiwara et al. 1996), or not
effective (Kim et al. 2011). The former group reported that
the expression of A. thaliana Δ12-desaturase gene (FAD2)
gave the strain a greater resistance to ethanol. In contrast,
the latter group showed increase in LA and ALA by the
overexpressed Δ12- and ω3-desarurases from C. albicans
(CaFAD2 and CaFAD3) did not enhance ethanol tolerance.

Differences in growth conditions are doubtless important, as
observed for OLE1 effects on low temperature fermenta-
tions (Kajiwara et al. 2000). They could show better growth
and ethanol productivity only in the medium containing 15 %
glucose at 10 °C, but these differences were not observed
under other culture conditions.

Alkaline growth tolerance

In order to understand the biological significance of Δ12-
andω3-fatty acid desaturation in yeast; furthermore, growth
phenotypes of the S. cerevisiae strain co-expressing K. lactis
Δ12- and ω3-desaturase genes (KlFAD2 and KlFAD3) were
examined. The strain producing LA and ALA showed an
alkaline pH tolerant phenotype and could still grow under the
condition of pH 8.2, while a control strain with empty vectors
could not grow (Yazawa et al. 2009).

To identify the responsible genes on a genome-wide
transcription basis, the effect of PUFA production was ex-
amined by DNA microarrays. DNA microarray analyses
showed that the transcription of a set of genes whose expres-
sions are under the repression of Rim101p were down-
regulated in this strain, suggesting that Rim101p, a tran-
scriptional repressor which governs the ion tolerance, was
activated. In line with this activation, the strain also showed
elevated resistance to Li+ and Na+ ions, and to zymolyase, a
yeast lytic enzyme preparation containing mainly beta-1,3-
glucanase, indicating that the cell wall integrity was also
strengthened in this strain. These findings demonstrated a
novel influence of PUFA production on transcriptional control
that is likely to play an important role in the early stage of
alkaline stress response (Yazawa et al. 2009). K. lactis strains
were more tolerant to alkaline pH than S. cerevisiae, and since
the alkaline tolerant phenotype of K. lactis has been trans-
ferred to S. cerevisiae by expressing its FAD genes in S.
cerevisiae, the content of unsaturated fatty acids might be
one of the factors involved in the alkali tolerance of yeast.

Rodríguez-Vargas et al. (2007) reported that the expres-
sion of sunflower Δ12-desaturase gene in S. cerevisiae
increased its tolerance to freezing as well as NaCl accom-
panying with the increase in LA content and the unsatura-
tion index. However, the molecular mechanism of the
influence of fatty acid composition on the stress response
is not well understood. If we could control the fatty acid
composition as we wished, engineering of fatty acid com-
position might have a potential to become one of the tools to
create S. cerevisiae strains with various stress tolerance.

Future perspectives

In recent years, more and more genes involved in the pro-
duction of various fatty acids have been discovered. Taking
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advantage of well-established host–vector systems of S.
cerevisiae, many groups are attempting to produce various
fatty acids in it. At the current moment, however, the disad-
vantage of the model yeasts is that their fatty acid contents
are not sufficiently high to apply transgenic S. cerevisiae
strains to industrial applications. S. cerevisiae does not
accumulate storage lipids and usually only 5 to 7 % of lipids
are produced per DCW, whereas some oleaginous yeasts
and fungi have 30 to 50 % lipids. In order to produce useful
fatty acids in sustainable quantities in transgenic S. cerevi-
siae, it is necessary to increase their lipid content per cell.

Attempts to increase lipid content in S. cerevisiae

The major storage lipids in yeasts are triacylglycerols
(TAGs) and the limiting step in their biosynthesis is cata-
lyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT)
and phospholipid:diacyglycerol acyltransferase enzymes
(reviewed by Yen et al. 2008). TAG metabolism is well
characterized in S. cerevisiae (Sorger and Daum 2003;
Czabany et al. 2007), and overexpression of DGAT genes
has been reported to increase the lipid content in plants and
yeasts (Hobbs et al. 1999; Bouvier-Nave et al. 2000; Jako et
al. 2001).

Kamisaka et al. (2006) found that the disruption of SNF2,
a gene encoding a transcription factor forming part of the
SWI/SNF chromatin-remodeling complex, increased the lip-
id content in S. cerevisiae. Overexpression of DGA1 (diac-
ylglycerol acyltransferase) and LEU2 genes in the snf2
disruptant has achieved 29 % of total lipid content to DCW,
high enough to use this strain as a model of oleaginous
yeast (Kamisaka et al. 2007). When the rat Δ6-desaturase
was expressed in this oleaginous S. cerevisiae, 14.6 μg of
STA/mg of DCW was produced mainly in TAG by growing
cells at 30 °C for 7 days in the presence of 0.7 g/l of ALA,
whereas only 1.6 μg of STA/mg of DCWwas produced in the
control SNF2+ strain (Kimura et al. 2009).

Key enzymes in oleaginous yeasts: malic enzyme and ATP:
citrate lyase

Oil accumulation is only found in some yeasts, fungi, and
algae. But since fatty acid biosynthetic pathways in most of
such oleaginous microorganisms are the same as that in non-
oleaginous yeast such as S. cerevisiae, their ability to accu-
mulate large amount of oil must lie outside the main pathway
of fatty acid biosynthesis. Studies in oleaginous yeasts and
fungi have revealed that ATP:citrate lyase (ACL) and malic
enzyme, which supply acetyl-CoA and NADPH, respectively,
to the main pathway of fatty acid biosynthesis, are key
enzymes that contribute to fatty acid synthesis and accumula-
tion (Ratledge and Wynn 2002; Ratledge 2004; Zhang et al.
2007; Tang et al. 2009). In fact, overexpression of malic

enzyme in the presence of malate in the culture medium
resulted in a fourfold increase in intracellular lipids in E. coli,
mimicking the lipid accumulation mechanism of oleaginous
microorganisms (Meng et al. 2011). Thus, understanding of
the underlying biochemistry and genetics of lipid accumula-
tion in oleaginous microorganisms should lead to the manip-
ulation of S. cerevisiae to increase its lipid content and to
increase the content of specific PUFAs within the lipid.

Conclusion

Due to its genetic tractability and increasing wealth of acces-
sible data, S. cerevisiae is an excellent model system for the
study of the genetics, biochemistry, and cell biology of eu-
karyotic lipid metabolism. However, since the lipid content in
S. cerevisiae is not high enough to use it for industrial appli-
cation at the moment, further improvement of its potential for
the production of useful fatty acids by metabolic engineering
is crucial for its future applications.

TAG biosynthesis enzymes and modulators of lipid par-
ticle biogenesis play important roles in lipid accumulation
(Murphy 2001; Sorger and Daum 2003; Czabany et al.
2007), and recent studies on lipid particles identified that
Fld1p, a functional homologue of human seipin, regulates
the size of lipid particles (Fei et al. 2008) and an increased
level of cellular phosphatidic acid facilitates the formation
of supersized lipid particles (Fei et al. 2011). Application of
new technologies including metabolomics and lipidomics
on S. cerevisiae are providing new information about regu-
lation of lipid metabolism (Gaspar et al. 2007; Ejsing et al.
2009; Tian et al. 2010). Furthermore, genome sequencing of
oleaginous yeast Y. lipolytica was completed recently and
various information concerning its lipid metabolism and
sequence data become available (Beopoulos et al. 2009a,
b). Combination of these increasing knowledge on the reg-
ulation of lipid and fatty acid metabolism in S. cerevisiae
itself and the application of the knowledge from the oleag-
inous yeasts will enable us to manipulate the model yeast to
use it not only in the basic biology field, but also in the field
of biotechnology of lipids and fatty acids.
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