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Abstract Heparin/heparan sulphate glycosaminoglycans
(HSGAGs) are composed of linear chains of 20–100 disac-
charide units of N-acetylated D-glucosamine α (1–4) linked
to glucuronic acid. HSGAGs are widely distributed on the
cell surface and extracellular cell matrix of virtually every
mammalian cell type and play critical role in regulating
numerous functions of blood vessel wall, blood coagulation,
inflammation response and cell differentiation. These gly-
cosaminoglycans present in this extracellular environment
very significantly influence the blood coagulation system
and cardiovascular functions. Recent studies have investi-
gated the mechanism by which cancer causes thrombosis
and emphasizes the importance of the coagulation system in
angiogenesis and tumour metastasis. Heparan sulphate/hep-
arin lyases or heparinases are a class of enzymes that are
capable of specifically cleaving the (1–4) glycosidic link-
ages in heparin and heparan sulphate to generate biological-
ly active oligosaccharides with substantially significant and
distinct clinical, pharmaceutical and prophylactic/therapeu-
tic applications. Bioavailability and pharmacokinetic behav-
iour and characteristics of these oligosaccharides vary
significantly depending on the origin/nature of the substrate
(heparin or heparan sulphate-like glycosaminoglycans), the
source of enzyme and method of preparation. Various
microorganisms are reported/patented to produce these

enzymes with different properties. Heparinases are commer-
cially used for the depolymerization of unfractionated hep-
arin to produce low molecular weight heparins (LMWHs),
an effective anticoagulant. Individual LMWHs are chemi-
cally different and unique and thus cannot be interchanged
therapeutically. Heparinases and LMWHs are reported to
control angiogenesis and metastasis also. This review cata-
logues the degradation of HSGAGs by microbial heparin/
heparan sulphate lyases and their potential either specific to
the enzymes or with the dual role for generation of oligo-
saccharides for a new generation of compounds, as shown
by various laboratory or clinical studies.

Keywords Glycosaminoglycans . Heparin lyases . Low
molecular weight heparins (LMWHs) . Neovascularization .

Unfractionated heparin (UFH)

Introduction

Heparin and its structural analogue, heparan sulphate (HS),
are member of a family of polyanionic, polydisperse, linear
polysaccharides called glycosaminoglycans (GAGs), which
perform a variety of crucial biological functions in a number
of physiological and pathological processes and have been
extensively employed as therapeutic agents (Castelli et al.
2004; Casu 2005). Despite the widespread use of heparin as
an anticoagulant, several aspects of the structure and phys-
iological function of HSGAGs remained obscure for years.
The molecular level understanding of glycosaminoglycans
fine structure, for characterization of functionally active
domains of heparin, controlling the diverse biological pro-
cesses was possible by depolymerization of HSGAGs
(Loganathan et al. 1990). The development of better defined
heparin in terms of more or less uniform mass has been
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achieved in part by the generation of low molecular weight
heparin (LMWH; MW 3,000–6,000 Da) by either gel filtra-
tion (Pangrazzi et al. 1985) or by partial enzymatic or
chemical depolymerization of heparin (Guo and Conrad
1988; Linhardt 1992; Linhardt et al. 1986).

A variety of enzymes, both mammalian and bacterial in
origin, are known to degrade HSGAGs (Ernst et al. 1995;
Hopwood 1989; Linhardt et al. 1987). These mammalian
and bacterial endolytic enzymes (endoglycosidases) cleave
the glycosidic linkage between heparin and/or heparan sul-
phate residues at susceptible points within the polysaccha-
ride chain. Mammalian endoglycosidases (or heparanases)
cleave at the reducing end of glucuronic acid by a hydrolytic
mechanism (Hopwood 1989; Pikas et al. 1998) whereas
heparinases, from microbial sources, distinctively differ
from heparanases as they depolymerise heparin and HS by

β-eliminative cleavage. Heparanase cleaves the glucuroni-
dic linkage between a non-sulphated glucuronic acid (GlcA)
and N-sulpho-glucosamine (GlcN(S)) of heparin/HS. A
highly sulphated glucosamine residue either 3-O-sulphated
or 6-O-sulphated is critical for the enzyme action (Pikas et
al. 1998). The GlcN(2-N-sulphate) structure on the reducing
side and GlcN(6-O-sulphate) structure on the nonreducing
side of the cleavage site are considerably important for the
substrate recognition by the enzyme (Okada et al. 2002).
The additional 2-N-sulphate group on the nonreducing GlcN
or 6-O-sulphate group on the reducing GlcN appears to have
a promoting effect on the heparanase action (Fig. 1).

Heparanases are found in a variety of normal and malig-
nant cells and tissues, among which are cytotrophoblasts,
endothelial cells (ECs), platelets, mast cells, neutrophils,
macrophages, T and B lymphocytes and lymphoma,

Heparinase I 

GlcN(S) α 1-4 GlcA(2S) 
Heparinase I cleaves heparin and heparan sulfate (relative activity about 3:1) at the 
linkages between GlcNS and O-sulfated GlcA, yielding mainly disaccharides. 

Heparinase II 

GlcN(S or Ac) α 1-4 GlcA(2S) 
Heparinase II cleaves N sulphated or N acetylated and non N-substituted heparan 
sulfate, and to a lesser extent heparin (relative activity about 2:1), at the 1-4 linkages 
between GlcN and GlcA residues (both glucuronic and iduronic). 

Heparinase III 

GlcN(S or Ac) α 1-4 GlcA 
Heparinase III cleaves at the 1-4 linkages between GlcN and GlcA residues in 
heparan sulfate, yielding mainly disaccharides. 

Heparanase 

GlcA(2S) β 1-4 GlcN(S or Ac)  
Heparanase cleaves the linkage between a nonsulfated GlcA and GlcNS. If the GlcN 
is 3-O-sulfated or 6-O-sulfated, the enzyme cleaves. 

Fig. 1 Structures of the
cleavage site heparinases I, II,
III and human heparanase in
heparin or heparan sulphate.
GlcN glucosamine, GlcA
glucuronic acid, S SO3, Ac
COCH3. Dashed line indicates
presence of either of the two
groups at the site
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melanoma and carcinoma (Dempsey et al. 2000a, b, c;
Gonzalez-Stawinski et al. 1999; Nakajima et al. 1986;
Rosenberg 1989). The recent studies of cloning of a single
gene by several groups (Bernard et al. 2001; Fairbanks et al.
1999; Hulett et al. 1999; Kussie et al. 1999; Toyoshima and
Nakajima 1999; Vlodavsky et al. 1999), together with bio-
chemical studies (Baker et al. 1999; Hulett et al. 2000;
Levy-Adam et al. 2005), suggests that various normal and
malignant mammalian cells express primarily identical or
highly homologous sequences of a single 65-kDa latent
heparanase enzyme (Parish et al. 2001). The human hepar-
anase gene maps to chromosome 4 at band 4q21.3, contains
14 exons and encodes a 65-kDa polypeptide. This proen-
zyme undergoes proteolytic cleavage to yield active hepar-
anase, a heterodimer of 50- and 8-kDa polypeptides
(Vlodavsky et al. 1999).

Heparanase is an important modulator of the extracellular
matrix and associated factors, specifically by releasing an-
giogenic factors and accessory fragments of HS from the
tumour microenvironment to induce an angiogenic response
(Hulett et al. 2000). Indeed, the heparanase enzyme is pref-
erentially expressed in human tumours, and its overexpres-
sion in low-metastatic tumour cells is reported to facilitate
tumour cell invasion and vascularization, events leading to
cancer progression. However, heparanase expression in non-
invasive and non-immune tissue suggests a role for hepar-
anase in tissue morphogenesis, regeneration and repair dur-
ing embryonic development and in the adult human phase.
Both zymogen and active forms of heparanase have been
shown to play biological functions which include osteoblas-
togenesis (Smith et al. 2010), nervous system development
and neural cellular differentiation (Navarro et al. 2008;
Takahashi et al. 2007).

Distinction of heparanases from heparinases is multifac-
eted which includes, but is not limited to, the working
mechanism, substrate specificity, molecular properties, ex-
pression pattern, cellular activation and localization of these
enzymes. Heparinases from various microbial sources and
their commercial, pharmaceutical and clinical applications
are the main focus of this review.

Heparin/heparan sulphate lyases: the HSGAG
degrading enzymes

Heparin lyases—sources and properties

Heparinases or heparin lyases are a class of enzymes that are
capable of specifically cleaving the major glycosidic linkages
in heparin and heparan sulphate. Three heparin lyases have
been identified in Pedobacter heparinus (formerly known as
Flavobacterium heparinum), a heparin-utilising organism that
also produces exoglycuronidases, sulphoesterases and

sulphamidases that further act on the lyase-generated oligo-
saccharide products (Galliher et al. 1981, 1982; Sasisekharan
et al. 1995; Yang et al. 1985). These lyases are designated as
heparin lyase I (heparinase, EC 4.2.2.7), heparin lyase II
(heparinase II, no EC number) and heparin lyase III
(heparitinase, EC 4.2.2.8). The three purified heparin lyases
differ in their capacity to cleave heparin and heparan sulphate:
Heparin lyase I primarily cleaves heparin, heparin lyase
III specifically cleaves heparan sulphate and heparin
lyase II acts equally on both heparin and heparan sulphate
(Linhardt et al. 1986, 1990).

The heparin lyases of P. heparinus are the most widely
used and the best studied heparin degrading enzymes.
Linker and Hovingh (1965) first reported the production of
a crude lyase enzyme from P. heparinus, which had shown
characteristic cleavage of heparin and heparitin sulphate to
produce unsaturated oligosaccharide. Later, the same group
separated this crude lyase fraction into a heparinase (heparin
lyase I) and a heparitinase (heparin lyase III). Both activities
were purified by 50–100-fold, but no physical characteriza-
tion of these enzymes was performed. Dietrich et al. (1973),
Silva and Dietrich (1974), Silva et al. (1976), Ototani and
Yosizawa (1978) and Ototani et al. (1981) isolated three
lyases, a heparinase (heparin lyase I) and two heparitinases,
from the same microorganism (P. heparinus). The heparin-
ase acted on heparin to produce mainly tri-sulphated disac-
charides (Dietrich and Nader 1974; Dietrich et al. 1971).

Linhardt et al. (1984) reported the purification of heparin-
ase (heparin lyase I) to a single band on sodium dodecyl
sulphate–polyacrylamide gel electrophoresis (PAGE).
Affinity purification of heparin lyase I on heparin-
Sepharose failed, apparently due to degradation of the col-
umn matrix. Sufficient quantities of pure heparin lyase I for
detailed characterization studies and amino acid analysis
were first prepared by Yang et al. (1985). Heparin lyase I
was used to prepare polyclonal antibodies in rabbits for
affinity purification of heparin lyase I, but excessively harsh
conditions required to elute the enzyme resulted in substan-
tial loss of activity (Linhardt et al. 1985). By a combination
of hydroxylapatite chromatography and negative adsorption
on QAE-Sephadex at pH 8.3, Yang et al. (1987) also de-
scribed a large-scale method to prepare heparin lyase I.

McLean and Williamson (1985) described the specificity
of a partially purified heparinase II. Although no evidence
of homogeneity or any physical properties for heparinase II
were presented, the broad specificity on various polymeric
substrates identified the enzyme as heparin lyase II
(Linhardt et al. 1990; Moffat et al. 1991). Nader et al.
(1990) purified two heparitinases, called heparitinase I and
II, possibly corresponding to heparin lyases II and III and
characterized their substrate specificity towards heparin and
heparan sulphate, although no physical properties of these
enzymes were presented. Heparitinase I degraded both N-
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acetylated and N-sulphated heparan sulphate. A single puri-
fication method to purify all the three heparinases was
developed and used to purify these enzymes to homogeneity
by Lohse and Linhardt (1992). All the three heparinases
from P. heparinus are periplasmic proteins and have been
isolated either by osmotic shock or sonication (Lohse and
Linhardt 1992; Zimmermann et al. 1991). Their physical
and kinetic characteristics were studied thoroughly, and
optimal reaction conditions were established and these are
summarized in Table 1.

Some Bacteroides spp., Bacillus sp. and Sphingobacterium
sp. (Nakamura et al. 1976, 1988; Salyers et al. 1977) are also
reported to produce heparinases (Table 1). Most of the hep-
arinase producing bacteria were isolated from soil, although it
is not known why a soil bacterium would produce an acidic
polysaccharide degrading lyase. It is possible that these bac-
teria could use these enzymes to degrade the GAGs from
carcasses. Heparinases were purified to apparent homogeneity
from Bacteroides stercoris HJ-15, isolated from human intes-
tine (Kim et al. 2000, 2004). A heparinase has also been
purified to apparent homogeneity from an unidentified soil
bacterium (Bohmer et al. 1990a, b).

All the heparinases are positively charged at neutral pH
(pI, 8.5–10), which may be attributed to the basic nature of
heparinases required to degrade highly polyanionic sub-
strates. These enzymes differ from those isolated from P.
heparinus in its molecular weight, pI, amino acid composi-
tion and kinetic properties (Table 1). Furthermore, antibody
assays, amino acid analysis/sequencing, peptide mass fin-
gerprinting and Southern blotting between heparinases from
different bacteria have shown no cross-reactivity (Bellamy
and Horikoshi 1992; Sasisekharan et al. 1993), suggesting a
low degree of sequence and structural homology among
heparinases from different species. However, Yoshida et al.
(2002a) have reported that Bacillus circulans heparinase
gene and deduced amino acid sequence have partial simi-
larity with enzymes belonging to the family of acidic poly-
saccharide lyases that degrade chondroitin sulphate and
hyaluronic acid. Recently, Hyun et al. (2010) have reported
that recombinant heparinase III from B. stercoris HJ-15 has
70 % homology to heparinase II from P. heparinus.

All the three heparinases from P. heparinus have been
sequenced, cloned and expressed in Escherichia coli
(Godavarti et al. 1996; Sasisekharan et al. 1993; Shaya et
al. 2004). The heparinase genes were expressed in E. coli
with intact biological function (Sasisekharan et al. 1993; Su
et al. 1996). Molecular analysis of the three heparinases
revealed no significant homology either at the DNA or
protein levels, nor were they closely linked on the P. hep-
arinus chromosome (Su et al. 1996).

Elucidation of the catalytically critical amino acids in the
heparinases active site and substrate binding domains was
useful for understanding their mechanism of action and for

their development as molecular tools for heparin or heparan
sulphate-like glycosaminoglycan (HLGAG) analysis. The
heparin-binding site in heparinase I contains two Cardin–
Weintraub heparin-binding consensus sequences, a calcium
coordinating motif, a cysteine and a histidine residue
(Godavarti and Sasisekharan 1996). The primary sequence
of heparinase II reveals three cysteine residues (cysteine-
164, cysteine-189 and cysteine-348) in contrast to heparin-
ase I, which has two cysteine residues and heparinase III
which does not have cysteines. Similarly, calcium is re-
quired for the enzymatic activity of heparinases I and III,
but heparinase II is not only active in the absence of calcium
but the presence of calcium inhibits enzyme activity (Lohse
and Linhardt 1992; Sasisekharan et al. 1996b).

Heparinases—clinical and diagnostic applications

The HLGAGs have chemical heterogeneity and structural
complexity, which has limited the development of effective
tools and methods for a rapid sequencing. Sequencing meth-
odology of HLGAGs is mainly dependent on the chemical
or enzymatic degradation of the polysaccharide in a
sequence-specific manner (Venkataraman et al. 1999). An
important enzymatic tool in this sequencing process is the
heparinases, including heparinases I, II and III, produced by
P. heparinus. Each of the heparinases has its own unique
HLGAG sequence at which it cleaves, making these
enzymes valuable tools in obtaining sequence-specific in-
formation (Dongfang et al. 2002). Heparinases I, II and III
from P. heparinus cleave heparin/HS with a high degree of
substrate specificity, at the α-1–4-glucosaminidic linkages
within HS/heparin and produce disaccharides with a nonre-
ducing 4,5-unsaturated uronic acid residue (Godavarti and
Sasisekharan 1996). Heparin lyase I cleaves the glucosami-
nidic linkage in GlcN(N-sulphate) α1-4 IdceA(2-sulphate)
and tolerates C-6 sulphation of the hexosamine unit (Fig. 1).
Conversely, heparinase III requires primarily an unsulphated
uronic acid moiety and cleaves the glucosaminidic linkage
in GlcN(N-sulphate or N-acetylate) α1-4 GlcA and tolerates
C-6 sulphation of the hexosamine unit (Desai et al. 1993;
Sugahara et al. 1995; Yamada and Sugahara 1998).
Heparinase II displays a broader substrate specificity, pos-
sessing the ability to cleave all glycosaminidic linkages
independent of O- and/or N-sulphation as well as the type
of the uronic acid residue of heparin/HS (Shriver et al.
1998b) (Fig. 1). Structure determination of heparin or hep-
arin sulphate involves depolymerisation of their chains into
constituent disaccharide components by a detailed degrada-
tion with a single or a cocktail of heparinases. The structural
information with regard to the hexuronic acid epimer pres-
ent at the nonreducing end is lost by the creation of a C0C
bond between C4 and C5 (Stringer et al. 2003). Accurate
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sequence assignment relies on the highly pure activity of
GAG degrading enzymes as well as a detailed understand-
ing of their action towards specific linkages. The substrate
specificity and action pattern of the enzymes provide im-
portant constraints to reconstruct the GAG sequence.

The preparation of structurally defined pure heparin-
derived oligosaccharides is crucial in understanding hepa-
rin’s interaction with proteins and in determining the precise
structural requirements essential for the binding of heparin
with the proteins. Structurally defined heparin-derived oli-
gosaccharides can be obtained from the mixtures of heparin-
derived oligosaccharides produced by depolymerization of
heparin. The oligosaccharides prepared from heparin are
purified and analysed by fractionation on the basis of mo-
lecular weight, charge density, solubility characteristics and
affinity (usually to antithrombin) (Hook et al. 1976). The
oligosaccharide mixtures are first fractionated by low-
pressure gel permeation chromatography into size-uniform
mixtures of disaccharides, tetrasaccharides, hexasaccharides
and higher oligosaccharides. Each size-fractionated mixture
is then separated further by gradient PAGE (Edens et al.
1992; Rice et al. 1987), capillary electrophoresis (CE)
(Linhardt et al. 1993), strong anion exchange (Hileman et
al. 1997) and reversed-phase ion-pairing high-performance
liquid chromatography (Guo and Conrad 1988; Linhardt et
al. 1989; Thanawiroon and Linhardt 2003). These provide
important data on composition and domain structure but
generally yield indirect and incomplete sequence informa-
tion. Chromatographic and electrophoretic approaches share
several limitations. The enzymatic cleavage is characterized
based purely on gel mobility or HPLC elution, which are not
completely predictable. Elution of GAGs from SAX or amine
columns using salt could potentially bias the analysis towards
species that have relatively higher sulphation and may not be
sensitive to the separation of species with low sulphation. Both
methodologies rely on end-labelling of saccharides requiring
the introduction of excess labelling reagent. The ladder of
peaks or gel shifts caused by treatment with exolytic enzymes
is not fully comprehensible, as these substrate specificities
have not been thoroughly characterized.

Sensitive methodologies based on CE and mass spectrom-
etry (MS) have been developed to detect the femto-/picomolar
amounts of GAG. MS has also been applied to the analysis of
oligosaccharides. Fast-atom bombardment MS, electrospray
ionization MS and matrix-assisted laser desorption/ionization
MS are capable of determining the molecular weight of oligo-
saccharides (Mallis et al. 1989). However, one- and two-
dimensional nuclear magnetic resonance spectroscopy pro-
vides for the accurate determination of the structure of small
oligosaccharides (Desai and Linhardt 1994; Linhardt et al.
1986; Mikhailov et al. 1996).

The heparinases have also been used to investigate in
great detail the role of HSGAGs in aspects of heparin-

binding proteins naming a few interaction of growth factors,
including the fibroblast growth factors (FGFs) involved in
cell proliferation, differentiation and angiogenesis
(Bernfield et al. 1999; Tumova et al. 2000); interaction of
HSGAGs as coreceptor for intracellular pathogens entry into
host cells (Ascencio et al. 1993; Bugatti et al. 2007; Chen et
al. 1997; Crublet et al. 2008; Urbinati et al. 2009); chemo-
kines, a family of over 40 structurally related glycoproteins
that facilitate leukocyte migration, angiogenesis and breast
cancer metastasis (Lantz et al. 1991; Nelson et al. 1993);
inhibition of smooth muscle cell growth for antiproliferative
properties (Benitz et al. 1986; Castellot et al. 1982, 1985a,
b; Jackson et al. 1991; Reilly et al. 1989); anticomplemen-
tary activity through interaction of heparin with complement
proteins (Edens et al. 1993; Yu et al. 2005); cell adhesion
(Edens et al. 2001) and lipid metabolism (Engelberg 1996).

The most thoroughly studied heparin-binding protein is
the serine protease inhibitor antithrombin III (AT III) that
interacts with thrombin and factor Xa in the blood coagula-
tion cascade. The molecular basis for the anticoagulant
function of heparin was elucidated in the early 1980s when
a distinct pentasaccharide sequence within the heparin chain
was identified as being crucial for binding and activating
antithrombin, leading to accelerated inhibition of the coag-
ulation cascade (Lindahl et al. 1980; Petitou et al. 2003).
These studies were triggered by the finding that only a
fraction of heparin molecules were capable of binding with
high affinity to antithrombin and further that this fraction
essentially accounted for the anticoagulant activity of the
unfractionated material. Oligosaccharides obtained by selec-
tive, partial depolymerization of heparin were fractionated
on immobilized antithrombin, and the smallest high-affinity
molecules recovered were subjected to structural analysis, in
conjunction with various modification steps (Petitou et al.
2003). This region is composed of one glucuronic acid unit,
one iduronic acid unit and three glucosamine units, two of
which are invariably N-sulphated, whereas the remaining
one may be either N-acetylated or N-sulphated (Bourin and
Lindahl 1993).

Heparinases are certainly essential agents in studying
structural, biochemical, physiological and pathological roles
of HLGAGs. Further, heparinases have shown potential for
several diagnostic as well as therapeutic applications.

Low molecular weight heparin production

Although heparin is highly efficacious in a variety of clinical
situations and has the potential to be used in many others, the
side effects associated with heparin therapy are many and
varied. Side effects such as heparin-induced thrombocytopenia
are primarily associated with the long chain of unfractionated
heparin (UFH), which provides binding domains for various
proteins. This has led to the explosion in the generation and

Appl Microbiol Biotechnol (2012) 94:307–321 311



T
ab

le
1

C
om

pa
ra
tiv

e
ch
ar
t
of

bi
oc
he
m
ic
al

pr
op

er
tie
s
of

he
pa
ri
na
se
s
pr
od

uc
ed

an
d
pu

ri
fi
ed

fr
om

va
ri
ou

s
m
ic
ro
bi
al

is
ol
at
es

P
ed
ob
ac
te
r
he
pa
ri
nu
s
(A
T
C
C
13
12
5
)
fo
rm

er
ly

kn
ow

n
as

F
la
vo
ba
ct
er
iu
m

he
pa
ri
nu
m

B
ac
te
ro
id
es

sp
p.

B
ac
te
ro
id
es

st
er
co
ri
s
H
J-
15

N
C
B
I4
65
06

B
ac
te
ro
id
es

he
pa
ri
no
ly
tic
us

A
T
C
C
35
89
5

O
rg
an
is
m

ch
ar
ac
te
rs

S
oi
l
is
ol
at
e,
ae
ro
bi
c,
G
ra
m

ne
ga
tiv

e,
no
n-
sp
or
e
fo
rm

in
g,

no
n-
fl
ag
el
la
te
d
fl
ex
ib
le

ro
ds
,
ca
ta
la
se

an
d
ox
id
as
e
po
si
tiv

e
Is
ol
at
ed

fr
om

hu
m
an

in
te
st
in
e,

G
ra
m

ne
ga
tiv

e,
ob
lig

at
e
an
ae
ro
be

Is
ol
at
ed

fr
om

hu
m
an

pe
ri
od
on
tit
is
le
si
on
s,

sa
cc
ha
ro
ly
tic
,
an
ae
ro
bi
c

G
ra
m
-n
eg
at
iv
e
ro
ds

L
oc
al
iz
at
io
n

P
er
ip
la
sm

ic
P
er
ip
la
sm

ic
P
er
ip
la
sm

ic
In
tr
ac
el
lu
la
r

In
tr
ac
el
lu
la
r

In
tr
ac
el
lu
la
r
(<
10

%
ex
tr
ac
el
lu
la
r)

E
nz
ym

e
no
m
en
cl
at
ur
e

E
C
nu
m
be
r

4.
2.
2.
7

–
4.
2.
2.
8

–
–

–

S
ys
te
m
at
ic

na
m
e

H
ep
ar
in

ly
as
e
I

H
ep
ar
in

ly
as
e
II

H
ep
ar
in

ly
as
e
II
I

S
im

ila
r
to

he
pa
ri
n
ly
as
e
II
I

S
im

ila
r
to

he
pa
ri
n
ly
as
e
I

S
im

ila
r
to

he
pa
ri
n
ly
as
e
I

R
ea
ct
io
n

E
lim

in
at
iv
e
de
gr
ad
at
io
n

E
lim

in
at
iv
e
de
gr
ad
at
io
n

E
lim

in
at
iv
e
de
gr
ad
at
io
n

–
–

–

E
nz
ym

e–
lig

an
d
in
te
ra
ct
io
ns

S
ub
st
ra
te
/p
ro
du
ct

S
el
ec
tiv

el
y
cl
ea
ve
s
hi
gh
ly

su
lp
ha
te
d

po
ly
sa
cc
ha
ri
de

ch
ai
ns

co
nt
ai
ni
ng

lin
ka
ge
s
to

2-
O
-s
ul
ph
at
ed

α-
L
-i
do
py
r-

an
os
yl
ur
on
ic

ac
id

re
si
du
es
.

W
id
e
sp
ec
if
ic
ity

fo
r
su
bs
tr
at
es

co
m
pr
is
ed

of
lin

ka
ge
s
co
nt
ai
ni
ng

bo
th

α-
L
-i
do
py
r-

an
os
yl
ur
on
ic

an
d
β-

D
-g
lu
co
py
ra
no
-s
yl
-

ur
on
ic

ac
id

re
si
du
es
.

C
le
av
es

lin
ka
ge
s
of

re
du
ce
d

de
ns
ity

of
su
lp
ha
tio

n
an
d
th
at

co
nt
ai
n
β-

D
-g
lu
co
py
ra
no

-
sy
lu
ro
ni
c
ac
id

re
si
du
es

D
is
ac
ch
ar
id
es

as
m
ai
n
pr
od
uc
t

D
is
ac
ch
ar
id
es

as
m
ai
n

pr
od
uc
t

Pr
od
uc
ts
ar
e
te
tr
as
ac
ch
ar
id
e

an
d
di
sa
cc
ha
ri
de

S
ub
st
ra
te

sp
ec
if
ic
ity

(%
he
pa
ri
na
se

ac
tiv

ity
)

H
ep
ar
in

(p
or
ci
ne
)

10
0

10
0

0
10
0

10
0

M
os
t
ac
tiv

e
H
ep
ar
in

(b
ov
in
e)

–
–

–
–

–
–

H
ep
ar
an

su
lp
ha
te
(p
or
ci
ne
)

30
17
2

10
0

26
2

17
M
od
er
at
e

H
ep
ar
an

su
lp
ha
te

(b
ov
in
e)

–
–

–
61
0

15
–

N
-A

ce
ty
l
he
pa
ri
n

0
0

0
–

–
–

2-
O
-D

es
ul
ph
at
ed

he
pa
ri
n

–
–

–
–

26
–

D
ea
m
in
at
ed

he
pa
ri
n

–
–

–
–

–
–

de
-N
-S
ul
ph
at
ed

he
pa
ri
n

–
–

–
–

–
–

de
-N
-S
ul
ph
at
ed

ac
et
yl

he
pa
ri
n

–
–

–
–

–
–

N
-A

ce
ty
l-
de
-o
-s
ul
ph
at
ed

he
pa
ri
n

–
–

–
–

–
–

H
ep
ar
in

(L
M
W

60
00
)

–
–

–
–

–
–

C
ho
nd
ro
iti
n
su
lp
ha
te

A
0

0
0

0
0

0
C
ho
nd
ro
iti
n
su
lp
ha
te

B
<
0.
5

<
0.
5

<
0.
5

0
0

0
C
ho
nd
ro
iti
n
su
lp
ha
te

C
<
0.
5

<
0.
5

<
0.
5

0
0

0
C
ho
nd
ro
iti
n
su
lp
ha
te

D
0

0
0

–
–

–

C
ho
nd
ro
iti
n
su
lp
ha
te

E
0

0
0

–
–

–

H
ya
lu
ro
ni
c
ac
id

0
0

0
–

–
0

C
ol
om

in
ic

ac
id

A
ch
ar
an

su
lp
ha
te

–
–

–
0

0
–

de
-O

-S
ul
ph
at
ed

ac
ha
ra
n

su
lp
ha
te

–
–

–
3

–
–

N
-S
ul
ph
oa
ch
ar
an

su
lp
ha
te

–
–

–
2

–
–

C
of
ac
to
r

M
et
al
s
an
d
io
n
ac
tiv

at
or
s

C
a2

+
at

10
m
M

in
cr
ea
se
d
ac
tiv

ity
by

30
%

C
u2

+
at

10
μM

C
a2

+
at

10
m
M

in
cr
ea
se
d

ac
tiv

ity
by

20
%

,
bu
t
w
as

un
af
fe
ct
ed

by
C
u2

+
an
d
H
g2

+

at
10

μM
ea
ch

M
g2

+
,
C
a2

+
,
C
o2

+
,
B
a2

+
in
cr
ea
se
d

ac
tiv

ity
at

10
0
μM

C
o2

+
,C
u2

+
,
N
i2
+
,
B
a2

+
an
d

Z
n2

+
in
cr
ea
se
d
ac
tiv

ity
at

10
0
μM

F
e2

+

D
T
T,

β-
m
er
ca
pt
oe
th
an
ol

E
D
TA

,T
P
C
K
,I
A
A
,D

T
T,

β-
m
er
ca
pt
oe
th
an
ol

O
pt
im

um
N
aC

l
10
0
m
M

<
40
0
m
M

<
40
0
m
M

30
0
m
M

50
0
m
M

–

In
hi
bi
to
rs

In
hi
bi
te
d
by

C
u2

+
,
H
g2

+
an
d
Z
n2

+

(a
t
1
m
M
)

C
a2

+
,
H
g2

+
an
d
Z
n2

+
In
hi
bi
te
d
by

C
u2

+
,H

g2
+
an
d
Z
n2

+
(a
t
1
m
M
)

N
i2
+
,
C
u2

+
,
P
b2

+
,
M
n2

+
,
Z
n2

+
,
C
d2

+

(a
t
10
0
μM

)
P
b2

+
,M

g2
+
,C

d2
+
,M

n2
+
an
d

C
a2

+
(a
t
10
0
μM

)
C
u2

+
,
H
g2

+

D
E
P
C

E
D
TA

,
P
M
S
F,

di
et
hy
l
p-
ni
tr
op
he
ny
l

ph
os
ph
at
e,
T
P
C
K
,
D
T
T,

IA
A
,

P
M
S
F,

pa
ra
ox
on
,

ca
rb
od
iim

id
e,
bu
ta
ne
di
ol
,

312 Appl Microbiol Biotechnol (2012) 94:307–321



T
ab

le
1

(c
on

tin
ue
d)

P
ed
ob
ac
te
r
he
pa
ri
nu
s
(A
T
C
C
13
12
5
)
fo
rm

er
ly

kn
ow

n
as

F
la
vo
ba
ct
er
iu
m

he
pa
ri
nu
m

B
ac
te
ro
id
es

sp
p.

B
ac
te
ro
id
es

st
er
co
ri
s
H
J-
15

N
C
B
I4
65
06

B
ac
te
ro
id
es

he
pa
ri
no
ly
tic
us

A
T
C
C
35
89
5

ca
rb
od
iim

id
e,
bu
ta
ne
di
ol
,
p-

ch
lo
ro
m
er
cu
ri
cp
he
ny
l
su
lp
ho
ni
c
ac
id

an
d

T
L
C
K

p-
ch
lo
ro
m
er
cu
ri
cp
he
ny
l

su
lp
ho
ni
c
ac
id

an
d
T
L
C
K

F
un
ct
io
na
l
pa
ra
m
et
er
s

K
M

17
.8
±
1.
50

μM
fo
r
3–
50
0
μM

of
he
pa
ri
n

57
.7
±
6.
56

an
d
11
.2
±
2.
18

μM
fo
r
3–

50
0
μM

of
he
pa
ri
n
an
d
he
pa
ra
n

su
lp
ha
te
,
re
sp
ec
tiv

el
y

29
.4
±
3.
16

μM
fo
r
3–
50
0
μM

of
he
pa
ra
n
su
lp
ha
te

9.
05

×
10

−
5
M

fo
r
he
pa
ri
n
an
d
1.
53

×
11
0−

5
M

fo
r
po
rc
in
e
he
pa
ra
n
su
lp
ha
te

1.
3
×
10

−
5
M

fo
r
3.
57

to
35
7
μM

he
pa
ri
n

–

V
m
ax

(μ
M
/m

in
/m

g
pr
ot
ei
n)

21
9
±
3.
48

fo
r
3–
50
0
μM

of
he
pa
ri
n

16
.7
±
0.
55
5
an
d
28
.6
±
1.
26

fo
r
3–
50
0
μM

of
he
pa
rin

an
d
he
pa
ra
n
su
lp
ha
te
,r
es
pe
ct
iv
el
y

14
1
±
3.
88

fo
r
3–
50
0
μM

of
he
pa
ra
n
su
lp
ha
te

38
.2

fo
r
he
pa
ri
n
an
d
58
.4

fo
r
po
rc
in
e

he
pa
ra
n
su
lp
ha
te

8.
8
fo
r
3.
57

to
35
7
μM

he
pa
ri
n

–

pI
va
lu
e

9.
3–
9.
5

9.
1–
9.
2

9.
6–
9.
9

8.
7

9.
0

9.
5

pH
op
tim

um
7.
15

on
he
pa
ri
n

7.
3
on

he
pa
ri
n
an
d
6.
9
on

he
pa
ra
n
su
lp
ha
te

7.
6
on

he
pa
ra
n
su
lp
ha
te

7.
2

7.
0
on

he
pa
ri
n

6.
5

T
em

pe
ra
tu
re

op
tim

um
35

°C
40

°C
45

°C
45

°C
50

°C
S
to
ra
ge

st
ab
ili
ty

L
os
t
80

%
of

its
ac
tiv

ity
in

5
h
at

30
°C

L
os
t
30

%
of

its
ac
tiv

ity
on

bo
th

he
pa
ri
n

an
d
he
pa
ra
n
su
lp
ha
te
af
te
r2

5
h
at
35

°C
L
os
t
80

%
of

its
ac
tiv

ity
in

3.
5

an
d
0.
5
h
at

35
°C

an
d
40

°C
,

re
sp
ec
tiv

el
y

–
–

T
he
rm

ol
ab
ile

(i
na
ct
iv
at
ed

at
45

°C
in

5
m
in
)

E
nz
ym

e
st
ru
ct
ur
e

T
ot
al

am
in
o
ac
id

38
4

72
7

63
6

66
6

–
–

M
ol
ec
ul
ar

w
ei
gh
t
(D

a)
42
,5
08

85
,7
65

73
,2
02

77
,3
30

48
,0
00

63
,0
00

G
en
e
(b
p)

he
pA

,
13
79

he
pB

,
23
19

he
pC

,
19
80

20
01

–
–

P
os
ttr
an
sl
at
io
na
l

M
od
if
ic
at
io
n

N
-t
er
m
in
us

is
bl
oc
ke
d

–
–

N
-t
er
m
in
us

is
bl
oc
ke
d

–
–

C
ry
st
al
liz
at
io
n
(P
D
B
e

ac
ce
ss
io
n
no
.)

–
2.
15

A
(2
F
U
Q
)

–
–

–
–

L
in
ks
/b
ib
lio

gr
ap
hy

L
in
ks

U
ni
pr
ot

ac
ce
ss
io
n
no
.

Q
05
81
9

Q
46
08
0

Q
59
28
9

C
7E

X
L
6

–
–

E
M
B
L
ac
ce
ss
io
n
no
.

L
12
53
4

L
12
53
4

U
27
58
6

G
Q
30
47
55

–
–

B
ib
lio

gr
ap
hy

D
es
ai

et
al
.
(1
99
3)
,
G
od
av
ar
ti
an
d

S
as
is
ek
ha
ra
n
(1
99
6)
,
L
oh
se

an
d

L
in
ha
rd
t
(1
99
2)
,
S
as
is
ek
ha
ra
n
et

al
.

(1
99
3)
,
Y
an
g
et

al
.
(1
98
5)

L
oh
se

an
d
L
in
ha
rd
t
(1
99
2)
,
S
ha
ya

et
al
.

(2
00
4,

20
06
),
S
hr
iv
er

et
al
.
(1
99
8a
),
S
u

et
al
.
(1
99
6)

G
od
av
ar
ti
et

al
.
(1
99
6)
,
H
an

et
al
.(
20
09
),
L
oh
se

an
d
L
in
ha
rd
t

(1
99
2)
,
S
u
et

al
.
(1
99
6)

H
yu
n
et

al
.
(2
01
0)
,
K
im

et
al
.
(2
00
0)
,

(1
99
8)

K
im

et
al
.
(2
00
4)

G
es
ne
r
an
d
Je
nk
in

(1
96
1)
,

N
ak
am

ur
a
et

al
.
(1
98
8)
,

O
ku
da

et
al
.
(1
98
5)

Sp
hi
ng
ob
ac
te
ri
um

sp
.

B
ac
ill
us

sp
p.

B
ac
te
ri
um

A
sp
er
gi
llu

s
fla

vu
s
E
M
B
L

F
M
21
07
56
;
M
T
C
C
86
54

A
ci
ne
to
ba
ct
er

ca
lc
oa
ce
tic
us

E
M
B
L

F
M
21
07
55
;
M
T
C
C
94
88

B
ac
ill
us

ci
rc
ul
an
s
N
C
B
I
13
97

B
ac
ill
us

sp
.
F
E
R
M

B
P
26
13

O
rg
an
is
m

ch
ar
ac
te
rs

Is
ol
at
ed

fr
om

ef
fl
ue
nt

of
a
fo
od

m
ill

S
oi
l
is
ol
at
e,
G
ra
m

po
si
tiv

e,
ae
ro
bi
c
en
do
sp
or
e

fo
rm

in
g
ro
ds

So
il
is
ol
at
e,
G
ra
m

po
si
tiv
e,

fa
cu
lta
tiv
e

an
ae
ro
be
,m

ot
ile
,

ca
ta
la
se
-p
os
iti
ve
,

sp
or
e
fo
rm

in
g,
ro
d

S
oi
l
is
ol
at
e,
G
ra
m

ne
ga
tiv

e
S
oi
l
is
ol
at
e

S
oi
l
is
ol
at
e,
G
ra
m

ne
ga
tiv

e,
co
cc
us

L
oc
al
iz
at
io
n

P
er
ip
la
sm

ic
In
tr
ac
el
lu
la
r

E
xt
ra
ce
llu

la
r

C
on
st
itu

tiv
e
In
tr
ac
el
lu
la
r

In
tr
ac
el
lu
la
r

In
tr
ac
el
lu
la
r

E
nz
ym

e
no
m
en
cl
at
ur
e

E
C
nu
m
be
r

–
–

–
–

–
–

S
ys
te
m
at
ic

na
m
e

S
im

ila
r
to

he
pa
ri
n
ly
as
e
II

S
im

ila
r
to

he
pa
ri
n
ly
as
e
II

S
im

ila
r
to

he
pa
ri
n

ly
as
e
II

S
im

ila
r
to

he
pa
ri
n
ly
as
e
I

S
im

ila
r
to

he
pa
ri
n
ly
as
e
I

S
im

ila
r
to

he
pa
ri
n
ly
as
e
I

R
ea
ct
io
n

–
–

–
–

–
–

Appl Microbiol Biotechnol (2012) 94:307–321 313



T
ab

le
1

(c
on

tin
ue
d)

Sp
hi
ng
ob
ac
te
ri
um

sp
.

B
ac
ill
us

sp
p.

B
ac
te
ri
um

A
sp
er
gi
llu

s
fla

vu
s
E
M
B
L

F
M
21
07
56
;
M
T
C
C
86
54

A
ci
ne
to
ba
ct
er

ca
lc
oa
ce
tic
us

E
M
B
L

F
M
21
07
55
;
M
T
C
C
94
88

B
ac
ill
us

ci
rc
ul
an
s
N
C
B
I
13
97

B
ac
ill
us

sp
.
F
E
R
M

B
P
26
13

E
nz
ym

e–
lig

an
d
in
te
ra
ct
io
ns

S
ub
st
ra
te
/p
ro
du
ct

–
U
ns
at
ur
at
ed

di
sa
cc
ha
ri
de
s
as

th
e
m
aj
or

pr
od
uc
t
of

he
pa
ri
n
an
d
he
pa
ra
n
de
gr
ad
at
io
n

–
D
is
ac
ch
ar
id
es

as
th
e

m
aj
or

pr
od
uc
t

D
is
ac
ch
ar
id
es

as
th
e
m
aj
or

pr
od
uc
t

D
is
ac
ch
ar
id
es

as
th
e
m
aj
or

pr
od
uc
t

S
ub
st
ra
te

sp
ec
if
ic
ity

(%
he
pa
ri
na
se

ac
tiv

ity
)

H
ep
ar
in

(p
or
ci
ne
)

10
0

10
0

M
os
t
ac
tiv

e
10
0

10
0

10
0

H
ep
ar
in

(b
ov
in
e)

58
.3

–
–

–
75
.4

78
.8

H
ep
ar
an

su
lp
ha
te
(p
or
ci
ne
)

97
52
5

M
od
er
at
e

11
20
.2

22
.5

H
ep
ar
an

su
lp
ha
te

(b
ov
in
e)

91
.6

–
–

–
–

–

N
-A

ce
ty
l
he
pa
ri
n

78
.4

–
–

–
–

–

2-
O
-D

es
ul
ph
at
ed

he
pa
ri
n

–
–

–
–

–
–

D
ea
m
in
at
ed

he
pa
ri
n

53
.8

–
–

–
–

–

de
-N
-S
ul
ph
at
ed

he
pa
ri
n

8.
3

–
–

–
–

–

de
-N
-S
ul
ph
at
ed

ac
et
yl

he
pa
ri
n

10
8.
3

–
–

–
–

–

N
-A

ce
ty
l-
de
-o
-s
ul
ph
at
ed

he
pa
ri
n

25
0

–
–

–
–

–

H
ep
ar
in

(L
M
W

60
00
)

72
.4

–
–

–
65
.8

72
.0
4

C
ho
nd
ro
iti
n
su
lp
ha
te

A
0

28
0

0
0

0

C
ho
nd
ro
iti
n
su
lp
ha
te

B
2

0
0

–
–

–

C
ho
nd
ro
iti
n
su
lp
ha
te

C
1

80
0

–
–

–

C
ho
nd
ro
iti
n
su
lp
ha
te

D
–

62
–

–
–

–

C
ho
nd
ro
iti
n
su
lp
ha
te

E
–

6
–

–
–

–

H
ya
lu
ro
ni
c
ac
id

0
–

0
–

0
0

C
ol
om

in
ic

ac
id

0
–

–
–

–

A
ch
ar
an

su
lp
ha
te

–
–

–
–

–
–

de
-O

-S
ul
ph
at
ed

ac
ha
ra
n

su
lp
ha
te

–
–

–
–

–
–

N
-S
ul
ph
oa
ch
ar
an

su
lp
ha
te

–
–

–
–

–
–

C
of
ac
to
r

M
et
al
s
an
d
io
n
ac
tiv

at
or
s

C
a2

+
,
N
H
4
+
,
B
S
A

C
a2

+
,
B
a2

+
,
M
g2

+
C
a2

+
,
B
a2

+
,
M
g2

+
N
a+

C
o2

+
,C
u2

+
,
M
n2

+
an
d
F
e2

+

in
cr
ea
se
d
ac
tiv

ity
at

10
0
μM

C
o2

+
,C
u2

+
,
C
a2

+
,Z
n2

+
,
M
g2

+
,
P
b2

+

an
d
F
e2

+
in
cr
ea
se
d
ac
tiv

ity
at

10
0
μM

U
re
a,
E
D
C

E
D
TA

,
D
T
T,

β-
m
er
ca
pt
oe
th
an
ol

E
D
TA

,
D
T
T,

β-
m
er
ca
pt
oe
th
an
ol

O
pt
im

um
N
aC

l
20
0
m
M

–
<
30

m
M

30
m
M

30
0
m
M

25
0
m
M

In
hi
bi
to
rs

N
aI
,
N
B
S
,
pC

M
B
,
β-
m
er
ca
pt
oe
th
an
ol
,

D
T
T,

P
M
S
F,

D
E
P
C

M
n2

+
,
C
o2

+
,
N
i2
+
,
Z
n2

+
,
C
u2

+
C
o2

+
,
Z
n2

+
,
C
u2

+
,

N
i2
+
an
d
P
b2

+
H
g2

+
N
i2
+
,
B
a2

+
,
P
b2

+
an
d
Z
n2

+
N
i2
+
,
B
a2

+
,
C
d2

+
an
d
H
g2

+

D
E
P
C
,
IA

A
D
E
P
C
,
IA

A

F
un
ct
io
na
l
pa
ra
m
et
er
s

K
M

42
μM

fo
r
de
-o
-s
ul
ph
at
ed
-N
-a
ce
ty
l

he
pa
ri
n

6.
8
an
d
5.
9
μM

fo
r
he
pa
ri
n
an
d
he
pa
ra
n
su
lp
ha
te
,

re
sp
ec
tiv

el
y

–
3.
4
μM

fo
r
3
to

30
0
μM

he
pa
ri
n

2.
2
×
10

−
5
M

fo
r
20

to
50
0
μM

of
he
pa
ri
n

2.
6
×
10

−
5
M

fo
r
20

to
50
0
μM

of
he
pa
ri
n

V
m
ax

(μ
M
/m

in
/m

g
pr
ot
ei
n)

16
6
fo
r
de
-o
-s
ul
ph
at
ed
-N
-a
ce
ty
l
he
pa
ri
n

7.
1
an
d
6.
0
fo
r
he
pa
ri
n
an
d
he
pa
ra
n
su
lp
ha
te
,

re
sp
ec
tiv

el
y

–
36
.8

μM
/m

in
fo
r

0.
18

μg
/m

l
pr
ot
ei
n

30
.8

m
M
/m

in
fo
r
0.
04
6
m
g/
m
L

pr
ot
ei
n

57
m
M
/m

in
fo
r
0.
05
2
m
g/
m
L
pr
ot
ei
n

pI
va
lu
e

–
–

9.
2

–
–

pH
op
tim

um
6.
5

7.
5

7.
5

7.
6

7.
0

7.
5

T
em

pe
ra
tu
re

op
tim

um
40
–
45

°C
45
–
50

°C
45

°C
30

°C
35

°C

314 Appl Microbiol Biotechnol (2012) 94:307–321



utilisation of low molecular weight heparin as an efficacious
alternative to UFH. Although attention has been focussed on
LMWH as heparin substitutes due to their more predictable
pharmacological action, reduced side effects, sustained antith-
rombotic activity and better bioavailability, there is at present
limited ability to standardize the LMWH manufacturing pro-
cess. Because the LMWH are derived from heparins and hence
are polydisperse and microheterogenous, with undefined struc-
ture, they possess inherent variability, which currently prevents
an efficient process for their manufacture. It would be of value
both medically and scientifically to have a consistent, quality
controlled, time efficient, concentration independent and high-
ly reproducible method for producing heparin and other gly-
cosaminoglycans (Sundaram et al. 2003).

The development of better defined heparin in terms of
more or less uniform mass has been achieved in part by the
generation of LMWH (MW 3,000–6,000 Da) by either gel
filtration (Pangrazzi et al. 1985) or by partial enzymatic or
chemical depolymerization of heparin (Guo and Conrad
1988; Linhardt 1992; Linhardt et al. 1986). LMWHs pos-
sess distinct pharmacologic profile that is largely deter-
mined by their composition and thus on their preparative
method (Fareed et al. 2000). The oxidative instability of
heparin, as observed during pharmaceutical grade heparin
preparation, suggested the possibility of preparation of
LMWHs by oxidative methods, oxygen radical processes
and oxidative depolymerization through nitrous acid deam-
ination. Besides oxidative breakdown, two β-eliminative
methods, one enzymatic and the other chemical, are used
to commercially prepare LMWHs (Table 2) (Linhardt 1994;
Linhardt and Toida 1997). Enzymatic breakdown of UFH
for generation of LMWHs is reported by heparin lyases (or
heparinases I, II, III) of P. heparinus, specifically hepa-
rinases I and II (Langer et al. 1983; Linhardt et al. 1992;
Shriver et al. 2000; Viskov and Mourier 2007). The extent
of heparinase reaction is monitored by measuring the
change in absorbance associated with the unsaturated uronic
acid residue formed in each product molecule (Linhardt
1994; Lohse and Linhardt 1992). The depolymerization is
stopped by removing or inactivating the enzyme. After
recovery of the GAG from the enzyme and removal of very
low molecular weight by-products (i.e. disaccharides and
tetrasaccharides), a LMWH is obtained that has the desired
molecular weight and activity properties (Linhardt and
Gunay 1999). This method is used to prepare the clinically
used LMWH product, tinzaparin sodium (Table 2).

Heparin antagonist

Patients undergoing surgery with cardiopulmonary bypass
(CPB) must receive systemic anticoagulation with intense
antithrombin activity to prevent activation of the coagula-
tion system by the artificial surfaces of the CPB apparatus.T
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Heparin has long been used to temporarily render the blood
incoagulable during extracorporeal circulation, cardiovascu-
lar surgery and other arterial interventions. But bleeding
complications are especially common when the arterial tree
is violated, occurring in as many as 10–15 % of cases. After
the patient is separated from CPB, heparin’s anticoagulant
effect must be neutralized to halt substantial bleeding. For
cardiovascular surgery and many related interventions, prot-
amine has long been the standard antagonist when acute and
complete neutralization of heparin anticoagulant effect is
necessary. Protamine is the only currently approved drug
in the USAwith antiheparin activity. Protamine’s efficacy is
related in part to its total net cationic charge, but unfortu-
nately so is its toxicity, including systemic hypotension,
pulmonary vasoconstriction and anaphylactic reactions.
For these reasons, there is renewed interest in developing
heparin antagonists which will replace the use of protamine
(Shenoy et al. 1999).

Heparinase I (Neutralase™; IBEX Technologies,
Montreal, QC, Canada) that specifically inactivates heparin
is a possible alternative to protamine. Heparinase neutralizes
heparin by enzymatic cleavage of alpha–glycosidic linkages
at the AT III binding site (Ammar and Fisher 1997). Several
studies have examined the efficacy of heparinase I to reverse
heparin-induced anticoagulation in vitro and compared hep-
arinase I to protamine as an antagonist of heparin-induced
anticoagulation in animal models like dogs and rabbits
(Michelsen et al. 1996; Silver et al. 1998). Animal inves-
tigations demonstrated that heparinase I reverses heparin-
prolonged activated clotting time (ACT) without significant
hemodynamic changes. When given in doses up to 30 μg/
kg, heparinase I successfully neutralized heparin’s anticoag-
ulant effect in a dose-dependent fashion without significant
adverse sequelae. Heres et al. (2001) assessed the heparin-
neutralizing activity and safety profile of different doses of
heparinase I in 49 patients undergoing coronary artery

surgery. They found that heparinase I, 7 or 10 μg/kg, effec-
tively restored the ACT after unfractionated heparin was
given to patients undergoing CPB for coronary artery sur-
gery. Heparinase I caused no clinically significant hemody-
namic or other adverse responses. In addition, because
heparinase I totally eliminated the antithrombin activity of
heparin but only partially eliminated the anti-Xa activity,
anti-Xa activity increased as additional heparin was metab-
olized by heparinase I. Heparinase I displayed a half-life of
12 min in patients with coronary artery disease. Its activity
decayed accordingly, so that after approximately 36 min,
little activity remained. However, another study examining
the efficacy and safety of heparinase I as an alternative to
protamine in patients undergoing aortocoronary bypass graft
surgery found that though heparinase I reversed heparin
anticoagulation but is not equivalent to protamine because
of its inferior safety profile (Stafford-Smith et al. 2005).
Further studies are required to compare heparinase I and
protamine for clinically relevant outcome variables.

Anti-angiogenic activity of heparinase

Cancer development is characterized by uncontrolled tu-
mour proliferation and secondary metastasis. The tumour
tissue can be divided into three compartments, namely the
tumour cell compartment, the endothelial cell compartment
and the extracellular matrix compartment. ECM compart-
ment interfaces with both tumour and endothelial cell com-
partments and regulates the overall development of cellular
compartments. Heparan sulphate proteoglycans (HSPGs)
along with structural proteins are key components of the
cell surface–ECM interface. The strategic location of
HSPGs facilitates regulation of cell proliferation and migra-
tion, the key components for the tumour growth and angio-
genesis (Sanderson 2001). HSPGs on endothelial cell
surfaces act as co-receptors for a variety of pro-angiogenic

Table 2 Commercially available low molecular weight heparins; their method of preparation and commercial manufacturer

LMWHs Manufacturer Preparation method Molecular weight

INN Trade name

Ardeparin Normiflo Wyeth-Ayerst Peroxidative cleavage 5,500–6,500

Certiparin Sandoparin Sandoz Isoamyl nitrate deamination 4,500–8,000

Dalteparin Fragmin Pharmacia Nitrous acid deamination 2,000–9,000

Enoxaparin Lovenox; Clexane RhBne-Poulenc Rorer; Aventis β-Elimination of heparin benzyl ester 3,500–5,500

Nadroparin Fraxiparin Sanofi Nitrous acid deamination 4,500

Parnaparin Fluxum Alfa Wasserman Peroxidative cleavage 4,500

Reviparin Clivarin Knoll Nitrous acid deamination 3,500–4,500

Tinzaparin Innohep; Logiparin Braun; Novo/Leo/Dupont Heparinase 3,000–6,000

Adapted from Zhang et al. (2004), Linhardt and Gunay (1999) and Bergqvist (1996)

INN International Non-proprietary Name
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growth factors such as FGF and vascular endothelial growth
factor (VEGF) and anti-angiogenic factors such as endo-
statin (Bikfalvi et al. 1997). There is sufficient experimental
data to suggest that heparins may interfere with various
aspects of cancer proliferation, angiogenesis and metastasis
formation (Collen et al. 2000; Hasan et al. 2005; Weidner et
al. 1991).

Vascularisation is the hallmark of malignant tumours
without which solid tissue cannot grow beyond 1–2 mm
(Pluda 1997). Tumour-associated neovascularization is a
central pathogenic step in the process of tumour growth,
invasion and metastasis. These complex processes involve
multiple steps and pathways dependent on the local balance
between positive and negative regulatory factors, as well as
interactions among the tumour, its vasculature and the sur-
rounding extracellular tissue matrix. Neovascularization is
the process of generating new blood vessels mediated pri-
marily by progenitor and/or endothelial cells leading to tube
formation, resulting in a stabilized neovascular channel.
Angiogenesis, the predominant form of neovascularization
in carcinogenesis, is mediated by endothelial cells sprouting
from postcapillary venules, leading primarily to new capil-
laries (Risau 1997).

The genetic background of the angiogenic switch during
tumour progression is not fully understood, but discoveries
of the endothelial mitogenic growth factors (VEGF, FGF,
platelet-derived growth factor, hepatocyte growth factor) as
the main angiogenic factors suggested that the switch is able
to turn on the expression of the genes of these factors in
tumours. The molecular interactions between endothelial
mitogenic growth factors with their signalling or accessory
receptors have become a major pharmacological target for
development of anti-angiogenic drugs. The recognition of
the common chemical nature of these endothelial growth
factors, i.e. their heparin-binding potential, provides an easy
though non-specific anti-angiogenic target. Besides other
anti-angiogenic factors (Timar et al. 2001), heparinases I–
III have been reported to reduce neovascularization by al-
tering the action of FGF at the level of receptor binding
(Dongfang et al. 2002; Raman and Kuberan 2010;
Sasisekharan et al. 1994). It was found that heparinase
treatment of capillary EC caused a significant loss in FGF
binding capacity in these cells. Treatment with 125 nM
heparinase I resulted in greater that 95 % loss in HSPG
binding sites on ECs accompanied by an over 80 % decrease
in receptor binding. The half maximal concentrations re-
quired to remove HSPG sites and reduce receptor binding
were 0.7 and 1.5 nM, respectively. The concentrations of
heparinase I required to reduce FGF binding to heparan
sulphate and receptor sites by 50 % were 0.5 and 1.5 nM,
respectively. For heparinase II, IC50 concentrations were 2
and 8 nM, respectively, for the heparan sulphate and the
receptor binding sites. On the other hand, heparinase III was

most potent in inhibiting the FGF binding, with an IC50 of
0.15 and 0.2 nM for the heparan sulphate and the receptor
binding, respectively (Sasisekharan et al. 1996a).

Concluding remarks

The role of heparin as an anticoagulant was established
much earlier to the discovery of heparinases. Although it
is still in its infancy, clinical and diagnostic application of
heparinases holds promise for unravelling the HLGAGs
microstructure and biological activity along with a range
of diverse applications. Deciphering their physiologic and
clinical role will establish the evolutionary relationship of
these proteins from various microbial sources but also hav-
ing potential to improve and develop the role of heparinases
in various clinical manifestations.
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