
MINI-REVIEW

Red mold, diabetes, and oxidative stress: a review

Yeu-Ching Shi & Tzu-Ming Pan

Received: 5 January 2012 /Revised: 6 February 2012 /Accepted: 6 February 2012 /Published online: 2 March 2012
# Springer-Verlag 2012

Abstract Type 2 diabetes is a major health concern and a
rapidly growing disease with a modern etiology, which
produces significant morbidity and mortality. The optimal
management of type 2 diabetes aims to control hyperglyce-
mia, hypertension, and dyslipidemia to reduce overall risks.
Diabetes and its complications usually develop as oxidative
stress increases. Monascus-fermented rice, also called red
mold rice or red mold dioscorea are used in China to enhance
food color and flavor. Red mold-fermented products are pop-
ular health foods that are considered to have antiobesity,
antifatigue, antioxidation, and cancer prevention effects. This
review article describes the antidiabetic and antioxidative
stress effects on humans and animals of red mold-fermented
products or their secondary metabolites.
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Introduction

Red mold rice (RMR) is a fermented food product that is
produced by inoculating Monascus into steamed rice, and it
is a common food item in China. Redmold-fermented products

have been used in Asia for centuries to enhance the flavor of
food, as well as serving as a traditional medicine for the
treatment of digestive disorders, vascular function, and blood
circulation (Lee et al. 2006a; Ma et al. 2000). Red mold-
fermented products are now considered to be functional foods,
and they have been developed as commercial capsules for
cardiovascular disease prevention. Monascus species produce
several bioactive metabolites, and the secondary metabolites
that are produced include pigments (red pigments: monascor-
ubramine and rubropunctanin; orange pigments: monascoru-
brin and rubropunctanin; yellow pigments: ankaflavin (AK)
and monascin (MS)) (Wong and Bau 1977; Wild et al. 2002),
antioxidant compounds (e.g., isoflavones, dimerumic acid,
phenols, and tannins) (Akihisa et al. 2005; Aniya et al. 2000),
polyketide monacolins (antiobesity, anti-inflammatory, antidia-
betic, and antioxidative stress-related metabolites, such as aza-
philones, furanoisophthalides, and amino acids) (Su et al. 2003;
Akihisa et al. 2005; Lee et al. 2006b), and γ-aminobutyric acid
(GABA, a neurotransmitter and hypotensive agent) (Su et al.
2003; Juslova et al. 1996; Ma et al. 2000). Oxidative stress is
increased during diabetes and caused damage to organisms.
Reactive oxygen species (ROS) and the inflammatory response
are generated as a result of hyperglycemia, which causes
many of the secondary complications of diabetes (West
2000). Previous studies revealed that the level of blood glu-
cose was decreased in experimental rats fed with Monascus-
fermented products (Chen and Liu 2006); triglyceride (TG)
and total cholesterol (TC) levels were decreased (Shi and Pan
2010a). The diabetic rats showed higher ROS and lower
antioxidant enzyme (glutathione reductase (GR), superoxide
dismutase (SOD), and catalase (CAT)) activities in pancreas
when treated with red mold-fermented products (Shi and Pan
2010b). These results indicated that red mold-fermented prod-
ucts not only regulate hyperglycemia but also provide the
prevention effects of hyperglycemia-induced oxidative stress.
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The aforementioned Monascus-fermented products and their
metabolites may be of great benefit for the amelioration of
diabetes symptoms and their development.

Diabetes, oxidative stress, and diabetic complications

Diabetes mellitus is a metabolic disorder that is characterized
by an elevated blood glucose concentration and the inadequate
secretion or activity of endogenous insulin (Singh et al. 2008).
Diabetes leads to hyperglycemia, and it also causes hyperlip-
idemia, hyperinsulinemia, hypertension, and atherosclerosis
(Sowers et al. 2001; Beckman et al. 2002; Sepici et al. 2004).
The etiology of this disease is not well defined, but environ-
mental factors, autoimmune disease, and viral infections have
been implicated (Like et al. 1979; Kataoka et al. 1983;
Shewade et al. 2001; Maritim et al. 2003). Several studies
have suggested that a hyperglycemia-induced overproduction
of superoxide seems to be activated in all pathways involved
in the pathogenesis of diabetes complications (Fig. 1)
(Robertson et al. 2003; Ceriello 2006). In vivo evidence sup-
ports the major contribution of hyperglycemia to the produc-
tion of oxidative stress and the acute endothelial dysfunction
of patients with diabetes (Ceriello 2006). Free radical-caused
oxidative stress and oxidative damage to tissues are common
endpoints of age-related or chronic diseases, such as athero-
sclerosis, diabetes, Alzheimer’s disease, and rheumatoid
arthritis (Baynes and Thorpe 1999; Tuppo and Forman
2001; Hadjigogos 2003). Abnormally high levels of free
radicals and the loss of antioxidant defense mechanisms
lead to damage to the cellular organelles and enzymes,

increased lipid peroxidation, DNA damage, and protein
derivatives, and the development of insulin resistance (West
2000; Maritim et al. 2003). Vascular function, like impaired
endothelium-dependent vasodilatation, has been in diabetic
animal models (Mayhan 1989) and has found endothelial
dysfunction (Johnstone et al. 1993). Normal or diabetic ani-
mals exposed to exogenous hyperglycemia subsequently have
exhibited attenuated endothelium-dependent relaxation, an
endothelial dysfunction (Kawano et al. 1999). Free radicals
generation-induced oxidative stress has produced the
hyperglycemia-dependent endothelial dysfunction; it makes
diabetes and its complication severe (Diederich et al. 1994).

Microvascular and cardiovascular oxidative stress increases
during the development of diabetes complications (Coleman
2001; Maritim et al. 2003). The mechanisms whereby in-
creased oxidative stress leads to the activation of the five major
pathways involved in the pathogenesis of complications are as
follows: increased formation of advanced glycation end prod-
ucts (AGEs) (Scivittaro et al. 2000), polyol pathway flux
(Chung et al. 2003), increased expression of the AGEs receptor
and its activating ligands, overactivation of the hexosamine
pathway (Horal et al. 2004), and protein kinase C activation
(Tuttle et al. 2009; Giacco and Brownlee 2010). Increased
intracellular ROS activation occurs in a number of proinflam-
matory pathways (Bulua et al. 2011), which has been impli-
cated in inflammatory diseases including rheumatoid arthritis,
type 1 diabetes (Chen et al. 2008), and multiple sclerosis
(Gilgun-Sherki et al. 2004). Overexpression of antioxidant
enzymes in transgenic diabetic mice, such as SOD, prevents
diabetic nephropathy (Ceriello et al. 2000), retinopathy
(Lopes de Jesus et al. 2008), and cardiomyopathy (Singal et
al. 2001). Understanding the relationships among oxidative
stress, diabetes, and its complications will aid the discovery of
novel therapeutic treatments for the prevention of diabetic
complications.

Beneficial effects of red mold-fermented products
on blood glucose management

Red mold products fermented byMonascus purpureus NTU
568 produce secondary metabolites such as monacolin K,
MS, AK, and GABA, with potent hypolipidemic and anti-
hypertensive effects that have been characterized in our
previous studies (Lee et al. 2006a, b; Wu et al. 2009). We
studied the preventive and beneficial effects of M. purpur-
eus NTU 568 fermented red mold products on diabetic
animals (Shi and Pan 2010a, b; Shi et al. 2011). As dis-
cussed below, results from two of these studies might help to
explain the main mechanism whereby red mold-fermented
products ameliorate the development of diabetes by lower-
ing the levels of blood glucose and lipid profiles in diabetic
animals.

Fig. 1 Hyperglycemia presents excessively high concentrations of
glucose for reactive oxidative species formation and oxidative stress
(Robertson et al. 2003)
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Diabetes symptom modification via blood glucose
reduction

Red mold-fermented products are known to have a role in
the regulation of blood glucose and insulin resistance
(Chang et al. 2006; Chen and Liu 2006; Shi and Pan
2010a). Red mold-fermented products can also lower blood
cholesterol levels, control cardiovascular complications, and
glucose homeostasis (Journoud and Jones 2004; Chang et al.
2006). They are considered useful for the treatment of
diabetes. The studies revealed that feeding experimental rats
with 150 mg/kg of Monascus-fermented products after 12 h
of fasting led to the blood glucose level decreasing by
19.4% after 90 min compared with a control group, while
the insulin level increased by 60.2% (Chen and Liu 2006).
The mediation of acetylcholine (ACh, an inhibitor of cho-
line uptake) release from the nerve terminals to enhance
insulin secretion by red mold-fermented products may also
be considered (Chen and Liu 2006). Gluconeogenesis aug-
mentation is a major factor affecting plasma glucose increases
in diabetic animals (Consoli et al. 1989). Previous studies
showed that the phosphoenolpyruvate carboxykinase
(PEPCK) mRNA levels in the liver of diabetic rats were
inhibited by oral treatment with red mold-fermented products
for 14 days (Chang et al. 2006). Red mold-fermented products
may act directly or indirectly via endogenous substances to
modify hepatic PEPCK gene expression. After 8 weeks of
feeding diabetic rats with different types of red mold-
fermented products (RMR, red mold adlay and red mold
dioscorea (RMD)), it was found that all types of red mold
products reduced the blood glucose levels (Shi and Pan
2010a). Moreover, the degraded lipid profiles of TG and TC
were improved by red mold-fermented product treatments
(Table 1) (Shi and Pan 2010b). Red mold-fermented products
can increase the release of ACh from nerve terminals,
decrease hepatic gluconeogenesis, and increase insulin secre-
tion, which lowers the blood glucose activity.

Inhibiting hyperglycemia-increased oxidative
stress and inflammation via antioxidation
and anti-inflammatory effects

Red mold-fermented products that contain a variety of anti-
oxidants are mentioned in an ancient Chinese pharmacopoeia
of medicinal food and herbs. The antioxidant action of tradi-
tional foods has been investigated, and it was shown that
Monascus anka and Monascus ruber have a strong antioxi-
dant action (Aniya et al. 1999). M. anka and M. ruber scav-
enged over 60% of 1,1-diphenyl-2-picrylhydrazyl (DPPH)
radicals and inhibited lipid peroxidation at a concentration of
1.6% (Aniya et al. 2000). The radical-scavenging, iron-
chelating, andDNA-protection activities of liquid fermentation
products derived from Monascus pilosus were significantly
higher when grown in a garlic-containing medium (Kuo et al.
2006). The addition of garlic to the culture medium signifi-
cantly increased the antioxidant activities of M. pilosus fer-
mentation products in terms of DPPH (50% inhibition at a
concentration of 4.62%), superoxide (50% inhibition at a con-
centration lower than 5.0%), and hydrogen peroxide (50%
inhibition at a concentration lower than 0.1%) scavenging
activity, iron-chelating activity, as well as protecting against
lipid peroxidation and DNA damage (Kuo et al. 2006).

Throughout the experimental period (8 weeks), diabetic rats
had higher ROS levels (12.1–65.8%) and lower activities of
SOD (18.2–35.7%), CAT (26.4–34.9%), and GR (9.0–30.0%)
in the pancreas compared with rats treated with red mold-
fermented products (Shi and Pan 2010b). Moreover, nitric
oxide (leading to oxidative stress) production and endothelin-
1 (upregulated in diabetes) levels were improved by red mold-
fermented product treatment (Shi and Pan 2010b).

The RMD contained 3,572.7 mg/kgMS and 2,444.3 mg/kg
AK higher than RMR (3,099.7 mg/kg MS and 1,048.8 mg/kg
AK) (Shi and Pan 2010c). RMD has greater hypolipidemic,
antidiabetic, and antioxidant effects than traditional RMR in
experimental animals where it reduces oxidative stress and the
anti-inflammatory response (Lee et al. 2007b; Shi and Pan
2010a, b). Diabetic rats treated with RMD for 6 weeks had
higher activity levels of SOD, GR, glutathione peroxidase
(GPx), and CAT in the pancreas compared with diabetic
control rats (Table 2) (Shi et al. 2011). The islet inflammatory
process in diabetic rats exhibited an increased islet cytokine
(interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α)
expression (Ehses et al. 2009). The increased production of
IL-6 and interferon (IFN)-γ by STZ-induced diabetic rats
was identified as autoimmune diabetes (Ishihara and
Hirano 2002). RMD inhibited the diabetes-induced ele-
vation in the levels of IL-1β and TNF-α in the pancreas,
and it ameliorated pancreatic β-cell damage (Fig. 2)
caused by STZ (Shi et al. 2011). It was demonstrated
that red mold-fermented products possess several treatment-
oriented properties, including the control of hyperglycemia,

Table 1 Serum triglyceride (TG) and cholesterol (TC) levels in dia-
betic rats were ameliorated by red mold-fermented products treatment

Groups TG (mg/dL) TC (mg/dL)

Normal control (NC) 87.9±12.5** 74.7±5.6*

Diabetic control (DC) 437.3±22.5 100.3±9.5

DM + RMR 141.8±34.3** 76.0±7.0*

DM + RMD 122.3±32.5** 75.8±10.1*

DM + RMA 272.6±69.8* 77.7±14.6*

Data are presented as the means ± SE of six rats in each group

DM rat with diabetes mellitus, RMR red mold rice, RMD red mold
dioscorea, RMA red mold adlay

*P<0.05; **P<0.001 (compared with data from normal control and
STZ-induced diabetic rats treated with diabetic control)
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antioxidative stress function, as well as anti-inflammatory and
cytoprotective effects.

Red mold secondary metabolites with antidiabetic
and related beneficial effects γ-aminobutyric
acid (GABA)

GABA is an amino acid transmitter that is present in the
inhibitory neurons of the central nervous system, which is
synthesized from glutamic acid by glutamic acid decarbox-
ylase (Fig. 3) (Gerber and Hare 1980; Pipeleers et al. 1985).
GABA has several well-known physiological functions,
including antihypertensive and diabetic hyperglycemia pre-
vention activities (Wu et al. 2009; Soltani et al. 2011).
Several manufactured functional foods have a high GABA
content: GABA-enriched rice germ by soaking in water
(Komatsuzaki et al. 2007), GABA-enriched brown rice by
high pressure treatment and germination (Kinefuchi et al.
1999), and red mold rice containing the Monascus fungus
(Rhyu et al. 2000). Some studies have isolated and identi-
fied the GABA-rich Monascus strains and irradiated them
with UV or modified substrates to raise their GABA pro-
duction (Chuang et al. 2011; Jiang et al. 2011). The impor-
tance of GABA for the function of hormonal secretion has
been reported (Cavagnini et al. 1977; Sorenson et al. 1991).
GABA agonists have been used to modify the blood glucose
levels of diabetic rats and increase the plasma insulin con-
centrations to levels similar to those of non-diabetic animals
(Gomez et al. 1999). These experiments demonstrated that
GABA and GABA receptor agonist drugs act on the endo-
crine pancreas in vivo, ultimately increasing the insulin
levels and decreasing the blood glucose levels of diabetic
rats (Gomez et al. 1999).

Table 2 Antioxidative activity of red mold dioscorea in the pancreas of experimental rats

Groups GR GPx SOD CAT
nmol GSSG/min/mg protein nmol GSSG/min/mg protein U/mg protein nmol H2O2/min/mg protein

Normal control (NC) 3.3±0.5* 14.6±1.4* 3.3±0.5* 47.1±1.4*

Diabetic control (DC) 2.6±0.4 5.6±3.6 1.6±0.6 22.7±1.8

DM+RMD 4.2±0.3* 14.4±3.3* 3.5±0.4* 40.0±2.3*

Data are presented as the means ± SE of six rats in each group

DM rat with diabetes mellitus, RMD red mold dioscorea, GR glutathione reductase, GPx glutathione peroxidase, SOD superoxide dismutase, CAT
catalase

*P<0.05 (compared with data from normal control and STZ-induced diabetic rats treated with diabetic control

Fig. 2 Immunohistochemical evaluation on pancreas (×400). Immu-
nohistochemical staining was carried out using avidin-biotinylated
horseradish peroxidase kit. NC normal control group, DC diabetic
control group, RMD diabetic animals with red mold dioscorea treat-
ment (Shi et al. 2011) Fig. 3 The chemical structure of γ-aminobutyric acid (GABA)
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Type 1 diabetes is an autoimmune disease that is charac-
terized by the infiltration of the pancreatic islets with T lym-
phocytes and macrophages, where consequent loss of β-cells
requires β-cell restoration and immune suppression therapy
(Eizirik et al. 2009; Lehuen et al. 2010; Soltani et al, 2011).
Research has indicated that GABA exerts antidiabetic effects
by acting on the islet β-cells and the immune system. GABA
leads to membrane depolarization and the activation of PI3-K/
Akt-dependent pathways, which restores β-cell mass and
reverses diabetes. GABA has β-cell regenerative and immune
inhibitory effects on islet cell function, and it regulates glucose
homeostasis (Soltani et al. 2011).

Monascin (MS)

It was reported that MS is the major constituent of the
azaphilonoid pigments found in extracts of RMR (Fig. 4)
(Hsu et al. 2010). MS is a potential cancer-preventive agent
for combating chemical and environmental carcinogenesis.
It is also an anti-inflammatory agent that inhibits the 12-O-
tetradecanoylphorbol 13-acetate-induced inflammatory
response in mice (Akihisa et al. 2005). In previous studies,
we showed that the RMD may have hypolipidemic and
hypoglycemic effects via its secondary metabolite MS (Lee et
al. 2010b; Shi and Pan 2010a). Chronic inflammation in
muscle tissue is linked with type 2 diabetes, insulin resistance,
and diabetic complications. Peroxisome proliferator-activated
receptor (PPAR, a member of the nuclear receptor family of
transcription factors) ligands have been reported to activate
the phosphatidylinositol 3-kinase (PI3K)/Akt pathway
(Bulhak et al. 2009). Studies have indicated that MS inhibited
the p-JNK activity and prevented PPAR-γ phosphorylation
via its PPAR-γ activity and the PI3K/Akt pathway (Lee et al.
2011). MS treatment of C2C12 cells may elevate PPAR-γ
mRNA expression and prevent PPAR-γ phosphorylation.
Moreover, the use of a PPAR-γ antagonist (GW9662) to block
PPAR-γ activation in C2C12 cell indicated thatMSmay be an
agonist of PPAR-γ, which improves insulin resistance (Lee
et al. 2011).

ThemechanismswherebyMS exerts its in vivo action were
tested using animal and Caenorhabditis elegans models (Shi
et al. 2012). The nematode C. elegans has been an important
animal model for studying the molecular mechanisms of drug
effects and disease pathogenesis. In animal experiments, we
found that the levels of blood glucose, serum insulin, TG, TC,
high-density lipoprotein, and the activities of antioxidant
enzymes were ameliorated by MS treatment in STZ-induced
diabetic rats (Shi et al. 2012). DAF-16/FOX (Forkhead box)
proteins are a family of transcription factors that are involved
in metabolism, stress resistance, and antioxidative defense in
C. elegans and mammals (Henderson and Johnson 2001;
Murphy et al. 2002). Studies have indicated that MS induced
the hepatic mRNA levels of FOXO1, FOXO3a, catalase, and
MnSOD in diabetic rats and enhanced the expression of small
heat shock protein, glutathione S-transferase, and SOD-3 inC.
elegans (Fig. 5) (Shi et al. 2012).Mechanistic studies in cells,
rats, and C. elegans suggest that the protective effects of MS
are mediated via the regulation of the FOXO/DAF-16-depen-
dent insulin signaling pathway and the AKT pathway, by
inducing the expression of stress response/antioxidant genes,
regulating PPAR-γ, and inhibiting JNK activation (Lee et al.
2011; Shi et al. 2012).

Safety

Red mold-fermented products may be contaminated by citri-
nin, which is regarded as a toxic secondary metabolite of
Aspergillus and Penicillium species to damage the kidneys

Fig. 4 The chemical structure of monascin (MS)

Fig. 5 Effects of monascin (MS) on the expressions of heat shock
protein (HSP)-16.2, superoxide dismutase (SOD)-3, and glutathione S-
transferase (GST)-4 in Caenorhabditis elegans. Transgenic worms
were incubated with 1 μM MS or 0.1% DMSO as the solvent control
at 22 °C. Total GFP fluorescence for each whole worm was quantified
by Image-Pro Plus software. Data shown are the average number of
pixels in the transgenic C. elegans (n020) at each indicated treatment.
Data are presented as the mean ± SD (Shi et al. 2012)
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and liver. (Hetherington and Raistrick 1931). The lethal dose
(LD50) of citrinin has been reported to be about 35–58 mg/kg
for oral administration to a mouse, 50 mg/kg to a rat, and
134 mg/kg to a rabbit (Hanika an Carlton 1994). The toxicity
evaluations of Monascus-fermented products for an experi-
mental period of as long as 4 months have shown no toxicity
effects (Li et al. 1998).

Studies on increasing the level of monacolin K and decreas-
ing the level of citrinin have been investigated by several
laboratories (Chen and Hu 2005; Wang et al. 2004). The
previous study has developed a post-process to remove citrinin
yet retain monacolin K in the RMR preparation (Lee et al.
2007a). On the basis of the findings from the 90-day animal
test with citrinin (1, 2, 10, 20, and 200 ppm) treatment, the
no-observable-adverse-effect level (NOAEL) is 200 ppm
citrinin for male Wistar rats (Lee et al. 2010a). Investigations
are focused on the conditions of red mold-fermented produc-
tion to a lower citrinin concentration.

Conclusion

Monascus-fermented rice is mentioned in an ancient Chinese
pharmacopoeia of medicinal food. A product fermented with
M. purpureus NTU 568 has been used to ameliorate hyperlip-
idemia, hypertension, diabetes, obesity, and Alzheimer’s dis-
ease. The novel product RMD was found to contain higher
amounts of antioxidative and anti-inflammatory substances,
GABA, and MS, compared with traditional RMR, and it also
had greater potential for ameliorating insulin resistance and
diabetes. Table 3 shows that red mold-fermented products and
its secondary metabolites utilize a different preventive mech-
anism for diabetes, and a hypothesis regarding the preventa-
tive activity of red mold-fermented products and its secondary
metabolites is presented in Fig. 6. Several mechanisms, PI3-
K/Akt-dependent pathway and FOXO/DAF-16 transcription
factors activation, explaining howMonascus species-fermented
products ameliorate diabetes and related oxidative stress are

Table 3 Comparisons between the reduced levels of risk factors for diabetes and its complications caused by red mold-fermented products and its
secondary metabolites

Sample Inhibition Increase Reference

Blood
glucose level

Oxidative
stress

Inflammation PEPCK
activity

p-JNK
activity

Insulin
level

Ach
activity

FOXO transcription
factor activity

RMFP + − − − − + + − Chen and Liu (2006)

RMFP + − − + − + − − Chang et al. (2006)

RMFP + − − − − + − − Shi and Pan (2010a)

RMFP − − + − − − − − Shi and Pan (2010b)

RMFP + + + − − − − − Shi et al. (2011)

GABA + − − − − − + − Gomez et al. (1999)

GABA + + + − − − − − Soltani et al. (2011)

MS − − − − + − − − Lee et al. (2011)

MS + + − − − + − + Shi et al. (2012)

ACh acetylcholine, FOXO Forkhead box family, GABA gamma-amino butyric acid, JNK c-Jun N-terminal kinases, PEPCK phosphoenolpyruvate
carboxykinase, RMFP red mold-fermented products

Fig. 6 Hypothesis proposing of
the preventative approach of red
mold-fermented products and
its secondary metabolites with
diabetic oxidative stress,
inflammatory response, and
insulin resistance
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available at present, but its underlying functional ingredients
and its deep mechanisms remain elusive. Therefore, future
studies should be focused on the isolation of functional ingre-
dients and investigations of their mechanisms in different ani-
mal models, which will support the development of useful
therapies for diabetes and its complications.
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