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Abstract Malolactic fermentation (MLF) is the bacte-
rially driven decarboxylation of L-malic acid to L-lactic
acid and carbon dioxide, and brings about deacidifica-
tion, flavour modification and microbial stability of wine.
The main objective of MLF is to decrease wine sourness
by a small increase in wine pH via the metabolism of L-
malic acid. Oenococcus oeni is the main lactic acid
bacterium to conduct MLF in virtually all red wine and
an increasing number of white and sparkling wine bases.
Over the last decade, it is becoming increasingly
recognized that O. oeni exhibits a diverse array of
secondary metabolic activities during MLF which can
modify the sensory properties of wine. These secondary
activities include the metabolism of organic acids,
carbohydrates, polysaccharides and amino acids, and
numerous enzymes such as glycosidases, esterases and
proteases, which generate volatile compounds well above
their odour detection threshold. Phenotypic variation
between O. oeni strains is central for producing different
wine styles. Recent studies using array-based compara-
tive genome hybridization and genome sequencing of
three O. oeni strains have revealed the large genomic
diversity within this species. This review will explore the
links between O. oeni metabolism, genomic diversity and
wine sensory attributes.
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Introduction

In addition to the initial impact that wine colour has on the
perception of wine quality, it is the aroma and flavour of a
glass of red or white wine that has the greatest impact on the
consumer. The formation of wine aroma is complex, with a
combination of many factors contributing and interacting
throughout grapegrowing, harvesting, winemaking and mat-
uration. Grape variety and composition, viticultural practices,
yeast and bacterial metabolism during fermentation, wine-
making techniques, ageing in oak barrels and bottling with
different closures (natural cork, synthetic closure or screw
cap) all contribute to the sensory experience of wine.

Oenococcus oeni is the main lactic acid bacteria (LAB)
involved in winemaking, and its major role is conducting
malolactic fermentation (MLF), the decarboxylation of L-
malic acid to L-lactic acid and CO2 (Henick-Kling 1993).
The consequence of MLF is an increase in wine pH 0.2 to
0.5 units and a decrease in titratable acidity, which translates
into a decrease in wine sourness (Amerine and Roessler
1983). There are two other consequences of MLF: increased
microbial stability of wine through the removal of a potential
carbon source (malic acid) which can be utilised by spoilage
yeast and bacteria, and the bacterial production of various
secondary metabolites, which can improve the organoleptic
properties of wine. Whilst other wine-associated LAB
species, from the Lactobacillus and Pediococcus genera,
are able to conduct MLF, species from these groups are also
associated with wine spoilage and therefore are generally
regarded as undesirable.

Malolactic bacteria have had an interesting history in
microbiology. A summary of this is shown in Fig. 1. Evidence
of winemaking dates back almost 7,000 years, and it has
long been recognised that bacteria make a positive contribu-
tion (Chambers and Pretorius 2010; Swiegers et al. 2005).
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Louis Pasteur first described the presence of bacteria in
wine over 150 years ago, and despite their role in malic
acid metabolism being elucidated only 50 years later,
through the work of Müller-Thurgau, Berthelot, de
Fleurieu, Ordonneau, Koch and Möslinger (Bartowsky
2005), the actual bacterial species responsible was not
formally classified (originally as Leuconostoc oenos) until
the mid-1960s by Garvie (1967). With the introduction of
molecular biology techniques, a new genus, Oenococcus,
was described, and L. oenos was reclassified as O. oeni
(Dicks et al. 1995). O. oeni was the sole species in the
genus until the mid-2000s when Oenococcus kitaharae
was identified in composting distilled shochu residue
(Endo and Okada 2006). The genome of O. oeni was
mapped in the 1990s (Ze-Ze et al. 1998), and several
strains have now been fully sequenced (Mills et al. 2005;
Borneman et al. 2010; Guzzo, unpublished data).

This mini review aims to highlight how genomics is
beginning to assist in connecting the sensory aspects of MLF
and O. oeni metabolism with genetic diversity within the
species.

O. oeni and malolactic fermentation

One of the most important aspects of MLF is to ensure that
the process is reliably completed in a timely manner so that

the wine can be stabilised as soon as possible and spoilage
microorganisms do not proliferate; a prolonged or delayed
MLF augments the risk of spoilage by microorganisms
including Lactobacillus, Pediococcus, Acetobacter and
Brettanomyces species (Gerbaux et al. 2009; Bartowsky
and Pretorius 2008; Renouf et al. 2007). Spoilage by the
yeast Brettanomyces bruxellensis can, for example, lead to
production of 4-ethyl phenol and related compounds giving
rise to undesirable sensory qualities (e.g. sweaty, barnyard,
horsey, medicinal characters) (Loureiro and Malfeito-Ferreira
2003; Curtin et al. 2007). Bacteria-related spoilage includes
mousy off flavour, geranium taint, acrolein, ropy wines,
elevated acetic acid production (volatile acidity) and the
production of biogenic amines (Bartowsky and Henschke
2008; Bartowsky and Pretorius 2008; Sponholz 1993;
Lonvaud-Funel 2001).

Metabolism of L-malic acid in O. oeni is via the
malolactic enzyme (Kunkee 1991) and is a direct enzymatic
decarboxylation, with NAD and Mn++ as cofactors and
without free intermediates. The enzyme is composed of two
identical subunits of 60 kDa and has been purified from
several LAB species (Naouri et al. 1990; Lonvaud-Funel
and Strasser de Saad 1982; Caspritz and Radler 1983;
Spettoli et al. 1984). Genes encoding malolactic enzyme
(mleA), malate permease (mleP) and a proposed regulatory
protein (mleR) have been cloned, sequenced and mapped on
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Fig. 1 Summary of the identification of bacteria in wine, elucidation
of their role in winemaking, classification and genome analysis.
Information was sourced from numerous articles (Garvie 1967;

Kunkee 1967; Pasteur 1873; Möslinger 1901; Müller-Thurgau 1891;
Müller-Thurgau and Osterwalder 1913)
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the O. oeni chromosome (Labarre et al. 1996a, b; Mills et
al. 2005; Ze-Ze et al. 2008).

MLF can occur spontaneously via indigenous O. oeni
populations, but better control over the time of onset of
MLF can be achieved by inoculating wines with a selected
bacterial culture (Nielsen et al. 1996). However, efficient
MLF is not easily achieved as the often nutritionally poor
and harsh chemical composition of wine (high ethanol
concentration [can be >15% v/v], low pH [can be <3.5] and
high SO2 concentration [>50 mg/L]) are natural hindrances
to the growth of O. oeni.

O. oeni strains vary in their ability to metabolise L-malic
acid. However, strains selected for commercialisation are
usually chosen for their ability to metabolise malic acid
efficiently and confer desirable sensory properties on the
wine. Recently there has been growing interest in character-
isingO. oeni strains that are unique to particular geographical
wine regions in order to enhance regionality in the wines
(Yanagida et al. 2008; Solieri et al. 2010; Ruiz et al. 2010;
Capozzi et al. 2010; Vigentini et al. 2009; Canas et al. 2009;
Sico et al. 2008; Li et al. 2006).

Aroma and flavour aspects of MLF

Wine is a highly complex mixture of compounds which
largely define its appearance, aroma, flavour and mouthfeel
properties. Grape-derived compounds provide varietal
distinction and basic structure to wine, but it is largely the
volatile metabolites that originate from yeast and bacterial
metabolism of grape compounds that provide wine its
individual character and shape wine style. O. oeni has an
extensive suite of metabolic pathways and enzymes that
generate volatile secondary compounds at concentrations
well above their odour detection threshold, including ethyl
and acetate esters, higher alcohols, carbonyls, volatile fatty
acids and sulphur compounds (Siebert et al. 2005;
Bartowsky 2005), and strain-to-strain variation in metabolic
capabilities impact on the types and concentrations of
compounds produced (Bartowsky 2005; Francis and Newton
2005; Matthews et al. 2004). For example, some O. oeni
strains contribute neutral aroma–flavour to red and white
wine (Bartowsky and Henschke 1995), whilst others
enhance fruity (Laurent et al. 1994) or the buttery
characters (Bartowsky and Henschke 2004; Martineau
and Henick-Kling 1995).

Diacetyl is a major secondary metabolite associated with
citric acid metabolism during O. oeni-driven MLF, and the
kinetics of its production is well understood (Ramos et al.
1994, 1995; Bartowsky and Henschke 2004). Diacetyl
imparts a buttery character which adds complexity to wine
and is mostly present in concentrations well above its odour
detection threshold (Bartowsky et al. 2002b; Martineau and
Henick-Kling 1995; Martineau et al. 1995). The genetics of

the diacetyl pathway are well described in the literature on
dairy research (Cogan 1995; Smit et al. 2005). The two O.
oeni genes (alsS and alsD) encode the main enzymes
involved; α-acetolactate synthetase and α-acetolactate
decarboxylase genes, respectively, have been cloned and
characterised (Garmyn et al. 1996).

The operon carrying alsS and alsD has been shown to be
constitutively expressed in O. oeni BAA-1163 (previously
referred to as Lo84.13), but there is strain-to-strain variation
in the final concentration of diacetyl synthesised during
MLF of the same wine (Martineau and Henick-Kling 1995;
Bartowsky et al. 2002a). O. oeni strains that produce high
concentrations of diacetyl can be encouraged to do so, and
winemaking techniques can be used to maintain the desired
diacetyl concentration to accentuate the buttery character of
wine (Bartowsky and Henschke 2004).

Latent aroma and flavour compounds are often glycosy-
lated and can be enzymatically liberated by microbial
glycosidases (Gunata et al. 1988, 1990). While numerous
fungi and bacteria produce glycosidases, there is variation
in the abilities of these microbes to function efficiently
under the high alcohol and low pH present in winemaking
conditions. O. oeni has numerous glycosidases (Grimaldi et
al. 2005, 2000), and their activities contribute to the release
of numerous aroma compounds, including monoterpenes,
norisoprenoids and aliphatic compounds, all of which
contribute to fruity and floral wine attributes (D'Incecco et
al. 2004; Williams et al. 1989, 1982; Ugliano et al. 2003;
Ugliano and Moio 2005, 2006). As for diacetyl production,
there is large variation in O. oeni strain capacity to release
aroma compounds from grape glycosides (Grimaldi et al.
2005; Ugliano et al. 2003; Ugliano and Moio 2006).

Most commercial glycosidase preparations are crude
extracts prepared from fungi rather than bacteria. However,
there has recently been renewed interest in using wine LAB
as potential sources of these enzymes as these bacteria are
well adapted to the high ethanol and acid conditions
encountered during winemaking, and therefore, their
enzymes might be expected to perform efficiently under
these conditions. Several research teams have cloned and
characterised β-glucosidases from O. oeni and Lactobacillus
brevis strains (Michlmayr et al. 2010a, b; Capaldo et al.
2011) and α-arabinofuranosidase from O. oeni and L. brevis
(Michlmayr et al. 2011).

Many wine aromas are attributable to interacting
compounds, which together confer the sensory impact
of the aroma descriptor. For example, the red and black
berry aromas of a red wine are made up of at least six
different esters and volatile fatty acids (Pineau et al.
2009). Other compounds play a more complex role.
Dimethyl sulphide, for example, has a cooked corn aroma;
however, it also enhances fruity characters in red wine
(Segurel et al. 2004).
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Enhancement of the fruity and berry characters of red
wine is an important goal for winemakers, and one
approach involves using selected O. oeni strains to attain
sought-after wine styles (Iland et al. 2009). Using sensory
descriptive wine analysis and wine composition–ethyl ester
concentrations, we are gaining a better understanding of
which metabolites contribute to the fruitness of red wine
(Pineau et al. 2009, 2010; Guth 1997a, b). A recent study in
Cabernet Sauvignon wines has identified relationships
between enhanced red berry sensory attributes and ester
concentration (Fig. 2) (Bartowsky et al. 2010).

Clearly, MLF is important for winemaking, and O. oeni
strains make a significant contribution to the aroma and
flavour of wine. The next phase to unravelling how
malolactic bacteria enhance wine sensory characters is to
link phenotypic with genotype characteristics. However, O.
oeni is not very amenable to the uptake of DNA; even
though there are transformation and conjugation methods
cited, they are not very efficient (Dicks 1994; Beltramo et al.
2004; Assad-Garcia et al. 2008; Eom et al. 2010). Nonethe-
less, with the aid of modern ‘genomic’ technologies, we can
now use comparative genomic approaches to enable the
identification of genetic elements in O. oeni that shape wine
flavour during MLF.

Connecting the O. oeni genome with wine

O. oeni has a compact genome of approximately 1.8 Mb
which appears to be highly streamlined as a consequence of
adaptation to its ecologically restricted niche, i.e. grape juice
and wine. Prior to several strains having their genome fully
sequenced, detailed genome mapping had been conducted on
several strains, providing insight into the genetic organisation of
the bacterium (Ze-Ze et al. 1998, 2000). Important phenotypes,
such as malate degradation (MLF), citrate metabolism and
diacetyl production, were mapped. Many of the stress response
genes have been studied, and metabolic pathways relating to
amino acid metabolism have also been well characterised
(summarised in Bartowsky 2005). However, the genetics
underpinning the generation of metabolites contributing to
wine aroma have been less thoroughly investigated.

Comparison of the three available O. oeni genome
sequences suggests the three strains share a group of
conserved ORFs (52% of total ORFs), with up to 10% of
the coding potential of any one strain being specific to that
strain (Borneman et al. 2010). It is presumably this
variation in the O. oeni species-wide (pan) protein coding
capacity that will ultimately be the likely key to phenotypic
differences between O. oeni strains.
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Fig. 2 Example of sensory changes following MLF in Cabernet
Sauvignon wines with different strains of O. oeni. I Radial plot of
aroma and flavour sensory descriptors of Cabernet Sauvignon wine
(Berri, Australia) following MLF with O. oeni strain AWRI B429
(adapted from Bartowsky et al. 2008). II Relative changes in sensory
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In our recent array-based comparative genomics re-
search, we analysed 11 O. oeni strains, all of which were
either commercial or natural isolates that are routinely used
in Australian winemaking. One of the most interesting
observations from this work was that there was significant
intra-specific genomic variation due to substantial inser-
tions and deletions throughout the 11 O. oeni strains,
including two large deletions in regions 45–65 and 1,400–
1,450 kb (Borneman et al. 2010). However, as all of these
strains are used in the wine industry, these rearrangements
clearly do not have a significant impact on the MLF
capability of the O. oeni strains, but may well contribute to
the phenotypic differences between strains, resulting in
wines with different sensory profiles.

A relationship between genome variation and efficient
malate metabolism has been suggested by studying the
MLF capacity of over 70 O. oeni strains in three wines and
using comparative genome subtractive hybridization to
propose that the presence of eight stress-responsive genes
could be associated with high MLF performance (Bon et al.
2009).

The winemaking capabilities of O. oeni strain
AWRIB429 have been well studied with observations that
red wines produced with this O. oeni strain consistently lift
red fruit–red berry aroma attributes (Schmid et al. 2007;
Borneman et al. 2010; Bartowsky et al. 2010, 2008)
(Fig. 2). Within the O. oeni AWRIB429 genome, numerous
novel ORFs were identified, and amongst the annotated
ORFs were several potential glycosidases (Borneman et al.
2010). Thus, in addition to other aroma-forming pathways,
the acquisition of additional glycosidases by AWRIB429
might provide a genomic link to the consistent ability of
this strain to enhance red fruit–red berry aroma attributes to
red wines.

Conclusions and future outlook

O. oeni conducts malolactic fermentation, often under
difficult environmental circumstances, to impart important
sensory attributes to wine. It has a compact genome of
approximately 1.8 Mb resulting from a high degree of
genomic streamlining which occurred during its adaptation
to the complex wine environment. Recent analysis of
several O. oeni genomes has demonstrated a shared core
genome with up to 10% variation in coding capacity
between strains. This variation in coding capacity is likely
to be responsible for observed differences in winemaking
phenotypes. A link between the presence of several stress-
related genes and MLF capability has been proposed, and
the presence of additional glycosidases appears to enhance
the fruity sensory attributes of an O. oeni strain. Even
though O. oeni is not easily genetically manipulated, due to

poor transformability, the inter-strain genetic variation of
the O. oeni genome holds the secret to exploiting its
potential to influence wine aroma and flavour.
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