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Abstract Microalgae offer potential for numerous com-
mercial applications, among them the production of long-
chain polyunsaturated fatty acids (LC-PUFAs). These
valuable fatty acids are important for a variety of
nutraceutical and pharmaceutical purposes, and the market
for these products is continually growing. An appropriate
ratio of LC-PUFA of the ω-3 and ω-6 groups is vital for
“healthy” nutrition, and adequate dietary intake has strong
health benefits in humans. Microalgae of diverse classes are
primary natural producers of LC-PUFA. This mini-review
presents an introductory overview of LC-PUFA-related
health benefits in humans, describes LC-PUFA occurrence
in diverse microalgal classes, depicts the major pathways of
their biosynthesis in microalgae, and discusses the pros-
pects for microalgal LC-PUFA production.

Keywords Arachidonic acid . Desaturase .

Docosahexaenoic acid . Eicosapentaenoic acid . LC-PUFA .

Microalgae

Introduction

Fatty acids are long aliphatic carbon chains that vary in
length, degree of unsaturation, and structure. Long-chain
polyunsaturated fatty acids (LC-PUFAs) of 20 and 22
carbons in length (C20–C22) with two to six methylene-
interrupted double bonds perform vital functions in the
human organism: as such, they are of high physiological
and therapeutic significance for human well being. The two
main families of PUFA are distinguished by the distance of
the last double bond from the methyl end of the acyl chain:
ω-3 (or alternatively n-3) designates a PUFA whose last
double bond is located three carbons from the ω end of the
carbon chain. The essential plant-derived C18 PUFA (18
carbon fatty acids with two or more double bonds), namely,
linoleic acid (LA, 18:2ω-6) and α-linolenic acid (ALA,
18:3ω-3), are precursors for the LC-PUFA of the ω-6
group arachidonic acid (ARA, 20:4ω-6) and of the ω-3
group eicosapentaenoic acid (EPA, 20:5ω-3) and docosa-
hexaenoic acid (DHA, 22:6ω-3)—which are synthesized
via alternating desaturation and elongation steps (Abbadi et
al. 2004; Cohen et al. 1992; Meyer et al. 2004; Wallis et al.
2002 and references therein). Biosynthesis of the highly
unsaturated DHA from EPA in mammals involves the
formation of polyunsaturated C24 intermediates by sequen-
tial elongation and desaturation, followed by a β-oxidation
step of 24:6ω-3 to 22:6ω-3 in the peroxisomes (Sprecher
2000). The capability of human enzymes to desaturate and
elongate essential LA and ALA to EPA and, especially, to
DHA is low and is not sufficient to provide an adequate
supply of LC-PUFA for maintenance of mental and
cardiovascular health. In addition, this capacity deteriorates
with age and under some disease conditions (Bairati et al.
1992; Connor et al. 1993; Eritsland et al. 1996; Horrobin
and Huang 1987; Kalmijn et al. 2004; Le et al. 2009).
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Therefore, recent opinion suggests that ARA and DHA
should also be considered essential. Consequently, an
adequate dietary intake exerts strong health benefits, and
an appropriate ratio of LC-PUFA of the ω-3 and ω-6
groups is vital for “healthy” nutrition and brain function
(Okuyama et al. 1996; Salem et al. 2001; Simopoulos 2002;
Sontrop and Campbell 2006). In adults, unbalanced intake
of LC-PUFA of the two groups—mainly the insufficient
uptake of ω-3 LC-PUFA that is common in Western diets—
results in a higher than recommended ω-6/ω-3 ratio, which
coincides with an increase in the occurrence of cardiovas-
cular disease and increased risk of cardiac death and mental
illness (Aarsetoey et al. 2011; Bousquet et al. 2008; Das
2003; Simopoulos 2008; Thies et al. 2003). ARA and EPA
are precursors to distinct groups of biologically active
eicosanoids: prostaglandins, leukotrienes, tromboxanes, and
lipoxines, which differentially affect various physiological
and biochemical processes, such as inflammation, signal-
ing, and vasomodulation (Gill and Valivety 1997; Funk
2001; Le et al. 2009; Simopoulos 2002). Prostaglandins
derived from EPA via the action of cyclogenase are
considered anti-inflammatory, while those produced from
ARA possess pro-inflammatory properties. The biosyn-
thetic precursor of ARA, dihomo-γ-linolenic acid (DGLA,
20:3ω-6), is a precursor of a group 1 prostaglandin (PGE1),
which has anti-inflammatory activity, and thus has potential
for use in treating conditions with an inflammatory
component, such as atopic eczema, psoriasis, asthma, and
arthritis (Fan and Chapkin 1998).

ARA and DHA are the major constituents of brain
membrane phospholipids, and their adequate supply
improves visual acuity and infant cognitive development
(Agostoni et al. 1998; Boswell et al. 1996; Carlson et al.
1993; Koletzko and Braun 1991; Makrides et al. 1995). The
need for a dietary supply of DHA and ARA in infants, both
preterm and at term, is now being met by the incorporation
of both ARA and DHA into baby formulae; this recom-
mended approach is based on recent medical studies and is
becoming a common practice in many countries.

At present, the major resource ofω-3 LC-PUFA for human
nutrition is marine fish oils. However, their reserves are
dwindling, and supplies via wild fish fisheries are limited.
Moreover,ω-3 LC-PUFA content of oil fromwild-caught fish
varies with species, location, water depth and temperature,
seasonal climatic conditions, and availability and type of
primary food chain. Because of pollution with toxic contam-
inants, fish oils are often not of sufficient quality to benefit
human health (Kris-Etherton et al. 2002). The consequences
of the recent nuclear disaster in Japan raise concerns over the
world and strengthen the need to seek for an alternative
source for fish oil. Furthermore, aquaculture farming also
requires fish oils for the enrichment of live feed and fish
feed. Worldwide attempts are being made to improve the

current sources of ω-3 LC-PUFA and to provide a
sustainable supply of dietary EPA and DHA. Intensive efforts
are thus underway to develop alternative feedstocks by
means of metabolic engineering, in particular to reconstitute
the LC-PUFA biosynthetic pathway in oilseed plants, which
are intrinsically unable to synthesize LC-PUFA (reviewed in
Venegas-Calerón et al. 2010), and in oleaginous yeast species
(Zhu et al. 2010), employing genes isolated from different
LC-PUFA-producing organisms, including microalgae. Con-
siderable progress has been made toward this goal, and
recent research has provided proof of concept for the
production of ω-3 LC-PUFA in transgenic plants (Napier
2007; Qi et al. 2004; Petrie et al. 2010b; Wu et al. 2005) and
yeast (Zhu et al. 2010).

Several commercial single-cell sources for LC-PUFA
have been developed in the last two decades. ARA is
currently produced on a large scale by cultivation of the
oleaginous filamentous fungus Mortierella alpina (Zygo-
mycetes) to meet the increasing demands of the baby
formula industry (Kyle 1997; Sakuradani et al. 2009 and
references therein). Large-scale production of DHA-rich oil
by Martek Biosciences and DSM is being achieved via
heterotrophic cultivation of the marine dinoflagellate micro-
alga Cryptocodinium cohnii (Kyle 1996, 2001). DHA-rich
oil of C. cohnii and ARA-rich oil of M. alpina are included
in baby formulae in many countries. Aspects of heterotro-
phic LC-PUFA production by microalgae have been
thoroughly reviewed (Perez-Garcia et al. 2011; Sijtsma
and De Swaaf 2004; Vazhappilly and Chen 1998; Wen and
Chen 2003), and the present mini-review will focus mainly
on photoautotrophic eukaryotic LC-PUFA-producing
microalgae.

Occurrence of LC-PUFA in microalgae

Microalgae (single-celled eukaryotic organisms) are the
primary natural producers of LC-PUFA. These organisms
offer a promising vegetative and non-polluted resource for
biotechnology and bioengineering of LC-PUFA production
as an alternative to fish oil. Diverse photosynthetic and
heterotrophic, mainly marine planktonic species belonging
to different classes produce LC-PUFA of the ω-3 family—
EPA and DHA (Table 1). Microalgal LC-PUFAs are
transferred through food webs, enriching aquatic organisms
with these important membrane components. This is
especially important in the marine food web because of
the marine fish’s limited capacity to synthesize LC-PUFA
de novo from the essential LA and ALA. EPA and DHA, as
well as a certain level of ARA, are required for optimal
nutrition and stress tolerance of marine fish, especially at
the larval and juvenile stages (Bell and Sargent 2003, and
references therein; Harel et al. 2002).
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The diversity of microalgal classes with respect to LC-
PUFA production is illustrated in Table 1; the ω-3 LC-
PUFA EPA and DHA are abundant in representatives of
different classes dwelling in marine environments. This
capacity is utilized in aquaculture nutrition and fish farming
where many microalgal species are routinely cultivated to
provide fish with EPA and DHA (Benemann 1992; Lavens
and Sorgeloos 1996). However, ω-6 LC-PUFA are rela-
tively rare in algae, appearing mainly as precursors in the
biosynthesis of EPA; moreover, in most marine species,
they do not account for more than a few percent of total
fatty acids (Thompson 1996). ARA is also rare in the lipids
of freshwater algae; however, in the chlorophyte Parieto-
chloris incisa (Bigogno et al. 2002a,b), ARA reaches about

60% of total fatty acids under conditions of nitrogen
starvation (Khozin-Goldberg et al. 2002a). High contents
of DGLA are not found in any alga, unless it has undergone
genetic manipulation, such as the ARA-deficient Δ5
desaturase mutant of P. incisa obtained by chemical
mutagenesis (Iskandarov et al. 2011; Solovchenko et al.
2010).

Many LC-PUFA-producing microalgae, e.g., species of
red algae, diatoms, and eustigmatophytes, contain low
levels of C18 fatty acid precursors. However, in other
species, LC-PUFAs occur along with C18 PUFA, as is
typical in higher plants (Bigogno et al. 2002a). Aside from
the C18 PUFA 18:3ω-3 and 18:3ω-6, representatives of
certain microalgal classes contain the highly unsaturated ω-

Table 1 Examples of LC-PUFA occurrence in various microalgae classes

Class Genus species Major LC-PUFA References

Bacillariophyta (diatoms)

Bacillariophyceae Phaeodactylum tricornutum EPA Arao et al. 1994

Molina-Grima et al. 1999

Nitzschia laevis Tan and Johns 1996

Mediophyceae Odontella aurita Guihéneuf et al. 2010

Pulz and Gross 2004

Chlorophyta (green algae)

Prasinophyceae Ostreococcus tauri EPA, DHA Wagner et al. 2010

Micromonas pusilla Dunstan et al. 1992
Pyramimonas cordata

Trebouxiophyceae Parietochloris incisa ARA Bigogno et al. 2002a

P. incisa (Δ5 desaturase mutant) DGLA Iskandarov et al. 2011

Cryptophyta

Cryptophyceae Chroomonas salina DHA Henderson and Mackinlay 1992

Dinoflagellata

Dinophyceae Pyrocystis fusiformis, P. lunula, P. noctiluca EPA, OPA, SDA Leblond et al. 2010

Eustigmatophyta

Eustigmatophyceae Nannochloropsis sp. EPA Volkman et al. 1993; Sukenik 1999
N. salina, N. oculata

Monodus subterraneus EPA Cohen 1994

Khozin-Goldberg et al. 2002a

Haptophyta

Prymnesiophyceae Isochrysis galbana SDA, EPA, DHA Molina Grima et al. 1992

Qi et al. 2002

Emiliania huxleyi DHA, OPA Sayanova et al. 2011

Pavlovophyceae Pavlova lutheri EPA, DHA, SDA Volkman et al. 1991

Kato et al. 1995

Meireles et al. 2003

Rhodophyta

Porphyridiophyceae Porphyridium cruentum ARA, EPA Cohen 1999

Khozin et al. 1997

Xanthophyta

Xanthophyceae Trachydiscus minutus EPA Řezanka et al. 2010

Classification according to Guiry and Guiry 2011
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3 C18 PUFA octadecatrienoic acid (18:4ω-3, alternatively
steriadonic acid, SDA) and octadecapentaenoic acid (OPA,
18:5ω-3). The presence of highly unsaturated C18 PUFA
appears to be typical to dinoflagellates of the genus
Pyrocystis (Leblond et al. 2010) and to haptophytes such
as, for example, the coccolithophore Emiliania huxleyi
(Sayanova et al. 2011), where these fatty acids occur
concomitantly with ω-3 LC-PUFA.

Biosynthesis of LC-PUFA in microalgae

The biosynthesis of LC-PUFA from C18 fatty acids in
microalgae may follow different routes (Fig. 1), utilizing
iterative desaturation and elongation steps. Fatty acid
desaturases catalyze the introduction of cis double bonds
at specific positions in the fatty acid chain. PUFA-specific
elongation complex mediates a two-carbon extension of the
acyl chain by condensation of malonyl-CoA to an existing
acyl-CoA moiety (Cinti et al. 1992; Meyer et al. 2004). In
general, the LC-PUFA biosynthesis pathways in the
endoplasmic reticulum (ER) are initiated by Δ12 desatura-
tion of the chloroplast-derived oleic acid (OA, 18 : 1Δ9, ω-
9), producing LA (18 :2Δ9;12, ω-6). Subsequently, LA may
be further desaturated by a Δ15 (ω-3) desaturase, generat-
ing ALA (18 : 3Δ9;12;15, ω-3) (Fig. 1). These fatty acids are
further converted via the common ω-6 and ω-3 pathways,
which are initiated with the Δ6 desaturation of LA or ALA,
respectively. Alternative pathways that initiate with a Δ9-
specific elongation of LA or ALA to eicosadienoic acid
(20 : 2Δ11;14, ω-6) or eicosatrienoic acid (20 : 3Δ11;14;17, ω-

3), respectively, followed by sequential Δ8 and Δ5
desaturations, exist in some microalgae, such as the
haptophytes Isochrysis galbana (Qi et al. 2002), Pavlova
salina (Zhou et al. 2007), and E. huxleyi (Sayanova et al.
2011), and the freshwater euglenophyte Euglena gracilis
(Wallis and Browse 1999). In the ω-6 and ω-3 pathways,
the products of Δ6-desaturated products of LA and ALA
respectively, further undergo Δ6 PUFA elongation and Δ5
desaturation via respective intermediates, ultimately yield-
ing ARA or EPA (Abbadi et al. 2004; Cohen et al. 1992;
Meyer et al. 2004). As can be seen in Fig. 1, all pathways
share some C20 intermediates. In the diatom Phaeodacty-
lum tricornutum, both the ω-3 and ω-6 pathways are active
(Arao et al. 1994), and their intermediates contribute to the
biosynthesis of EPA (Domergue et al. 2002). However, one
pathway may sometimes dominate over the other, for
instance, the major ω-6 pathway, which has been suggested
to operate in the rhodophyte Porphyridium cruentum
(Khozin et al. 1997), the freshwater chlorophyte P. incisa
(Bigogno et al. 2002c; Iskandarov et al. 2009, 2010) and
two eustigmatophytes, the freshwater Monodus subterra-
neus (Khozin-Goldberg et al. 2002b), and the marine
Nannochloropsis sp. (Schneider and Roessler 1994; Suke-
nik 1999). P. incisa represents a rare case in which ARA is
the major and almost ultimate product of the extraplastidial
lipid-linked biosynthesis pathway, which is further accu-
mulated in the reserve lipids, the triacylglycerols (TAG)
(Bigogno et al. 2002c). Conversion of ARA to EPA occurs
at a very low rate in this alga, but can be increased at low
temperature. C20 ω-3 desaturation is mediated by Δ17
desaturase, which desaturates ARA to EPA, as in the EPA-
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ω6

18:3Δ9,12,15 (ALA) 
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Fig. 1 Pathways for the biosynthesis of LC-PUFA in microalgae

908 Appl Microbiol Biotechnol (2011) 91:905–915



producing Nannochloropsis sp. (Schneider and Roessler
1994), M. subterraneus (Khozin-Goldberg et al. 2002b),
and P. cruentum (Khozin et al. 1997). The final step of EPA
biosynthesis, however, does not necessarily occur in the
ER. ARA can be relocated to the plastid, probably by a
mechanism similar to trafficking of the ER-produced ALA
in higher plants (Benning 2009). Radiolabeling pulse-chase
experiments allowed us to suggest that in the red microalga
P. cruentum, ARA is exported to the chloroplast where the
final desaturation step of EPA biosynthesis occurs, involv-
ing membrane lipids (Khozin et al. 1997). In Nannochlor-
opsis sp. and M. subterraneus, however, EPA is produced in
the ER and is further exported to the plastid and
incorporated into the galactolipids (Khozin-Goldberg et al.
2002b; Sukenik 1999). The Δ17 (ω-3) desaturases of these
microalgae have not yet been cloned or characterized, and
their functional role in LC-PUFA biosynthesis therefore
awaits confirmation at the molecular level.

In the C22 LC-PUFA-producing microalgae, biosynthesis
of DHA in the extraplastidial compartment is mediated by
C20-specific two-carbon chain elongation of EPA to
docosapentaenoic acid, 22:5ω-3 (DPA, 22:5ω-3), followed
by Δ4 desaturation (Fig. 1). Δ4 desaturases have been
cloned and characterized from various microalgae (Meyer
et al. 2003; Pereira et al. 2004; Tonon et al. 2002; Zhou et
al. 2007). This relatively recently discovered route is
distinct from the peroxisomal Sprecher pathway of DHA
biosynthesis in mammals (Sprecher 2000) and the anaero-
bic polyketide synthase (PKS) pathway discovered in some
heterotrophic marine eukaryotes of the Thraustochytriaceae
family (Metz et al. 2001). The PKS pathway does not
require aerobic desaturation, while the double bonds are
introduced during the process of fatty acid synthesis.

Desaturases engaged in LC-PUFA biosynthesis (Δ4, Δ5,
Δ6, and Δ8) are non-heme “front-end” membrane-bound
enzymes, which introduce a new double bond between the
pre-existing double bond and the carboxyl end of the fatty
acid (Sayanova and Napier 2004). Typical features of front-
end desaturases are the presence of three conserved
histidine-rich motifs (boxes) and an N-terminal cytochrome
b5-fused domain, which serves as an electron donor. Since
various desaturases involved in LC-PUFA biosynthesis
share similar structural features, investigations of their
predicted functions by functional expression and character-
ization is an essential step in their proper designation
(Sayanova et al. 2011). For example, a recent study
describes the identification and functional characterization
of the genes involved in the biosynthesis of ω-3 LC-PUFA
in the coccolithophore E. huxleyi (Sayanova et al. 2011).
The authors searched a draft genome (v.1.1 release) of this
microalga for the candidate desaturases and elongases
involved in LC-PUFA biosynthesis. Their functional char-
acterization in a yeast expression system revealed that E.

huxleyi synthesizes DHAvia the alternative pathway, which
is initiated by a C18 Δ9 elongase (Fig. 1). It was suggested
that the biosynthesis of the highly unsaturated Δ6-desaturated
C18 fatty acids SDA and OPA is metabolically distinct from
DHA biosynthesis. This was supported by two pieces of
evidence: the absence of OPA acyl-CoA from the acyl-CoA
pool and the high abundance of both SDA and OPA in
chloroplast membrane lipids. The interest in elucidating
SDA biosynthesis is driven by the fact that this fatty acid
shares many of the health benefits of EPA, and its dietary
intake improves EPA levels.

Until recently, lipid-linked desaturation was considered
to be the main route operating in the ER of microalgae,
similar to higher plants. In this route, fatty acid substrates
are attached to phospholipids of the ER, such as phospha-
tidylcholine (PC) and phosphatidylethanolamine (PE), or to
the betaine lipid, diacylglyceroltrimethylhomoserine
(DGTS), in microalgae containing this non-phosphorus
polar lipid. For example, in the ARA-producing P. incisa,
it was suggested that three extraplastidial lipids are
involved in various steps of ARA biosynthesis: PC and
DGTS are involved in the Δ12, and subsequently Δ6
desaturations, whereas PE along with PC are the suggested
major substrates for the Δ5 desaturation of 20:3ω-6 to
20:4ω-6 (Bigogno et al. 2002c). The lipid-linked nature of
the Δ5 and Δ6 desaturases was confirmed by functional
expression of the cloned enzymes in the yeast Saccharo-
myces cerevisiae (Iskandarov et al. 2010). The last few
years have been characterized by outstanding progress in
sequencing genomes of microalgae, also due to the
introduction of new-generation sequencing technologies.
Two recent reviews provide a detailed summary of the
available information on nuclear, mitochondrion, and
chloroplast genomes and EST projects of versatile micro-
algal species (refer to Lü et al. 2011; Tirichine and Bowler
2011). Thanks to the genome annotations of several LC-
PUFA-producing microalgal species, functional analysis of
several novel microalgal desaturases and elongases has
been performed by various research groups (e.g., Domergue
et al. 2002, 2005; Tonon et al. 2005; Sayanova et al. 2011).
It appears that some algal Δ6 and Δ5 desaturases act on
CoA-activated PUFA, similar to mammalian front-end
desaturases (Domergue et al. 2005; Hoffmann et al. 2008;
Petrie et al. 2010a). This feature offers great promise in
plant biotechnology for the engineering of oilseed plants to
produce LC-PUFA, as well as in the metabolic engineering
of microalgae. The use of acyl-CoA-dependent enzymes
with the correct substrate specificities may eliminate the
requirement for the rate-limiting acyl exchange with
membrane polar lipids and thus avoid “substrate dichoto-
my” for lipid-linked desaturases and PUFA elongases,
utilizing acyl-CoA substrates (for further information, see,
Napier and Graham 2010; Petrie et al. 2010b; Venegas-
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Calerón et al. 2010). Furthermore, many of the recently
cloned microalgal acyl-CoA-dependent desaturases have
been shown to be highly specific for the ω-3 substrates
when expressed in a recombinant system. This preference
appears to be beneficial for the metabolic engineering of ω-
3 LC-PUFA (EPA and DHA) biosynthesis in higher plants.

Commercial prospects

As we have seen, photosynthetic microalgae represent an
abundant and largely untapped resource for LC-PUFA.
Commercial amounts of these fatty acids are currently
produced by fermentation of several heterotrophic single-
cell organisms, the microalga C. cohnii (Kyle 1996, 2001;
Ratledge 1998), and the marine protists belonging to the
phylum Labyrinthulomycota, the Labyrinthulales, such as
Schizochytrium sp. (Hauvermale et al. 2006; Lippmeier et
al. 2009), and the Thraustochytriales, such as Thraustochy-
trium, are sources for ω-3 LC-PUFA (Raghukumar 2008;
Singh and Ward 1996). According to some estimates,
heterotrophic LC-PUFA production by microalgae was
valued at $195 million in 2004, with the ω-3 PUFA market
increasing at an average growth rate of 8% from 2004 to
2010 (http://www.frost.com/prod/servlet/report-brochure.
pag?id=B329-01-00-00-00).

As for photosynthetic LC-PUFA-producing microalgae,
numerous species (Isochrysis, Chaetoceros, Nannochloropsis,
Phaedoactylum, and Pavlova) are cultivated in the aquaculture
industry at relatively low cell densities, mainly for the
enrichment of microscopic zooplankton and fish juvenile
stages (Benemann 1992; Reitan et al. 1997; Seto et al. 1992).
Economically feasible cultivation of photosynthetic micro-
algae for large-scale production of LC-PUFA for human
nutrition requires substantial advances in photobiotechnology
and breakthrough solutions for several technological and
biochemical bottlenecks; these should result in reduced costs
of biomass production and lipid/LC-PUFA extraction.

Ratledge and Cohen (2008) suggested that current
prospects in microalgal biotechnology should focus on
algae as sources of LC-PUFA rather than for biodiesel
production. As a result, reduced prices could be expected to
result from the utilization of less expensive cultivation
technologies, such as open ponds and low-cost photo-
bioreactors, and the exploitation of robust, fast-growing
algae that can withstand predatory organisms, contaminat-
ing bacteria, fungi, or competing algae, while simulta-
neously attaining high LC-PUFA contents (Ratledge and
Cohen 2008). In fact, the economical production of algal
LC-PUFA is likely to become more realistic in the coming
years, given the research emphasis on advances in micro-
algal technology in the pursuit of renewable oil production
by microalgae as an alternative feedstock for biodiesel

(Radakovits et al. 2010; Scott et al. 2010). Current R&D is
centered on creating high-efficiency technologies for
photosynthetic algal cultivation to reduce energy input,
cost of construction, operation, and harvesting, which
utilize inexpensive CO2 resources (such as a flue gas),
non-arable lands, and saline water resources of limited
alternative use (reviewed in Morweiser et al. 2010;
Stephens et al. 2010; Tredici 2010; Wijffels and Barbosa
2010). Physiological studies and genetic engineering
approaches are directed to enhancing growth performance
and increasing or modifying lipid content and fatty acid
composition (Radakovits et al. 2010). Genetic engineering
is also aimed at utilizing molecular tools to create strains
capable of efficiently capturing light in dense cultures and
of resisting contamination. Global production of microalgae
is growing quickly due to its anticipated commercial
potential and the ecological significance of renewable oil
generation. This is perhaps best reflected in the large
number of commercial ventures (summarized in Lü et al.
2011) and international events devoted to microalgal
cultivation and commercial product development (e.g.
http://www.algaeurope.eu; http://www.biofuelstp.eu/algae.
htm). As a whole, it is believed that this effort will
accelerate the commercialization of algae as an oil resource
to within 10 or 15 years (Wijffels and Barbosa 2010).
However, another opinion exists based on technology and
engineering assessments, which states that even with
relatively favorable process assumptions, oil production
for biodiesel using microalgae will be expensive (Lundquist
et al. 2010). Biorefinery is thus seen as an approach to
maximizing the exploitation of valuable algal components
after extraction of their oil, suitable for biodiesel produc-
tion, with the aim of increasing commercial potential. The
potential of microalgae to synthesize valuable products,
such as LC-PUFA, in addition to their use for energy,
should be integrated into a production concept (Morweiser
et al. 2010).

At present, few photosynthetic species of green micro-
algae are mainly cultivated on a large scale for the
production of high-value constituents for the human health
food market (Borowitzka 1988; Pulz and Gross 2004;
Spolaore et al. 2006). Species such as Chlorella vulgaris (a
source of proteins, vitamins, and biologically active com-
pounds) are cultured by Roquette Klötze GmbH & Co. KG,
Germany; Dunaliella salina (Cognis, Australia; NBT,
Japan) and Haematococcus pluvialis (e.g. Algatech, Israel,
Cyanotech, USA) are cultivated on a large scale for
carotenoid production—β-carotene and astaxanthin, respec-
tively. Total world production of dry algal biomass for these
species is estimated at about 10,000 t per year (http://www.
fao.org/bioenergy/aquaticbiofuels/knowledge/en/).

Due to its clinically proven beneficial health effects, EPA
has become a promising target for microalgal biotechnol-
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ogy. In recent years, several photosynthetic EPA-producing
microalgae, such as the eustigmatophytes of the genus
Nannochloropsis (Nannochloropsis oculata, Nannochlor-
opsis salina, and Nannochloropsis gaditana) and the
diatom Odontella aurita, have attracted significant atten-
tion. Several companies worldwide are engaged in the
cultivation of algae from the genus Nannochloropsis for
EPA, e.g., Sembiotic (Israel), LGem (The Netherlands), and
Nekton-Algafuel (Portugal), among others. These micro-
algae, mainly planktonic marine species, are rich in EPA
(Hodgson et al. 1991; Sukenik 1999; Volkman et al. 1993)
and hold promise as a potential source of this constituent
for the human health market. Nannochloropsis is grown in
both open pond systems and photobioreactors (Boussiba et
al. 1987; Richmond et al. 2003; Rodolfi et al. 2009;
Sukenik 1999; Sukenik et al. 2009). Numerous studies are
devoted to the optimization of its biomass and EPA
productivity (Chini Zittelli et al. 1999; Pal et al. 2011;
Zou et al. 2000); the maximum reported values for EPA
content of biomass is about 5% of dry weight. The interest
in Nannochloropsis cultivation is driven by its high EPA
percentage of total fatty acids (up to 35%) and absence of
DHA, thus presenting a good source of a single ω-3 LC-
PUFA for dietary purposes. The ω-6 LC-PUFA, ARA,
amounts to only a few percent of total fatty acids in this
alga, and the other major fatty acids are C16 fatty acids,
palmitic acid (16:0), and palmitoleic acid (16:1). It is
commonly accepted that a desirable dietary source should
contain LC-PUFA in TAG (oil). In general, most microalgae
contain LC-PUFA as constituents of their polar lipids, while
the accumulation of LC-PUFA in TAG is very rare (Cohen
and Khozin-Goldberg 2005). Despite the fact that EPA in
Nannochloropsis is mainly attached to the chloroplast
membrane lipids, dietary feeding with its biomass has been
shown to be effective at increasing levels of EPA in the
blood, plasma, and muscle of rats and poultry (Nitsan et al.
1999; Sukenik et al. 1994). Accumulation of TAG,
consisting of saturated and monounsaturated acyl moieties,
occurs in response to environmental stresses such as
nitrogen starvation, salinity, or high light (Pal et al. 2011).
Cultivated under conditions of nitrogen starvation, Nanno-
chloropsis is a potent source of saturated and monounsat-
urated oils and thus holds promise for biodiesel production
(Rodolfi et al. 2009). However, EPA percentage in fatty
acids of TAG may account for a few percent when TAG
accumulation in Nannochloropsis sp. is induced by increas-
ing light intensity on nitrogen-replete medium (Pal et al.
2011).

Another commercial source for phototrophic EPA is the
diatom O. aurita, which contains 27–28% EPA out of total
lipids along with 4% DHA (Guihéneuf et al. 2010). It is
cultivated on a commercial scale by Innovalg Co. in France
and is approved as a human food supplement (AFSSA

2001, AFSSA Saisine no. 2001-SA-0082; CE 285/97). An
emerging algal species is described by Řezanka et al.
(2010), who reported that Trachydiscus minutes produces
EPA under conditions of nutrient starvation and, most
importantly, accumulates it in TAG.

Aurora Algae Inc. (http://www.aurorainc.com) an-
nounced a novel algal-based product containing 60% EPA.
Although the strain was not specified, the company claims
that it has developed the industry’s first commercial-scale
photosynthetic platform for sustainable, alga-based product
development using proprietary algal strains. The production
process makes use of arid land, seawater, and CO2 captured
from industrial emitters.

As already mentioned, microalgae accumulate TAG
under stress conditions, such as nitrogen limitation, salinity,
or high light intensity (Roessler 1990). TAGs in most algae
contain mostly saturated and monounsaturated fatty acids
rather than LC-PUFA (Cohen and Khozin-Goldberg 2005),
while LC-PUFA-enriched TAG is a desirable form for
dietary intake and ingestion. The ability to accumulate large
amounts of LC-PUFA in TAG would be a desirable feature
for microalgae destined for use as an economically feasible
source of LC-PUFA and in the development of biotechno-
logical processes as well, due to the relative ease of oil
extractions with non-polar non-toxic solvents. It should be
noted, however, that algal cells are often surrounded by a
thick cell wall, which requires the use of sophisticated
methods for cell breakage. A rare example of LC-PUFA-
enriched TAG is the ARA-containing TAG of the freshwater
green alga P. incisa (Bigogno et al. 2002a,b; Khozin-
Goldberg et al. 2002a). This alga accumulates up to 60%
ARA in its TAG upon cultivation under nitrogen-starvation
conditions and represents a potential photosynthetic source
for ARA (Solovchenko et al. 2008). Its mutant, deficient in
ARA due to a non-sense mutation in the Δ5 desaturase
gene, produces DGLA at up to 12–14% of dry weight.
DGLA normally occurs only as an intermediate in the
biosynthesis of ARA, but is not appreciably accumulated in
any organism. The mutant produces trace amounts of ARA
and high contents of DGLA (up to 35% of total fatty acids),
making the mutant a potential source for the production of
this pharmaceutically important LC-PUFA (Iskandarov et
al. 2011; Solovchenko et al. 2010).

In conclusion, LC-PUFA production by photosynthetic
microalgae holds substantial promise. As already proposed
by Ratledge in 1998, the future appears to be bright for the
exploitation of marine microorganisms, including micro-
algae, for the production of key LC-PUFA. The market for
ω-3 LC-PUFA is growing rapidly due to increasing global
awareness of their health-beneficial properties. This global
scope has attracted industrial alga-growing companies and
marketers. Exploitation of these organisms’ high potential
can be achieved through advances in technology and strain
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improvements stemming from a thorough knowledge of
algal physiology and lipid biochemistry, which will enable
consistent and sustainable biomass production. Metabolic
engineering of photosynthetic microalgae for LC-PUFA
production should play a central role in the development of
a cost-effective clean alternative to fish oil. This would be
supported by the establishment of genetic transformation
systems for additional biotechnologically important species
to enable manipulation of LC-PUFA biosynthesis.
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