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Abstract In this study, dideoxy sequencing and 454 high-
throughput sequencing were used to analyze diversities of
the ammonia monooxygenase (amoA) genes and the 16S
rRNA genes of ammonia-oxidizing archaea (AOA) and
ammonia-oxidizing bacteria (AOB) in six municipal waste-
water treatment plants. The results showed that AOB amoA
genes were quite diverse in different wastewater treatment
plants while the 16S rRNA genes were relatively conserved.
Based on the observed complexity of amoA and 16S rRNA
genes, most of the AOB can be assigned to the Nitrosomonas
genus, with Nitrosomonas ureae, Nitrosomonas oligotropha,
Nitrosomonas marina, and Nitrosomonas aestuarii being the
four most dominant species. From the sequences of the AOA
amoA genes, most AOA observed in this study belong to the
CGI.1b group, i.e., the soil lineage. The AOB amoA and 16S
rRNA genes were quantified by quantitative PCR and 454
high-throughput pyrosequencing, respectively. Although the
results from the two approaches show some disconcordance,
they both indicated that the abundance of AOB in activated
sludge was very low.

Keywords Ammonia-oxidizing archaea . Ammonia-
oxidizing bacteria . Municipal wastewater treatment
plants . 454 Pyrosequencing

Introduction

Nitrification, the biological oxidation of ammonium to
nitrite and nitrate, is an essential process in nitrogen cycling
and wastewater treatment bioreactors. Several groups of
microorganisms are involved in the two-step process:
ammonia-oxidizing archaea (AOA), ammonia-oxidizing
bacteria (AOB), and nitrite-oxidizing bacteria (NOB). In
the first step, AOA and/or AOB oxidize NH3 to NO2

−, and
in the second step NOB oxidize NO2

− to NO3
−. The first

step is rate limiting and has been relatively well studied
(Limpiyakorn et al. 2006; Park and Noguera 2004;
Tokutomi et al. 2010). Although some heterotrophic
bacteria (Robertson and Kuenen 1990) and anaerobic
ammonia-oxidizing (anammox) bacteria (Strous et al.
1999) can also oxidize ammonia to nitrite, AOA and
AOB are thought to be the main contributors for environ-
mental ammonia oxidation and in bioreactors (Nicol and
Schleper 2006). According to the previous reports, Nitro-
somonas and Nitrosospira are the most important genera of
AOB in activated sludge (Park and Noguera 2004;
Purkhold et al. 2000). Of the two genera, Nitrosomonas
has been shown to be the dominant AOB in many
bioreactors (Limpiyakorn et al. 2006; Park and Noguera
2004; Wells et al. 2009). By contrast, Nitrosospira sp. were
rarely found in activated sludge (Schramm et al. 1999),
probably due to their relative low growth rate (Siripong and
Rittmann 2007) resulting in an underrepresentation in
bioreactors. The limited studies of AOA species in
activated sludge showed a composition different from those
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existing in other environments such as soil, water column,
and sediment (Park et al. 2006). Moreover, their abundances
seemed to be much lower (four orders or more) than AOB
based on analysis of amoA gene copy number (Jin et al.
2010; Limpiyakorn et al. 2010; Wells et al. 2009).

In this study, the AOA and AOB diversity in six
bioreactors from the wastewater treatment plants (WWTPs)
in four countries was investigated using amoA and 16S
rRNA genes as the biomarkers. High-throughput pyrose-
quencing of the 16S rRNA genes was used to tabulate the
AOB diversity and their relative abundance in the total
bacterial community. Quantitative polymerase chain reaction
(qPCR) was also used to quantify AOB amoA genes in the
same activated sludge samples. Several SYBR green-based
qPCR systems have been tried to quantify AOA amoA gene.
However, non-specific amplification and/or the formation of
primer dimer hindered the accurate quantification of AOA
amoA using this approach.

Materials and methods

Activated sludge sampling and DNA extraction

In this study, activated sludge samples were taken from
aeration tanks of eight full-scale WWTPs treating municipal
wastewater in China, Singapore, Canada, and the USA.
Relevant parameters about these WWTPs are shown in
Supplementary Table S1. Sludge samples from the aeration
tank were fixed with 50% ethanol (v/v) on site before
transporting to the laboratory for DNA extraction. Ten
milliliters of fixed activated sludge samples was centrifuged
at 4,000 rpm for 10 min at 4 °C. Approximately 200 mg of
sample pellet was recovered for DNA extraction in duplicate
with a FastDNA® SPIN Kit for Soil (Qiagen, CA, USA),
which was found to be the most suitable DNA extraction
method for the samples in this study, as being compared with
other commercial reagents.

PCR and quantitative PCR

Primer set amoA-1F (5′-GGGGTTTCTACTGGTGGT-3′)
and amoA-2R (5′-CCCCTCKGSAAAGCCTTCTTC-3′)
(Rotthauwe et al. 1997) was used to amplify bacterial
amoA gene in a 30-μl mixture containing 0.2 μl of TaKaRa
Ex TaqTM, 3 μl of 10× Ex Taq Buffer (TaKaRa), 3 μl of
10 mM dNTP mixture (TaKaRa), 0.2 μM of each primer,
and 20–50 ng of genomic DNA. Thermal cycling param-
eters followed the protocol of Rotthauwe and colleagues
(1997). AOB amoA gene copy numbers were quantified by
using an iCycler IQ System (Bio-Rad, Hercules, CA, USA)
in triplicate with primer set amoA-1F/amoA-2R. Quantita-
tive real-time PCR amplification was performed in a total

volume of 30 μl containing 15 μl of iQTM SYBR® Green
Supermix (Bio-Rad), 5 μl of DNA template with the
concentration of about 1 ng/μl, and 0.3 μM of each primer
using the same cycling conditions. The archaeal amoA gene
was amplified by PCR using the primer set Arch-amoAF
(5′-STAATGGTCTGGCTTAGACG-3′) and Arch-amoAR
(5′-GCGGCCATCCATCTGTATGT-3′) (Francis et al.
2005). PCR amplification was performed in a 50-μl volume
comprising 25 μl 2× MightyAmp Buffer (TaKaRa), 1 μl
(1.25 U) MightyAmp DNA Polymerase (TaKaRa), 0.3 μM
of each primer, and 20–50 ng of genomic DNA. PCR was
first incubated at 98 °C for 1 min and was followed by 35
cycles at 98 °C for 10 s, 60 °C for 15 s, and 68 °C for 60 s.
The PCR products were visualized by agarose (1%) gel
electrophoresis in the presence of suitable size markers.

For high-throughput 454 pyrosequencing, the bacterial
DNA was amplified with a set of primers targeting the
hypervariable V4 region of the 16S rRNA gene. The
forward primer is 5′-AYTGGGYDTAAAGNG-3′ and the
reverse primers are the mixture of four equally mixed
primers: 5′-TACCRGGGTHTCTAATCC-3′, 5′-TACCA-
GAGTATCTAATTC-3′, 5′-CTACDSRGGTMTCTAATC-3′,
and 5′-TACNVGGGTATCTAATCC-3′ (RDP's Pyrosequenc-
ing Pipeline, http://pyro.cme.msu.edu/pyro/help.jsp). Barc-
odes that allowed sample mult iplexing during
pyrosequencing were incorporated between the 454 adaptor
A and the forward primer.

Dideoxy DNA sequencing

PCR products were purified by using PCRquick-spinTM

PCR Product Purification Kit (iNtRON Biotechnology,
Korea). The purified PCR products were ligated to
pMD®18-T Vector (TaKaRa). Recombinant plasmid was
transformed into E. coli and white colonies that grew on LB
plates containing ampicillin (60 μg/ml), X-Gal, and IPTG
were picked to conduct colony PCR amplification with the
primer set M13F and M13R. The PCR products were
purified and sequenced by ABI 3730xl capillary sequencers
(Applied Biosystems, Foster City, CA, USA) with the
primer M13F.

OTU definition and phylogenetic analysis

AnAOB amoA gene clone library was constructed for each of
the eight activated sludge samples (sample IDs—CN-NJ-SJ,
CN-HR-UN, SG-SG-UP, CN-QD-TD, CN-SH-TS, CN-BJ-
JX, US-CO-CO, and CA-GP-GP). Individual AOA amoA
gene clone libraries were successfully constructed for samples
CN-NJ-SJ, CN-HR-UN, and SG-SG-UP, while the other
samples failed to generate library products. Approximately
20 clones in each clone library were selected randomly and
sequenced. The resulting AOB amoA gene sequences were
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aligned and the Jukes–Cantor distances between subsequent
pairs of sequences were calculated with DNADIST from
the PHYLIP package (http://www.phylip.com/), and were
grouped into 43 OTUs with a distance cut-off of 3%. In
order to construct the phylogenetic tree, one sequence in
each OTU was selected, merged, and aligned with the
reference sequences from NCBI Entrez Database. The
neighbor-joining phylogenetic tree of AOB amoA gene
sequences was created by MEGA software (Kumar et al.
2008). The translated protein sequences were assigned to
different OTUs with a 3% distance cut-off. The phyloge-
netic tree of AOB AmoA protein sequences was also
created by MEGA software. AOA amoA gene and AOA
AmoA protein sequences were analyzed in the same
manner as that of AOB. The AOB 16S rRNA gene
sequences were also classified into different OTUs with a
3% distance cut-off. In addition, Good’s estimator of
coverage (Good 1953) was calculated for each AOA and
AOB amoA gene clone library under 3% distance cut-off
(Table S2).

High-throughput pyrosequencing

PCR amplicon libraries were prepared using a minimal
number of amplification cycles (25 cycles) to minimize the
accumulation of PCR artifacts. Amplicons were purified
using PCRquick-spinTM columns (iNtRON Biotechnology).
Equal amounts of amplicon products bearing individual
sequence barcode for each sludge samples were combined
for multiplex pyrosequencing on the Roche 454 FLX
Titanium platform (Roche, Nutley, NJ, USA).

Sequence analysis and phylogenetic assignment

Following pyrosequencing, Python scripts were written to
(1) remove sequences containing more than one ambiguous
base (‘N’), (2) check the sequence integrity of the barcodes
and partitioned the multiplex reads to the individual
samples, and (3) remove sequence reads shorter than 150
bases. The resulting filtered reads were then compared with
the Greengenes 16S rRNA gene database (DeSantis et al.
2006) using NCBI’s BLASTN tool (Altschul et al. 1990)
with default parameters set to a maximum hit number of
100 (Claesson et al. 2009). Sequences were then assigned
to NCBI taxonomies with MEGAN (Huson et al. 2007)
using the Lowest Common Ancestor (LCA) algorithm and
default parameters (absolute cut-off—BLAST bitscore 35;
relative cut-off—10% of the top hits).

Accession numbers

The sequences obtained from clone library in this study
were deposited in GenBank under accession numbers

JF271927–JF271985. The pyrosequencing results are de-
posited into the NCBI short reads archive database
(accession number SRA026842.2).

Results

Diversity of AOB amoA gene and 16S rRNA gene
in different activated sludge samples

Table S2 suggested that the coverage of the AOB amoA
gene clone libraries was over 70% except sample CN-SH-TS
with a relatively low coverage (65%). As shown in Fig. 1, a
total of 43 OTUs were generated based on 163 AOB amoA
gene sequences in eight clone libraries with a 3% distance
cut-off. Figure 1 reveals an interesting phenomenon that
relatively few amoA OTUs were shared among the activated
sludge samples, indicating that the amoA genes were quite
diverse and not widely disseminated.

Figure 2 illustrated that most of these bacterial amoA
OTUs were affiliated to Nitrosomonas genus with Nitro-
somonas ureae, Nitrosomonas oligotropha, Nitrosomonas
marina, and Nitrosomonas aestuarii being the four most
dominant species. However, only two OTUs (OTU-17 and
OTU-32) were in the Nitrosospira lineage and these two
OTUs represented only eight sequences in the total 163
sequences, indicating the low abundance of Nitrosospira in
various types of activated sludge.

Figure S1 shows the relative abundance and distribution
of AOB AmoA protein OTUs in different activated sludge
samples. Compared with AOB amoA gene OTUs (shown
in Fig. 1), the diversity of AmoA protein (a total of 26
OTUs) was less than that of amoA gene (43 OTUs) due to
codon wobble positions. Twelve OTUs of AOB AmoA
protein were shared by at least two activated sludge
samples. Our findings indicate that a number of different
amoA genotypes encode essentially the identical or very
similar proteins possibly reflecting the functional con-
straints in efficient ammonia oxidation. As shown in the
phylogenetic tree of AOB AmoA protein in Fig. S2, most
OTUs were affiliated with N. ureae, N. oligotropha, N.
marina, and N. aestuarii lineages, exactly the same as the
amoA gene phylogenetic tree. There were only a few OTUs
in Nitrosospira lineage and N. europaea lineage, which was
also identical with the above amoA gene phylogenetic
analysis.

In addition to the amoA gene, the 16S rRNA gene was
also used to investigate the AOB community in six samples
(i.e., CN-NJ-SJ, CN-QD-TD, CN-HR-UN, US-CO-CO,
SG-SG-UP, and CA-GP-GP) by high-throughput pyrose-
quencing. As shown in Table 1, more than 20,000 16S
rRNA gene fragment sequences were obtained for each
sample site. These sequences were assigned to NCBI
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taxonomies using BLAST and MEGAN software. A
tabulation of AOB-like sequences is shown in Table 1.
The filtered reads were merged, aligned, and classified into
18 OTUs with a Jukes–Cantor distance cut-off of 3%.
Figure 3 shows that most (about 61%) AOB 16S rRNA
OTUs were shared by more than two sample sites, and two
major OTUs, i.e., OTU-14 and OTU-15, accounted for 49%
of total sequences. These results implied the AOB 16S
rRNA genes are much more conservative than amoA gene
and AmoA protein.

Abundance of AOB in activated sludge

Along with direct tabulation of AOB 16S rRNA genes by
pyrosequencing, we also quantify AOB abundances in the
activated sludge samples by qPCR, normalizing the AOB
amoA gene copy number against per nanogram of the
genomic DNA extracted from activated sludge. Table 1 shows
the abundances of AOB amoA genes in different activated
sludge samples quantified by qPCR. Sample CN-SH-TS has
the most abundant AOB amoA gene copy numbers among
the eight activated sludge samples tested. Table 1 lists the

total sequences obtained from pyrosequencing and the AOB-
like sequences in each of the six samples. AOB sequences
were successfully obtained in five out of the six samples, and
the percentages range from 0.29% to 0.64%. For US-CO-
CO, a sample from Columbia, USA, no AOB sequences
were obtained, probably due to the low abundance of AOB
in this wastewater treatment plant, in agreement with amoA
gene quantification results.

Diversity of AOA amoA gene in different activated sludge
samples

In the present study, multiple experiments were attempted
to amplify amoA gene from the eight samples using four
PCR systems (including TaKaRa Ex Taq, TaKaRa Mighty
Amp DNA Polymerase, Sigma Taq DNA Polymerase, and
Bio-Rad SYBR® Green Supermix) at different thermal
conditions (annealing temperature from 50 to 60 °C).
Amplification was successful from only five samples as
shown in Fig. S3 and only three samples were eventually
successfully cloned and sequenced. Additionally, the
presence of primer dimers was very serious in all samples
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Fig. 1 Relative abundances and distribution of AOB amoA gene OTUs in different activated sludge samples

1218 Appl Microbiol Biotechnol (2011) 91:1215–1225



Nitrosomonas oligotropha (AF272406)

 OTU-18

Nitrosomonas sp. NL7 (AY958704)

Nitrosomonas sp. Nm47  (AY123830)

 OTU-35

 OTU-16

 OTU-21

 OTU-2

 OTU-12

 OTU-38

 OTU-36

 OTU-40

 OTU-24

 OTU-39

 OTU-23

 OTU-8

 OTU-14

Nitrosomonas sp. Nm59 (AY123831)

Nitrosomonas sp. Nm84 (AY123818)

 OTU-43

 OTU-13

Nitrosomonas sp. Nm86 (AY123819)

 OTU-9

Nitrosomonas sp. JL21 (AF327919)

 OTU-5

 OTU-4

OTU-34

 OTU-15

 OTU-32

 OTU-28

 OTU-31

 OTU-42

Nitrosomonas ureae (AF272403)

 Nitrosomonas sp. AL212 (AF327918)

Nitrosomonas aestuarii (AF272400)

Nitrosomonas marina (AF272405)

 OTU-37

 OTU-41

 OTU-6

 OTU-
11

 OTU-7

 OTU-25

 OTU-10

 OTU-29

OTU-27

 OTU-33

 OTU-32

Nitrosospira multiformis (AY177933)

Nitrosovibrio tenuis (AY123824)

Nitrosospira tenuis (AJ298720)

Nitrosospira briensis (AY123821)

Nitrosospira sp. CT2F (AY189143)

 OTU-17

Nitrosomonas cryotolerans (AF272402)

 OTU-1

 OTU-3

 OTU-22

 OTU-26

Nitrosomonas communis (AF272399)

Nitrosomonas sp. Nm58 (AY123820)

Nitrosomonas nitrosa (AF272404)

Nitrosomonas halophila (AF272398)

 OTU-19

OTU-30

 Nitrosococcus mobilis (AF037108)

Nitrosomonas europaea (AF037107)

Nitrosococcus halophilus (AF272521)

100

99

98

78

100

100

99

39

49

64

71

57

55

32

99

55

82

77

40

99

69

55

98

99

98

49

47

75

54

98

53

53

96

99

33

86

65

20

32

99

48

20

52

97

69

50

83

20

78

38

77

55

40

19

31

58

36

50

36

29
12

7

13

15

0.05

N. oligotropha lineage 

N. ureae  lineage 

N. marina and N. aestuarii 

Nitrosospira lineage

N.europaea lineage

Nitrosomonas-like 

Fig. 2 Neighbor-joining phylo-
genetic tree based on bacterial
amoA gene sequences. The
evolutionary distances were
computed using the Jukes–
Cantor method and are in the
units of the number of base
substitutions per site. Bootstrap
values are indicated on branch
nodes. Sequences obtained in
this study are shown with
“OTU-” in the names. Other
sequences were obtained from
GenBank. The tree was
out-grouped with Nitrosococcus
halophilus (gammaproteobacte-
rial AOB) amoA sequence
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and it was not possible to quantify amoA using SYBR®

Green qPCR approach applied in this study (Supporting
information Fig. S3).

However, it is still of interest to have a preliminary
assessment of the diversity of AOA amoA gene in the
activated sludge samples by exploring the sequences
obtained from the clone libraries of the samples CN-NJ-
SJ, CN-HR-UN, and SG-SG-UP, all of which had Good’s
estimator of coverage over 80% (Table S2). The 56
sequences from the three samples were classified into 15
OTUs using a distance cut-off of 3% (Fig. 4). Different
from AOB amoA OTUs (Fig. 1), some AOA amoA OTUs
were shared among multiple samples. Judging from the
results in this study, it was found that the AOA amoA genes
are not as diverse as AOB amoA gene in different activated
sludge samples. While it should be mentioned that the
sample amount in this study was kind of limited, thus this
issue needs more studies to be confirmed in the future. As
shown in the phylogenetic tree of AOA amoA gene
sequences in Fig. 6, most of the sequences obtained in this
study were distinctly different from the previously reported
sequences, especially the sequences recovered from marine
and sediment. Only two OTUs (OTU-10 and OTU-11) were
grouped into the marine and sediment lineages.

Discussion

Diversity of AOB amoA gene and 16S rRNA gene
in different activated sludge samples

A previous study reported that the amoA gene similarities
among different AOB species ranged from 65% to 100%
(Purkhold et al. 2000). The similarities of the OTUs
obtained in this study were 62% to 100%. The high
diversity of the amoA gene found in this study was likely
due to the different geographic locations of these sludge
samples and the different operation/sewage conditions in
these WWTPs.

The results in this study were consistent with previous
reports that showed Nitrosomonas instead of Nitrosospira
being the dominant AOB in nitrification bioreactors in
WWTP (Park and Noguera 2004; Wells et al. 2009).
Notably, seven OTU-17-associated sequences were all from
the sample CN-HR-UN taken from Harbin, a city in
northern China. The latitude of this city is the highest
among those sampled in this study. Our observation is
consistent with the previous report that Nitrosospira spp.
prefer low temperatures of 4–10 °C (Avrahami et al. 2003;
Siripong and Rittmann 2007). We also observe a small
number of OTUs belonging to Nitrosomonas europaea
lineage and several OTUs (OTU-1, OTU-3, OTU-22, and
OTU-26) grouped far away from the known AOB species.Ta
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It was reported that the AOB 16S rRNA gene similarities
generally ranged from 90% to 100%, much higher than
those of amoA gene (about 65–100%) and AmoA protein
(about 72.5–100%) (Purkhold et al. 2000). The phyloge-
netic tree in Fig. 5 shows that all of these sequences

obtained in this study were grouped in Nitrosomonas genus.
There were 12 OTUs in Nitrosomonas oligotropha group,
four OTUs in the group of Nitrosomonas ureae, and one
OTU in the N. marina and N. aestuarii lineages, indicating
the dominance of these species in the activated sludge
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Fig. 3 Relative abundances and
distribution of AOB 16S rRNA
gene OTUs in different
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samples. This almost perfectly matches the above results of
this study using amoA gene as the biomarker. A minor
exception is that Nitrospira 16S rRNA gene was not found
by pyrosequencing, probably due to the low abundance of
these AOB species in activated sludge and that the
sequencing depth (>20,000 reads per sample) of the
pyrosequencing applied in this study was not of sufficient
depth to represent the complexity of the rare AOB
sequences. Although we identified 495 sequence reads to

the betaproteobacterial AOB, no reads can be assigned to
the gammaproteobacterial AOB 16S rRNA genes, indicating
the dominance of betaproteobacterial AOB in samples of this
study.

Abundance of AOB in activated sludge

The abundances of AOB in activated sludge were quantified
using qPCR and pyrosequencing. However, the two data sets

OTU-1

OTU-5

OTU-8

Nitrosomonas ureae (AF272414.1)

OTU-6

Nitrosomonas cryotolerans (AF272423.1)

OTU-10

Nitrosomonas aestuarii (AF272420.1)

Nitrosomonas marina (AF272418.1)

Nitrosomonas oligotropha (EF016119.1)

OTU-3

OTU-4

OTU-2

OTU-13

OTU-14

OTU-12

OTU-15

OTU-16

OTU-9

OTU-7

OTU-11

Nitrosomonas communis (AF272417.1)

Nitrosomonas nitrosa (AF272425.1)

OTU-17

OTU-18

Nitrosomonas halophila (AF272413.1)

Nitrosomonas europaea (HM446362.1)

Nitrosomonas eutropha (HM446363.1)

Nitrosospira briensis (M96396.1)

Nitrosococcus mobilis (M96403.1)

Nitrosospira tenuis (AJ298746.1)

Nitrosovibrio tenuis (M96397.1)

Nitrosolobus multiformis (M96401.1)

Nitrosococcus halophilus (AF287298.1)

100

86

51

87

93

73

74

51

97

46

67

30

78

64

45

14

25

63

16

17

12

71

21

1

9

8

8

51

35

35

15

0.02

N. ureae lineage

N.oligotropha Lineage

Nitrosomonas-like lineage

N. marina and N. aestuarii lineage

Nitrosomonas-like lineage

Fig. 5 Neighbor-joining phylogenetic tree based on AOB 16S rRNA
gene sequences. The evolutionary distances were computed using the
Jukes–Cantor method and are in the units of the number of base

substitutions per site. Bootstrap values are indicated on branch nodes.
Sequences obtained in this study are shown with “OTU-” in the
names. Other sequences were obtained from GenBank

1222 Appl Microbiol Biotechnol (2011) 91:1215–1225



show a certain degree of discordance that might be due to the
following reasons: (1) primer bias in qPCR amplification may
introduce many uncertainties, especially when the target gene
copy numbers are at low levels (Herrmann et al. 2008; Smith
et al. 2006); (2) the 454 pyrosequencing conducted in this
study may not be at a sufficient read depth to reflect the
AOB complexity since AOB sequences was not detected in

one of these samples; (3) the qPCR normalization step made
use of total activated sludge DNA, which contains nucleic
acids from eukaryotes, bacteria, archaea, and viruses to
which any variations in the relative distribution of these
components between samples would distort the qPCR
normalization process; and (4) 16S rRNA gene copy
numbers in prokaryotic microorganisms (Klappenbach et al.
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2001) are different and the amoA gene copy numbers in
different AOB are also different (Norton et al. 2002).

Diversity of AOA amoA gene in different activated sludge
samples

Although many reports described the diversity and abun-
dance of AOAs in the natural environments, only limited
information is available describing AOA diversity in the
activated sludge (Limpiyakorn et al. 2010; Park et al. 2006;
Wells et al. 2009; Zhang et al. 2009). One possible reason
for this situation could be due to the difficulty in PCR
amplification of AOA amoA from DNA of sludge samples.
In this study, only five out of eight samples were
successfully amplified, and only three samples were
eventually successfully cloned and sequenced.

Previous studies revealed that most of AOA should be
assigned to the clusters of CGI.1a (the marine and sediment
lineage) and CGI.1b (the soil lineage) in the phylum
Crenarchaeota (Hatzenpichler et al. 2008). In this study, it
was found that most of the AOA in the activated sludge
samples have a closer distance to those AOA found in soil
and thus belonged to the soil lineage. This result was in
agreement with the previous studies on AOA communities
in activated sludge (Limpiyakorn et al. 2010; Park et al.
2006), except for a study on the activated sludge in
bioreactors treating saline sewage (Jin, et al. 2010) which
had dominant AOA communities belonging to the marine
and sediment lineage. AOA AmoA protein sequences were
classified into nine OTUs using 3% distance cut-off. Figure S4
shows the relative abundance and distribution of AOA
AmoA protein OTUs in different activated sludge samples,
indicating lower diversity compared with AOA amoA gene
and that most of the AOA AmoA protein OTUs were shared
among the three samples. The neighbor-joining phylogenetic
tree based on AOA AmoA protein sequences in Fig. S5
demonstrates the same pattern as shown by the AOA amoA
gene tree (Fig. 6), that is, most of the OTUs in this study
were grouped together and had a far distance from those
sequences of marine and sediment. Interestingly, there are
two OTUs (OTU-6 and OTU-7 in Fig. S5) closely related to
the marine and sediment AOA lineage. The two OTUs were
only detected in the sludge SG-SG-UP, a sample from
Singapore, implying that the occurrence of these OTUs
might be due to the geographic location of Singapore, which
is near the ocean. The other two samples were taken from
cities far from the ocean and thus their AOA populations
mainly come from soil.
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