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Abstract Artemisinin is a sesquiterpene antimalarial
compound produced, though at low levels (0.1–1% dry
weight), in Artemisia annua in which it accumulates in the
glandular trichomes of the plant. Due to its antimalarial
properties and short supply, efforts are being made to
improve our understanding of artemisinin biosynthesis and
its production. Native β-cyclodextrins, as well as the
chemically modified heptakis(2,6-di-O-methyl)-β-cyclo-
dextrin (DIMEB) and 2-hydroxypropyl-β-cyclodextrins,
were added to the culture medium of A. annua suspension
cultures, and their effects on artemisinin production were
analysed. The effects of a joint cyclodextrin and methyl
jasmonate treatment were also investigated. Fifty milli-
molar DIMEB, as well as a combination of 50 mM
DIMEB and 100 μM methyl jasmonate, was highly
effective in increasing the artemisinin levels in the culture
medium. The observed artemisinin level (27 μmol g−1 dry
weight) was about 300-fold higher than that observed in
untreated suspensions. The influence of β-cyclodextrins
and methyl jasmonate on the expression of artemisinin
biosynthetic genes was also investigated.
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Introduction

Artemisinin is a plant secondary metabolite with an
isoprenoid structure produced by Artemisia annua L.
(Asteraceae family), an annual herb native to Asia. The
plant has been used for many centuries in traditional
Chinese medicine for the treatment of fever. The antima-
larial properties of A. annua extracts were discovered in
China in 1972, and artemisinin was identified as the active
principle (Liao 2009). Artemisinin is a sesquiterpene
trioxane lactone containing an endoperoxide bridge essen-
tial for its activity against the malarial agents Plasmodium
falciparum and Plasmodium vivax (Ferreira et al. 1997).
Recently, artemisinin has been recommended to be used in
the form of artemisinin-based combination therapies against
drug-resistant and cerebral malaria-causing strains of P.
falciparum (Newton and White 1999). Artemisinin is
produced by the aerial parts of the plant and accumulated
in the leaf glandular trichomes (Duke and Paul 1993;
Olsson et al. 2009). Unfortunately, the production of
artemisinin by the plant is very low (0.1–1% on a dry-
weight basis) and its chemical synthesis is very difficult and
expensive. In recent years many efforts have been made to
improve artemisinin production and several studies have
been made to identify genes and enzymes involved in
artemisinin biosynthesis (Weathers et al. 2006; Covello
2008). The A. annua ADS gene, encoding amorpha-4,11-
diene synthase (ADS) enzyme, involved in the first step of
artemisinin biosynthesis, has been cloned (Mercke et al.
2000; Wallaart et al. 2001). Other downstream genes of the
artemisinin biosynthetic pathway have also been cloned.
These include CYP71AV1, which encodes a cytochrome
P450 that catalyzes two oxidation reaction steps of
amorpha-4,11-diene to artemisinic aldehyde (Teoh et al.
2006); DBR2, which encodes a double-bond reductase
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involved in the conversion of artemisinic aldehyde to
dihydroartemisinic aldehyde (Zhang et al. 2008) and
ALDH1, encoding an aldehyde dehydrogenase involved in
the production of dihydroartemisinic acid that can be
converted to artemisinin (Teoh et al. 2009). An alternative
route leads instead to artemisinic acid and arteannuin B
(Brown and Sy 2007). The elucidation of the artemisinin
biosynthetic pathway (Fig. 1) and the knowledge of its
regulatory mechanisms are essential for improving artemi-
sinin production either in plants or genetically engineered
microorganisms (Ro et al. 2006; Zeng et al. 2008a; Tsuruta
et al. 2009; Zhang et al. 2010).

A. annua cell and tissue cultures have been explored for
the production of artemisinin, although the yields obtained are
not commercially attractive (Liu et al. 2006; Covello 2008).
Nevertheless, this approach is fundamental to identify
chemical and molecular factors that could have a role in
artemisinin biosynthesis (Baldi and Dixit 2008; Wang et al.
2009). We have recently established A. annua cell cultures
that are able to produce artemisinin and to respond to the
elicitor effect of methyl jasmonate (MeJA). Some artemisinin
produced by these cultures was also found in the culture
medium (Caretto et al. 2011). Artemisinin has poor aqueous
solubility, and its solubility can be improved by cyclodextrins
(CDs, Usuda et al. 2000). Cyclodextrins are non-reducing
cyclic oligomers of 1,4-α-D-linked glucose units, derived from
starch by the action of microbial enzyme cyclodextrin
glycosyl transferase. The most common CDs are α-, β- and
γ-CDs, which are formed by six, seven and eight glucose
units, respectively. CDs possess a cone shape with a lipophilic
cavity and a hydrophilic exterior. The hydrophobic central
cavity can form inclusion complexes with guest molecules of
low molecular weight (Szejtli 1982, 2004). CDs have,
therefore, received considerable attention as complexing
agents in pharmaceutical, cosmetics and food industries to
increase the water solubility of various compounds, such as
drugs, vitamins and food dyes (Loftsson and Brewster 1996).
Among the natural CDs, β-CDs, in particular, are widely
used, since their cavity size is suitable for a wide variety of
guest molecules with molecular weights ranging from 200 to
800 gmol−1 (Waleczek et al. 2003). Chemically modified β-
CDs (alkylated, esterified, glycosylated or substituted), such
as heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) and 2-
hydroxypropyl-β-CD (HYPROB), are even more soluble than
native β-CDs and are consequently preferred. The capability
of cyclodextrins to form host–guest inclusion complexes with
artemisinin has already been reported in several studies using
pure artemisinin and various β-CDs (Wong and Yuen 2001;
Illapakurthy et al. 2003; Marconi et al. 2004; Ansari et al.
2009). The addition of β-CDs to plant cell cultures to improve
the production of various secondary metabolites has been
described. Moreover, β-CDs were reported to act as genuine
elicitors of resveratrol biosynthesis in grapevine (Vitis vinifera)

in vitro cell suspension cultures (Bru et al. 2006; Zamboni et
al. 2006). A synergistic effect of β-CDs and MeJA on
resveratrol biosynthesis has also been reported (Lijavetzky et
al. 2008).

Fig. 1 Artemisinin biosynthetic pathway adapted from Arsenault et al.
(2010). ADS amorphadiene 4,11-diene synthase, CYP cytochrome P450
monoxygenase, CPR cytochrome P450 reductase, DBR2 artemisinic
aldehyde Δ11(13) reductase, Aldh1 aldehyde dehydrogenase
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In this work we have evaluated the ability of DIMEB,
HYPROB and native β-CDs to enhance the production of
artemisinin in A. annua suspension cell cultures also treated
with MeJA. The expression levels of genes of the
artemisinin biosynthetic pathway have also been assayed.

Materials and methods

A. annua cell cultures

A. annua suspension cell cultures were established and
maintained as described previously (Caretto et al. 2011).
Briefly, suspension cultures were maintained in MS
medium (Murashige and Skoog 1962) supplemented with
2 mg l−1 of 2,4-dichlorophenoxyacetic acid and 0.15 mg l−1

6-benzylaminopurine (G6 medium). Cultures were incubat-
ed on a rotary shaker (120 rpm) at 25 °C under continuous
fluorescent white light (125 μmol photons m−2 s−1) and
were subcultivated every 35 days in 500-ml Erlenmeyer
flasks by transferring 15 ml of the 35-day-old suspensions
into 85 ml fresh G6 medium. Growth of suspension
cultures was monitored by measuring dry weight during
the culture cycle. Cell viability was assayed using the
fluorescein diacetate staining method (Wildholm 1972).

Treatments of A. annua cell cultures and artemisinin
determination

Fifteen-day-old suspension cultures were centrifuged at
300×g for 10 min, and medium was discarded. Cells (2.5 g
fresh weight) were transferred to a 100-ml Erlenmeyer flask
containing 10 ml fresh G6 liquid medium (control) or 10 ml
G6 medium supplemented with β-CDs and/or MeJA
(Sigma, St. Louis, MO, USA). DIMEB and HYPROB
were used at concentrations of 5, 10 or 50 mM, while
native β-CDs were used at 5 or 10 mM due to their lower
solubility (solubility limit in water at 25 °C is 18 mM).
Methyl jasmonate was added to G6 medium at 100 μM
concentration. Suspension cultures were incubated on a
rotary shaker (120 rpm) in continuous light conditions at
25 °C for various time intervals (30 min; 4 h; 1, 2, 3, 4 and
7 days). At the end of the treatment, suspensions were
filtered under vacuum using Miracloth filters (Calbiochem,
Los Angeles, CA) and the medium harvested. Cells were
washed three times (5 min each) with 150 ml total fresh G6
medium. Cells were frozen and lyophilized overnight
(Labconco, Kansas City, MO, USA). Lyophilized cell
samples (50 mg) were extracted with 4 ml of methanol
for 16 h under magnetic stirring, then for 15 min in an
ultrasonic water bath (L&R SweepZone Technology). The
extracts were centrifuged at 4,000×g for 10 min, and the
supernatant was removed and placed in new tubes. The

pellet was extracted again with 4 ml of methanol for 2 h
under magnetic stirring; then, after centrifugation for
10 min at 4,000×g, this second supernatant was added to
the first and dried under vacuum. Dried samples were
redissolved in 1 ml of methanol.

Artemisinin was determined by HPLC analysis of the
Q260 derivative, as previously reported (Caretto et al. 2011)
and according to Smith et al. (1997). Briefly, samples
(100 μl) were derivatized by the addition of 200 μl 60 mM
NaOH, incubated at 45 °C for 30 min and after cooling at
room temperature, acidified with acetic acid (62.5 mM final
concentration). Artemisinin standard (Sigma) was derivat-
ized as described above and used to prepare standard curves
for quantification. HPLC analyses were carried out using an
Agilent 1100 Series HPLC system equipped with pre-
column, Guard, Ultrasphere ODS (Beckmann, 0.46×
4.5 cm, 5 μm particle size) and a C18 Ultrasphere ODS
column (Beckmann, 0.46×25 cm, 5 μm particle size). The
mobile phase was methanol: sodium phosphate buffer
pH 7.0 (55:45 v/v) at 1 ml min−1 constant flow rate, 35 °C
column temperature and 260 nm wavelength for detection.
The injection volume was 20 μl. Artemisinin identity was
confirmed by spectrum analysis of putative peaks and LC-
MS analysis according to Wang et al. (2005, data not
shown).

Expression analysis of artemisinin biosynthetic genes

Suspension cultures were filtered, frozen in liquid nitrogen
lyophilized and ground to a powder. RNA was isolated
using SV Total RNA Isolation System (Promega s.r.l.,
Milan, Italy). cDNAs were obtained starting from 1 μg total
RNA and using random primers and the ImProm-II Reverse
Transcription System (Promega), according to the manu-
facturer's instructions.

Primers and probes used for real-time PCR experiments
are listed in Table S1 and were all purchased from PRIMM
srl (Milan, Italy). The probes were labelled at the 5′-end
with 6-carboxy-fluorescein and at the 3′-end with tetrame-
thylrhodamine. Amplification conditions and transcript
levels were quantified as previously described (Caretto et
al. 2011). Briefly, transcripts were quantified using the
comparative quantitation module as described in the ABI
7500 Sequence Detection System (User Bulletin 2, Applied
Biosystems), based on the 2�ΔΔC

T method (Livak and
Schmittgen 2001). The relative expression was normalized
against ubiquitin and calculated using the untreated samples
as a calibrator, whose expression was arbitrarily set to one.

Statistical analysis

Results are presented as the mean value±standard deviation
of three independent replicated experiments. Data were
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analysed statistically by two-way ANOVA, followed by
Tukey HSD post-hoc tests, using SigmaStat software
Version 3.1 (SPSS Inc., Chicago, IL, USA). Significance
level was set at 5%.

Results

CDs and MeJA do not affect cell growth

Exponentially growing A. annua suspension cultures were
transferred for various exposure time intervals (1, 2, 3, 4
and 7 days) into G6 medium containing various concen-
trations of different β-CDs (5, 10 and 50 mM for DIMEB
and HYPROB, 10 mM in the case of native β-CDs). In
addition, on the basis of preliminary results and other
reports in different plant species (Komaraiah et al. 2003;
Lijavetzky et al. 2008), A. annua cell cultures were
subjected to 100 μM MeJA or to a joint treatment of MeJA
and β-CDs to investigate any possible synergistic effect.

Cell growth during the period of treatment was
monitored, and results indicated that β-CDs or MeJA,
as well as the joint treatment, had no negative effects on
the growth of the cultures. Figure 2 shows the results
obtained when 50 mM DIMEB and/or 100 μM MeJAwere
used. Similar results were also observed using lower
concentrations (5 or 10 mM DIMEB) or different β-CDs
(HYPROB and native β-CDs, not shown). The viability
assay, carried out using the fluorescein diacetate staining
method (Wildholm 1972), confirmed that β-CDs and
MeJA treatments did not affect the viability of the cultures
(not shown).

Artemisinin in the culture medium

On the basis of preliminary results obtained using different
concentrations of the various β-CDs (not shown), A. annua
suspension cultures were incubated with 50 mM chemically
modified β-CDs (DIMEB and HYPROB) or 10 mM native
β-CDs at various time intervals. The addition of 100 μM
MeJA was also assayed. When analysing the medium of
suspension cultures subjected to DIMEB or DIMEB+
MeJA joint treatment, artemisinin levels were significantly
higher than the control (0.086 μmol g−1) soon after 1 day
treatment, being 2.99 and 4.24 μmol g−1 DW, respectively.
The maximum amount was observed in the 3-day-treated
samples where 25.19 and 27.50 μmol g−1 DW were
observed. After this time, the artemisinin content decreased
and after 7 days, it was about 15% of the maximum value
observed (Fig. 3).

Although less pronounced, the treatments with HYPROB
and HYPROB+MEJA also increased artemisinin levels in the
culture medium. The maximum values were observed in the
3-day-treated samples: 6.58 and 8.49 μmol g−1 DW in
HYPROB and HYPROB+MeJA-treated suspensions, re-
spectively (Fig. 4). In the case of samples treated with native
β-CDs, an increase of artemisinin level was also observed;
nevertheless, this increase was much lower than those
observed for DIMEB and HYPROB-treated samples (not
shown). No significant differences were observed between
untreated and MeJA-treated cell cultures (Figs. 3 and 4),
indicating that, in the experimental conditions used, mostly
β-CDs were responsible for the observed increase of
artemisinin levels in the culture medium. Moreover, DIMEB
were more effective than HYPROB and native β-CDs.

Fig. 2 Growth curves of A.
annua suspension cultures
untreated or treated with 50 mM
DIMEB or 100 μM MeJA.
Values are the means of three
independent experiments±SD
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To investigate whether β-CDs could protect artemisinin
from its possible degradation in the culture medium, we
added 0.4 mM exogenous artemisinin to the culture
medium obtained from 15-day-old suspension cultures (or
to the same medium supplemented with 50 mM DIMEB)
and analysed the artemisinin content after 2, 4 and 7 days.
The results indicated that the artemisinin molecule was
stable in the medium, suggesting that cyclodextrins were
not involved in preventing artemisinin degradation in the
culture medium (not shown).

Intracellular artemisinin levels

Artemisinin levels were also measured in cell extracts of A.
annua suspension cultures incubated in G6 medium or G6
supplemented with 50 mM DIMEB and/or MeJA for 1, 2,
3, 4 and 7 days (Fig. 5). In comparison with the untreated
cultures, in both DIMEB and DIMEB+MeJA-treated
cultures, artemisinin levels significantly increased and
reached the maximum value (0.190 μmol g−1 DW) after
7 days (Fig. 5).

Fig. 3 Time course of Artemi-
sinin accumulation in the culture
medium of DIMEB and DIMEB
+MeJA-treated suspension
cultures. Values are the means
of three independent experi-
ments±SD. Letters statistical
differences at P≤0.05

Fig. 4 Time course of Artemi-
sinin accumulation in the culture
medium of HYPROB and
HYPROB+MeJA-treated sus-
pension cultures. Values are the
means of three independent
experiments±SD. Letters
statistical differences
at P≤0.05
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Expression of artemisinin biosynthetic genes

To verify possible effects of theβ-CDs or/andMeJA treatments
on the expression of artemisinin biosynthetic genes, quantita-
tive real-time PCR experiments (qRT-PCR) were performed
and the expression of ADS, CYP71AV1, CPR and DBR2 genes
was analysed starting from 30 min up to 2 days. Moreover,
the expression of AaWRKY1, a transcription factor recently
reported to regulate the ADS gene (Ma et al. 2009), was also
monitored. Results indicated that CYP71AV1 expression was
enhanced about twofold after 4 h MeJA and DIMEB+MeJA
joint treatments and then declined to values similar to those
observed in the control untreated sample (Fig. 6). The
expression of CPR gene was less or not at all affected by
the treatments. As far as DBR2 gene expression is concerned,

β-CDs induced an up-regulation of the gene between 30 min
and 1 day. Moreover, as already observed in previous work
(Caretto et al. 2011), it was never possible to detect the
expression of the ADS gene in treated or untreated suspension
cultures.

As far as AaWRKY1 is concerned, both MeJA and
DIMEB induced a clear and early up-regulation of this gene
soon after 30 min; after this time, the expression dropped to
control levels.

Discussion

A. annua in vitro cultures have been explored as a possible
alternative to whole plants for the production of the

Fig. 5 Intracellular artemisinin
levels in A. annua untreated or
treated with MeJA, DIMEB and
DIMEB+MeJA. Values are the
means of three independent
experiments±SD. Letters
statistical differences
at P≤0.05
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antimalarial compound artemisinin. This approach, howev-
er, is far from being commercially attractive due to the low
yields of artemisinin so far obtained (Covello 2008).
Nevertheless, in vitro cell cultures are a useful tool to
study plant cell metabolism and make it possible to test the
effects of different elicitors on the regulation of plant
biosynthetic pathways and the production of specific
metabolites.

In a previous work, we established A. annua suspension
cultures and verified that they were able to produce
artemisinin. It was interesting to note that small amounts

of artemisinin were also found in the culture medium
(Caretto et al. 2011). Artemisinin has poor aqueous
solubility, and cyclodextrins have been shown to increase
its solubility by forming host–guest inclusion complexes
(Usuda et al. 2000; Wong and Yuen 2001; Illapakurthy et
al. 2003; Marconi et al. 2004; Ansari et al. 2009).
Furthermore, recently, β-CDs have been reported to elicit,
synergistically with MeJA, the production of resveratrol
and the expression of stilbenes biosynthetic genes in
grapevine in vitro suspension cultures (Bru et al. 2006;
Lijavetzky et al. 2008). On the basis of this information, we
carried out a study to investigate whether β-CDs and MeJA
treatments could have similar effects on the production of
artemisinin in A. annua suspension cultures.

The results revealed an increase in artemisinin level in
the medium of both β-CDs and β-CDs+MeJA-treated
suspension cultures. The highest value was measured in the
3-day-treated samples with both chemically modified and
native β-CDs. The effectiveness of the different β-CDs in
increasing artemisinin production in A. annua cell cultures
was as follows: DIMEB>HYPROB>native β-CDs. In the
DIMEB-treated samples, artemisinin increases, ranging
from 140 up to 300-fold compared to the control, were
obtained. The results also revealed that in DIMEB or
DIMEB+MeJA-treated suspension cultures, intracellular
artemisinin levels significantly increased.

The ability of β-CDs to increase artemisinin production
could be due to their ability to complex artemisinin and
consequently reduce a possible negative feedback loop.
Arsenault et al. (2010) reported that artemisinin indeed
could regulate artemisinic acid levels in A. annua seedlings
as a consequence of a putative negative feedback loop.
Moreover, it has been reported that artemisinin is highly
phytotoxic to A. annua itself (Duke et al. 1987) and for this
reason, its compartmentalization in the subcuticular space
of trichome apical cells is necessary (Olsson et al. 2009).
The capability of β-CDs to form inclusion complexes with
artemisinin could thus reduce its cytotoxic effects in CD-
treated suspension cell cultures.

The different capability of β-CDs in increasing artemi-
sinin levels could be explained on the basis of their
different interactions with artemisinin. Nevertheless, possi-
ble elicitor effects of the various β-CDs used cannot be
excluded at this stage. The ability of β-CDs to elicit
resveratrol production in grapevine cell cultures was
possibly due to their chemical similarity to pectic oligo-
saccharides released from the cell wall after fungal infection
(Bru et al. 2006).

To study possible effects of β-CDs and MeJA on gene
expression, we analysed the transcript levels of known
artemisinin biosynthetic genes as well as the expression of
AaWRKY1 in control and treated cell cultures. AaWRKY1 is
a transcriptional regulation factor recently isolated and

Fig. 6 Estimation of the relative mRNA levels of the artemisinin
biosynthetic genes CYP71AV1, CPR, DBR2 and AaWRKY1 in A.
annua suspension cultures treated with DIMEB and DIMEB+MeJA
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suggested to activate the expression of ADS as well as other
artemisinin biosynthetic genes in A. annua plants (Ma et al.
2009). The results so far obtained in suspension cultures do
not make it possible to assess any clear correlation between
transcript accumulation of either AaWRKY1 and the
artemisinin biosynthetic genes, or artemisinin levels. Fur-
ther investigations are needed to clarify whether the
increase of artemisinin production induced by β-CDs was
the result of the enhancement of the artemisinin biosyn-
thetic flux. An intriguing question is the undetected
expression of ADS. As already reported in our previous
study (Caretto et al. 2011), here we confirm that, in spite of
the various experimental conditions tested, it was not
possible to observe any expression of ADS gene. ADS is
reported to be involved in A. annua plants in the first
committed step in artemisinin biosynthesis (Bouwmeester
et al. 1999). Although the inability to detect ADS could be
due to the very low expression level of this gene in
suspension cultures, nevertheless, the possibility that in A.
annua plant cell cultures, other genes/enzymes could be
involved in the biosynthesis of artemisinin cannot be
completely excluded. On the other hand, the regulation of
ADS is still under investigation, since it has not been
completely understood whether it occurs at the transcrip-
tional or translational level (Zeng et al. 2008b).

The results here reported confirm that the established A.
annua suspension cultures can produce artemisinin and,
what is of more interest, release it into the medium.
Moreover, there was a remarkably high increase of
artemisinin in the medium supplemented with DIMEB.
These results are quite promising, as the artemisinin yields
obtained are significantly higher than those previously
obtained, or so far reported, using A. annua suspension
cultures. Further analyses will help to understand better the
mechanism by which β-CDs can improve the biotechno-
logical production of artemisinin by A. annua cell cultures.
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