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Abstract Antibiotic-resistant bacteria are an increasing
source of concern in all environments in which these drugs
have been used. More stringent regulations have led to a
slow but sure decrease in antibiotic use in the food industry
worldwide, but have also stimulated the search for
alternative antibacterial agents. In medicine, the number
of people infected with pan-resistant bacteria is driving
research to develop new treatments. Within these contexts,
studies on the use of bacteriophages in both medicine and
the food industry have recently flourished. This renewed
interest has coincided with the demonstration that these
viruses are involved in geochemical cycles, revolutionizing
our vision of their ecological role on our planet. Bacter-
iophages have co-evolved with bacteria for billions of years
and retain the ability to infect bacteria efficiently. They are
undoubtedly one of the best potential sources of new
solutions for the management of undesirable bacteria.
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Introduction

Bacteriophages are viruses that specifically infect bacteria.
The infection process starts with bacteriophage adsorption to
the bacterial cell surface, followed by the injection of the viral
genetic material into the cytoplasm. Virulent bacteriophages
infect bacterial cells by immediately hijacking host cell repli-
cation, transcription, and translation machineries for the

production of new virions, thus converting the host cell into a
virus factory (Lwoff 1967). By contrast, temperate bacter-
iophages may delay these steps by inserting their genome into
the host chromosome, remaining in this dormant state as long
as bacteria do not perceive any signal leading to the resump-
tion of their infectious cycle. The last step of the infectious
cycle is the release of new virions, through either lysis of the
cell wall or extrusion without cell wall disruption (Fig. 1).

In 1917, Félix d’Herelle coined the term “bacteriophage”
for the agent responsible for the bacterial lysis he observed. It
was subsequently recognized that Twort had already, in 1915,
described the same phenomenon, and that the bactericidal
effect on Vibrio cholerae in the Ganges river reported by
Hankin in 1896 was also due to bacteriophages (d’Herelle
1917; Hankin 1896; Twort 1915). A century later, Faruque et
al. observed an inverse relationship between the likelihood of
cholera epidemics and the presence of bacteriophages in the
concerned area (Faruque et al. 2005). Both environmental
and medical aspects were considered in this study,
corresponding to the two fields of research on bacteriophages
that have recently expanded considerably.

Research on bacteriophages over the last century may be
divided into three periods. The first of these periods
immediately followed d’Herelle’s publication relating the
isolation of bacteriophages from the stools of patients
recovering from dysentery. During this period, d’Herelle
developed a medical application for bacteriophages, invent-
ing a discipline known as “phage therapy” (Summers
2001). This application expanded worldwide, but as both
successes and failures were reported, it was unable to resist
the onslaught of antibiotics, which began to come into
widespread use in the 1940s. At about the same time, phage
therapy was also developed for plants (Balogh et al. 2010).

The second phase began in the 1940s, with the identifica-
tion of bacteriophages as model organisms for experiments
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leading to major fundamental discoveries, paving the way for
a new scientific discipline known as “molecular biology”
(Summers 1999). For example, the ability of temperate
bacteriophages to insert their genome into that of the host
formed the basis of the development of genetic tools in
microbiology (Shapiro et al. 1969). Until the 1990s,
bacteriophages were mostly studied for the development of
molecular tools for advancing our understanding of many
aspects of biology, from the detailed regulation of gene
expression to the three-dimensional structures of proteins.
One key example of this is the phage display techniques
currently widely used in biological studies of eukaryotes, an
application far removed from the primary role of bacter-
iophages as infectious agents of bacteria (Bratkovic 2010).

The third phase began some 20 years ago and involves
studies of bacteriophages focusing on their ecological role
in the biosphere and on their use to manage undesirable
bacterial populations.

Ecological role of bacteriophages

Studies on aquatic viruses have highlighted the tremendously
high abundance of these organisms on Earth (1031 particles
versus only 107 humans; Fuhrman 1999; Bergh et al. 1989).
The stability of these viruses is affected by various
environmental factors, including UV light. Their mainte-
nance at such large numbers thus requires a dynamic renewal
of viral populations, involving the massive infection of many
bacterial hosts. It is estimated that bacteriophages account for

20% to 50% of bacterial mortality. These infections release
large amounts of cellular compounds, greatly increasing the
pool of dissolved and particulate organic matter involved in
biogeochemical cycles (Wommack and Colwell 2000).
However, the renewal of these viral populations does not
lead to a global decrease in bacterial biomass. Nevertheless,
some local variations have been observed, indicating that
bacterium and bacteriophage populations co-exist through
dynamic evolution (Faruque et al. 2005). The so-called
“arms race” between bacteriophages and bacteria is a major
driving force behind the evolution of both types of
organisms, based on bacterial resistance to bacteriophage
infection and the ways in which bacteriophages can
overcome it (Pal et al. 2007; Suttle 2007; Rohwer et al.
2009; Rodriguez-Brito et al. 2010). The molecular basis of
this competition between bacteriophages and bacteria has
been studied for decades, but the recent discovery of the
CRISPR system demonstrates that there may still be other as
yet undiscovered mechanisms (Labrie et al. 2010; Barrangou
et al. 2007). Bacteriophage genomes are much smaller than
bacterial genomes and might therefore be thought unlikely to
contain much new information. However, this assumption
has proved very wrong, given that most of the bacteriophage
sequences recently obtained display only limited identity to
previously sequenced viruses, with up to 80% of their open
reading frames (ORFs) displaying no similarity to sequences
in current databases (Abedon 2009; Thurber 2009). More-
over, we have yet to find, and are indeed unlikely to find,
any ORF conserved in all bacteriophages. Only at the
structural level can some resemblances between distantly

Fig. 1 Schematic diagram of
the infectious cycles of bacter-
iophages (lysogenic, chronic
and lytic)
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related viruses be found (Krupovic et al. 2010). Bacterioph-
ages should therefore be considered as a continually
evolving reservoir of genes (Paterson et al. 2010). They
can provide new functions that are selected or lost during
evolution (Forterre 2010; Forterre and Prangishvili 2009).
This pool of constantly evolving functions probably con-
stitutes one of the best resources for potential applications
(Schoenfeld et al. 2010).

Applications of bacteriophages

Bacteria resistant to multiple antibiotics, the famous “super-
bugs”, have become an increasing concern for human health in
recent years, with the pipeline of drugs for dealing with such
bacteria almost empty (Kumarasamy et al. 2010; Nordmann et
al. 2007; Taubes 2008). As a consequence, the medical
application of bacteriophages is now being reconsidered. The
food industry is also concerned by these “superbugs” in two
ways. Firstly, the lack of efficient antibiotics increases the
risk of considerable losses in food production systems
(livestock, fisheries, agriculture). Secondly, stronger regula-
tion has been imposed on the food industry, forcing the
industry to abandon the use of antibiotics as growth
promoters, to limit the risk of transmitting drug resistance
to human pathogens (regulation IP/03/1058 adopted by the
EU on July 2003). In this particular context, research into
bacteriophages and their applications in both food and
medicine has recently expanded, as pointed out by numerous
reviews (Sulakvelidze et al. 2001; Merril et al. 2003; Housby
and Mann 2009; O'Flaherty et al. 2009).

Three major issues relating to the use of bacteriophages
should be taken into account when developing bacteriophage
applications. The first issue is the emergence of resistant
bacterial clones. However, this may be limited by the use of
cocktails that have been shown in vitro to prevent the rapid
emergence of resistant strains (Tanji et al. 2004). Neverthe-
less, it may not be entirely possible to prevent the emergence
of resistant bacteria, so bacterial resistance to bacteriophages
should be closely monitored during any application of
bacteriophages.

The second issue is the specificity of bacteriophages, which
may limit potential applications in situations in which the
specific bacterial strain cannot be identified. Consequently,
preventive applications of bacteriophages are based on the
likelihood of efficacy. The use of bacteriophages with a broad
host spectrum, such as Staphylococcus aureus phi812 or
Listeria P100, should, however, increase the probability of
success (Goodridge 2010; Pantucek et al. 1998; Carlton et al.
2005). In other cases, the use of bacteriophage cocktails to
increase host range may increase overall potential efficiency,
although efficiency is unlikely to reach 100% (Denou et al.
2009).

The third issue is the safety of bacteriophages. Genome
sequencing can help to rule out the use of bacteriophages
containing undesirable genes encoding toxins or integrases,
for example (Denou et al. 2009). However, bacteriophage
genomes contain many ORFans, some of which may be
classified as undesirable genes in the future. Nevertheless,
genes of unknown function are also present in the genomes
of probiotic bacteria classified as safe for human consump-
tion. The safety of bacteriophage preparations is also a
matter of concern. However, purification techniques have
evolved considerably in the last few years and standard
procedures may eventually be developed, improving the
homogeneity and safety of these preparations (Kramberger
et al. 2010; Merabishvili et al. 2009; Gill and Hyman 2010;
Courchesne et al. 2009).

Bacteriophage development for the food industry

Bacteriophages represent a serious threat in the dairy
industry, causing losses in the production of cheese and
fermented products (Brussow 2001). However, they are
also seen as positive agents, replacing antibiotics in the
control of pathogens. Two main applications have been
developed to prevent food contamination and/or to treat
bacterial infections in animals or plants.

Prevention

There are two principal sources of contamination in the
production of food products: the raw material, which may
contain bacteria pathogenic to humans, and humans, who
may contaminate products during their processing. The use
of bacteriophages before the initiation of a process should
reduce the probability of contamination originating from
the initial product, and their use during processing could
also potentially prevent recontamination. Such strategies for
targeting single pathogens, such as Listeria in cheese
production and Escherichia coli in the meat industry are
currently being developed (Guenther et al. 2009; Rivas et
al. 2010). In 2006, the US Food and Drug Administration
approved a product based on bacteriophages targeting
Listeria as an additive for use in cheese production. This
unique industrial application should be followed by others,
provided that the scaling-up process from laboratory to
industry takes into account factors associated with food
processing itself, such as temperature, pH, and humidity,
which may affect the efficacy of preventive applications.

Treatment

In 2005, the US Environmental Protection Agency ap-
proved a bacteriophage-based product for the treatment of
bacterial spot on pepper and tomato and bacterial speck on
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tomato (EPA Registration No 67986–1). As in the meat
industry, bacteriophage treatments for plants are confronted
with problems associated with scaling up. The use of
bacteriophages in open fields is hindered by several factors:
uncontrolled environments (temperature, sun exposure,
humidity etc.), uneven dispersion, and rapid inactivation.
However, these environmental problems can be limited by
the use of greenhouses. In addition, protective formulations
have been shown to reduce the inactivation of bacterioph-
ages by sunlight and rain washout (Balogh et al. 2010).

Animals could also be given bacteriophage-based treat-
ments rather than antibiotics (Johnson et al. 2008).
Bacteriophages active against three major human pathogens
that are commensal in animals—E. coli O157:H7, Salmo-
nella and Campylobacter—have been identified and are
sometimes used in experimental treatments (Callaway et al.
2006; Rozema et al. 2009; Loc Carrillo et al. 2005; Wall et
al. 2010). A recent study in an industrial poultry system
showed that E. coli infection in chicken could be reduced
by bacteriophage treatment (Oliveira et al. 2010). The
authors of this study showed that low doses of bacterioph-
ages were more effective than initially predicted on the
basis of in vitro results. As the transmission of the disease
from one infected chicken to another takes days to weeks,
the early initiation of treatment with low doses of
bacteriophages may be sufficient to prevent the develop-
ment of advanced infections. Several studies on experi-
mental farms have generated promising results requiring
confirmation at the industrial scale (Jamalludeen et al.
2009; Rivas et al. 2010). Bacteriophage treatments have
also been tested for aquaculture, with some success in the
treatment and prevention of fish infections. These studies,
using bacteriophages specific to Lactococcus garviaea and
Pseudomonas plecoglossicida, pathogens of Yellowtail
(Seriola quinqueradiata) and Ayu (Plecoglossus altivelis),
respectively, suggest that bacteriophages could be useful for
the fish industry (Almeida et al. 2009).

Recent advances in human phage therapy

A few years after the invention of phage therapy by
d’Herelle, a Georgian researcher, Georgyi Eliava, worked at
the Institut Pasteur in Paris for a few months as a visiting
scientist. On his return to Georgia, he convinced the Soviet
authorities to invest in phage therapy by building a
dedicated research center. The resulting institute, the Eliava
Institute for Bacteriophages, Microbiology, and Virology
was created more than 80 years ago. This center has a long
history in the domains of bacteriophage research and
human phage therapy (Kutateladze and Adamia 2008).

A similar center at Wroclaw in Poland is also carrying
out both human phage therapy and bacteriophage research
(Gorski et al. 2009). These two centers have provided a

clear demonstration that phage therapy can be useful for
human patients, but there is not yet sufficient experimental
proof to respond to the legitimate questions asked by public
health authorities in Western countries. Nevertheless, in
light of some recent work, the situation is clearly
improving, paving the way for the promotion of additional
research and clinical studies in this field.

Experimental models

Over the last 30 years, studies in several animal models
have shown that bacteriophages can infect pathogenic
bacteria in animals. Many reviews summarizing these data
have been published (Gorski et al. 2009; O’Flaherty et al.
2009; Sulakvelidze and Kutter 2005). Bacteriophage treat-
ments administered by intravenous or intraperitoneal
injections have frequently been successful. However, these
administration routes are the most difficult to use in
humans, because it is not yet possible to ensure that
bacteriophage solutions are absolutely pyrogen-free. There
are two key aspects to be considered concerning the safety
of bacteriophage preparations. Firstly, as mentioned above,
no standard protocol has yet been validated by medical
authorities. Secondly, as bacteriophages are very different
in nature from currently authorized medical products, it
may be necessary to adapt or to create regulations for full
clinical assessment of the potential of these viruses
(Verbeken et al. 2007).

As intravenous and intraperitoneal administrations are
unlikely to be the first choices for the treatment of humans,
some research groups have studied the administration of
bacteriophages by more “natural” routes. The oral admin-
istration of bacteriophages to target intestinal pathogens is
the most widely studied (Chibani-Chennoufi et al. 2004;
Tanji et al. 2005). These studies have yielded promising
results, but the only mouse model available in which a
diarrheal disease (caused by Citrobacter rodentium) is
reproduced has not yet been used to test the efficacy of
phage therapy (Mundy et al. 2005). The lack of such data is
currently making it difficult to study the consequences of
bacteriophage treatments for both the host flora and the
immune response. Skin infections can be treated topically
by the direct application of bacteriophages to the surface of
the skin, and formulations have been developed in which
bacteriophages are incorporated into a cream (O’Flaherty et
al. 2005). However, such modes of treatment have not yet
been investigated in depth in animals and humans (Marza et
al. 2006). Finally, the treatment of lung infections by the
intranasal administration of bacteriophages in mice has
been the object of two recent publications (Carmody et al.
2009; Debarbieux et al. 2010). Carmody et al. compared
the intranasal and intraperitoneal treatments of infections
caused by Burkholderia cenocepacia and suggested that
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intraperitoneal treatment was more effective. Studies by
other groups have confirmed the efficacy of intraperitoneal
treatment of lung infections caused by Pseudomonas
aeruginosa or Klebsiella pneumoniae with bacteriophages
(Chhibber et al. 2008; McVay et al. 2007). By contrast,
Debarbieux et al. demonstrated the rapid efficacy of an
intranasal instillation of a bacteriophage to treat an acute P.
aeruginosa lung infection in mouse. In vivo imaging
technology with a bioluminescent P. aeruginosa strain
(expressing lux genes) was used to follow infection and
treatment kinetics in live animals. A single intranasal
application of one bacteriophage was found to be effective
for the treatment of the lungs, nose, and throat. This result
suggests that the nasal carriage of pathogens in healthy
subjects could be reduced by the inhalation of appropriate
bacteriophages. Furthermore, a single bacteriophage appli-
cation was shown to be effective at preventing P.
aeruginosa infection over a period of 24 h. This result
was confirmed and extended, with another bacteriophage,
to a period of 4 days of protection against an acute lung
infection caused by a clinical strain of P. aeruginosa that
was mucoid, multidrug-resistant, and isolated from a cystic
fibrosis patient (Morello et al. 2011). The prophylactic use
of bacteriophages is not a new idea. However, the results
obtained for the intravenous injection of bacteriophages in
animal models suggested a half-life too short for use in
prophylaxis, unless long-circulating variants were selected
(Uchiyama et al. 2009; Merril et al. 1996; 2003). If the
results for lung treatment obtained in mice are confirmed in
humans, then the incidence of lung infections, and
particularly of those acquired in hospitals, could be reduced
by preventive treatment over several days. Current moni-
toring procedures for hospital-acquired infections include
identification of the principal pathogens involved. It should,
therefore, theoretically, be possible to select bacteriophages
effective against these pathogens for use in preventive
treatments in patients due to attend the affected hospital or
for direct treatment on admission.

Human trials

Only one human phase II trial has been carried out, in
accordance with current European regulations (Wright et al.
2009). The patients involved in this study had developed
chronic otitis caused by P. aeruginosa and previous treat-
ments with antibiotics had been unsuccessful. The levels of
bacteria recovered at the end of the treatment were
significantly lower in the bacteriophage-treated group than
in the untreated group. This treatment appeared slightly less
effective than that in a previous study on dogs, and the
results obtained were very different from those obtained in
mice models, in which 100% of the animals could be cured
(Hawkins et al. 2010). This is not surprising, because

animal models only partly reflect the clinical situation of
the human disease (Lecuit 2007). Animal models of
infection are usually developed such that most of the
animals die rapidly, making it possible to identify patho-
gens or virulence factors. There is now an urgent need to
develop more clinically relevant models, particularly for
chronic infections, for more careful evaluation of the
efficacy of bacteriophage treatments.

A few phase I studies have also been reported (Bruttin and
Brussow 2005; Kutter et al. 2010; Rhoads et al. 2009). These
studies precede future phase II trials, as exemplified by the
ongoing trial in Bangladesh focusing on the treatment of
diarrheal infections in infants (clinical trial identifier
NCT00937274). Future data from these trials, together with
the data available from the centers in Poland and Georgia,
should make it possible to determine both the potential and
limitations of human phage therapy (Letkiewicz et al. 2010;
Kutateladze and Adamia 2010).

Perspectives

After a long period of waning interest, the future of
bacteriophage research is now looking up and, for the first
time in a century, there seems to be a unique opportunity
for both fundamental and applied scientists to join forces.
We provide below some examples likely to benefit greatly
from this renewed interest in bacteriophages.

Ecology

The ecological impact of the use of bacteriophages in
industry and medicine has not been studied, so this area
remains somewhat speculative. If the use of bacteriophages
becomes widespread in medicine, there will probably be
little impact on the total population of 1031 units versus 107

humans worldwide. As bacteriophages will be selected to
be species-specific for human pathogens, they are likely to
have smaller ecological consequences than broad-spectrum
antibiotics (Barc et al. 2004; Denou et al. 2009). The use of
high doses of bacteriophages, particularly in agriculture
(directly on fields), may affect local ecological niches, but
the extent of this impact remains to be determined. In
aquatic environments, bacteriophage predation is such a
widespread natural event that the emergence in a local area
of a dominant population of specific bacteriophages is
frequent and forms part of the natural cycle of co-evolution
of bacteriophages and their hosts. Will the use of
bacteriophages by the fish industry affect this evolution?
Additional data are required to answer this question and
many others.

The human gut shelters one of the most studied
microbial communities. This community is regularly
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exposed to various bacteriophages found in food and water
(Lodder et al. 2010; Garcia et al. 2009; Tsuei et al. 2007). A
recent study on the viriome of human feces showed that
most of the bacteriophages present are prophages with
limited variability over time (Reyes et al. 2010). These data
are clearly different from those obtained in aquatic environ-
ments, in which the dynamic renewal of bacterial popula-
tions has been shown to be driven mostly by virulent
bacteriophages (Rodriguez-Valera et al. 2009). Has evolu-
tion of the gut microbial community resulted in the
selection of a new type of defense against bacteriophage
predation, keeping virulent bacteriophages under control?
Future studies combining both microbiome and viriome
analysis should shed more light on this particular ecological
niche.

Technology

The possible technological applications of bacteriophages
are so broad that we present here only few that are directly
linked to the management of undesirable bacteria. Lysins,
the bacteriophage-encoded enzymes implicated in the
release of virion progeny, have been shown to cure animals
infected with gram-positive pathogens (Fischetti 2008).
These enzymes have opened the way to antimicrobial drug
discovery through bacteriophage genomics. Engineered
bacteriophages have been developed (1) to infect biofilms
more efficiently; (2) to enhance the efficacy of antibiotics,
and (3) to increase bacteriophage host range (Lu and
Collins 2007, 2009; Pouillot et al. 2010). Recent advances
in synthetic biology and the in vitro synthesis of large
genomes in particular, have opened up new possibilities for
designing “customized” bacteriophages (Burbelo et al.
2010). Further studies are required to determine whether it
is likely to be possible to build a synthetic bacteriophage
for a specific goal. Meanwhile, several biotechnology
companies are currently selling bacteriophage-based prod-
ucts and the number of such companies will probably
increase in the next few years with, for example, the
development of bionanotechnologies (Housby and Mann
2009; Hemminga et al. 2010; Soto and Ratna 2010).

Medicine

The concept of “chemical medicine”, which is based on
drugs, does not apply to phage therapy. Bacteriophages are
much more complex than chemically defined molecules,
but this complexity is actually an advantage when consid-
ering their specificity. They target only permissive hosts,
which constitute only a small proportion of the bacterial
populations they encounter, even in humans. As phage
therapy is expected to have no adverse effects on the
commensal flora, it is thought that phage therapy would

result in a smaller number of secondary infections than
antibiotic treatments (Croswell et al. 2009). Nevertheless,
antibiotics are still routinely used in hospitals and will
continue to be so in the near future, because they are
reliably effective. The discovery of new drugs can also
breathe new life into efforts to combat drug-resistant
bacteria. Antibiotics and bacteriophages should therefore
not be seen as conflicting and exclusive approaches. Their
combined use is supported by the synergy between
bacteriophages and antibiotics (Comeau et al. 2007). The
development of such combination treatments requires more
research, but seems promising.

One of the major obstacles to the development of phage
therapy in humans is the lack of a specific regulatory
framework. However, ways to adapt phage therapy to
current regulations have been suggested (Verbeken et al.
2007; Pirnay et al. 2010).

Assuming that the use of bacteriophages in medicine is
eventually accepted, how could this approach be applied?
In cases of acute infection, the timing of treatment is crucial
and bacteriophages are unlikely to be of great benefit unless
the pathogen responsible for the infection has already been
identified. By contrast, timing is less crucial in chronic
infections, and phage therapy would therefore be more
likely to succeed, as time could be devoted to selecting the
most effective bacteriophages. However, such selection
should ideally be carried out on a collection of bacterioph-
ages approved for use in medicine (bacteriophages fully
sequenced and prepared according to established standard
procedures).

Clearly the concept of the biocontrol of undesirable
bacteria by bacteriophages is now well established, but the
extensive use of bacteriophages in the twenty-first century
in the domains of human health and food requires
additional research and appropriate evaluation in clinical
trials.
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