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Abstract The effects of changes in CO2 and pH on
biomass productivity and carbon uptake of Pleurochrysis
carterae and Emiliania huxleyi in open raceway ponds and
a plate photobioreactor were studied. The pH of P. carterae
cultures increased during day and decreased at night,
whereas the pH of E. huxleyi cultures showed no significant
diurnal changes. P. carterae coccolith production occurs
during the dark period, whereas in E. huxleyi, coccolith
production is mainly during the day. Addition of CO2 at
constant pH (pH-stat) resulted in an increase in P. carterae
biomass and coccolith productivity, while CO2 addition
lowered E. huxleyi biomass and coccolith production.
Neither of these algae could grow at less than pH 7.5.
Species-specific diurnal pH and pCO2 variations could be
indicative of significant differences in carbon uptake
between these two species. While E. huxleyi has been
suggested to be predominantly a bicarbonate user, our
results indicate that P. carterae may be using CO2 as the
main C source for photosynthesis and calcification.
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Introduction

The large-scale culture of microalgae as a CO2 “sink” for
bioremediation of increased atmospheric CO2 levels has
been proposed by several workers (Benemann 1997; Herzog

and Drake 1996). Microalgae have a higher productivity
than other photosynthetic organisms such as trees and also
have the potential to be grown using saline water and on
land which cannot be used for agriculture. The coccolitho-
phorid algae (Haptophyta) have the further potential advan-
tage in that they fix carbon not only into organic biomass
high in lipids and hydrocarbons (Fernandez et al. 1994;
Riebesell et al. 2000) but also produce CaCO3 in the form of
small plates called coccoliths (Paasche 2002). This would
allow the fixed C to be buried (“fossilized”) or, alternatively,
the lipids and hydrocarbons can be used as a renewable fuel
or as an energy source by direct co-firing (Wu et al. 1999).

Large-scale algae cultures are generally carbon limited,
and the addition of CO2 enhances growth and productivity
(Borowitzka 1998). However, the addition of CO2 also
causes acidification of the medium. Recently, several
studies have examined the effects of increased CO2 on
Emiliania huxleyi (Leonardos and Geider 2005; Nielsen
1995; Riebesell et al. 2000; Zondervan et al. 2002).
Leonardos and Geider (2005) found that elevated CO2 can
result in increasing organic carbon fixation by E. huxleyi
while grown at low N:P and in high light. Feng et al. (2008)
also showed that doubling the pCO2 can result in reduced
particulate inorganic carbon (PIC) in E. huxleyi at
400 μmol photons m−2 s−1. However, they did not detect
any change in the particulate organic carbon (POC)
between high and low pCO2. Thus, increasing CO2 was
found to result in a decrease in calcification and an increase
in organic carbon, at least in nutrient-limited E. huxleyi.
While there have been extensive studies on the effect of pH
and elevated pCO2 on E. huxleyi, there is very limited data
on the effect of elevated pCO2 on the productivity and
calcification of Pleurochrysis carterae.

We have demonstrated that the coccolithophore P. carterae
can be reliably grown outdoors in open raceway ponds for
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extended periods of up to at least 1 year (Moheimani and
Borowitzka 2006a). We have also studied the limits to
growth and productivity of this alga when grown outdoors in
raceway ponds (Moheimani and Borowitzka 2006b). As part
of an examination of the factors limiting growth and
coccolith formation in the outdoor cultures of P. carterae,
we examined the effects of CO2 addition and compared P.
carterae with E. huxleyi.

Materials and methods

The coccolithophorid algae P. carterae Braarud et Fager-
land CCMP 647 and E. huxleyi Lohmann CCMP 371 were
obtained from the Centre for Culture of Marine Phyto-
plankton, Bigelow Laboratory, Boothbay Harbor, ME,
USA. P. carterae and E. huxleyi cultures were maintained
in modified f/2 and f/50 medium, respectively (Guillard and
Ryther 1962). The media were modified by omitting Mo
and Si from the original recipe and by adding 0.06 μM
SeO2.

The algae were grown either in a plate-type photobioreactor
(Fig. 1) or an outdoor raceway pond (Moheimani and
Borowitzka 2006a). The plate photobioreactor had a culture
volume of 6 L (W×H×L (cm)=10×35×26). The base of the
reactor was V-shaped with an air tube at the bottom of the V
to promote the suspension or flotation of the relatively heavy
coccolithophorid cells. The plate photobioreactor was chem-
ically sterilized by using 12% sodium hypochlorite, for 2 h,
rinsed 12 times in sterile deionized water, and dried in a 70 °C
oven. The cultures were grown in semicontinuous mode with
light provided by 12 cool white fluorescent tubes arranged at
both sides of the reactor giving an average irradiance of
320 μmol photons m−2 s−1 (measured at 24 spots on the
surface of reactor) with a 12:12-h light:dark cycle. The
growth temperature was 23±1.5 °C.

The outdoor cultures were carried out in September 2003
in two 1-m2 surface area fiberglass paddle wheel raceway
ponds operated at 16 cm depth. The four-paddle paddle-
wheel, operating at a rotation speed of about 28 rpm,
generated a flow rate of 20 cm s−1. The cultures were
maintained in semicontinuous mode by daily harvesting of
a part of the biomass and replacing the harvested medium
with fresh medium. The ponds were located at Murdoch
University, Perth, Western Australia (31°57 S; 115°52 E).
The culture medium for the ponds was chemically sanitized
(Moheimani and Borowitzka 2006a). CO2 was added to the
pond using a 0.06-m2 floating CO2 injector, based on the
design of Becker (1994), and positioned 10 cm downstream
from the paddlewheel. In both systems, pH was controlled
(±0.4 pH units) by CO2 addition using a pH controller and
a solenoid switch connected to a CO2 gas cylinder. The
carbon chemistry of the cultures, grown in the plate
photobioreactor, was calculated from temperature, salinity,
phosphate, total alkalinity, and pH of the medium using
CO2sys software (Lewis and Wallace 1998). For total
alkalinity, medium was filtered with syringe filter
(0.45 μm) to remove cells and other particles. Total
alkalinity was determined according to Strickland and
Parsons (1972) . Media for the plate reactor were buffered
to pH 7.50 (total alkalinity, pCO2, and total carbon were
2,453.8 μmol kg−1, 1,756.9 μatm, and 2,378.6 μmol kg−1,
respectively). Samples were taken daily for measuring
growth rates, organic biomass, lipid content, and calcium
carbonate production using the methods described in
Moheimani and Borowitzka (2006a).

Results

Preliminary experiments in batch cultures showed that in
300 mL cultures of P. carterae CCMP 647 and another
Pleurochrysis sp., the medium pH rose from pH 8.2 to
pH 9.5 by the end of the exponential phase, and then
declined to pH 8.2 after about 5 days in stationary phase. In
contrast, pH in E. huxleyi culture did not change throughout
the growth period (data not shown). The effects of CO2

addition and pH were then examined in plate photo-
bioreactor under controlled conditions of light and temper-
ature and then also outdoors in open raceway ponds.

Plate photobioreactors

The pH of the cultures was initially unregulated, i.e., no
CO2 was added. In the P. carterae culture, this resulted in a
pH increase from pH 8.3 to pH 9.5 during the light period
and then a decrease to pH 8.3 by the end of the subsequent
dark period (Fig. 2a). In the E. huxleyi culture, the pH
remained between pH 8.1 and 8.4 in both the light and darkFig. 1 Schematic diagram of plate photobioreactor
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periods (Fig. 2b). Culturing P. carterae under unregulated
pH resulted in a reduction in pCO2, whereas E. huxleyi
grown under the same unregulated condition increased the
pCO2 (Table 1).

The pH of the culture medium was then regulated by
addition of CO2 using the pH stat system. Between pH 7.9–
8.1 and pH 7.6–7.9 for P. carterae and between pH 7.7 and
7.9 for E. huxleyi, the cultures continued to grow well
(Fig. 2). When the pH was reduced to pH 7.4 for P.
carterae and to pH 7.2 for E. huxleyi, the algal cells started
sticking to the photobioreactor walls and also began to
clump, and semicontinuous culture could not be main-
tained. Increasing the pH of the culture medium to the
previous higher value significantly reduced clumping in
both species.

The growth rate and productivities of both species at the
different pH values are shown in Table 1. P. carterae
showed the highest specific growth rate of 0.76 day−1 and
maximum dry weight productivity of 0.51 gL−1 day−1 at

pH 8. The growth rate and dry weight productivities of P.
carterae were greater in pH 8 than pH 7.7, and unregulated
pH and the total lipid and CaCO3 content also followed the
same pattern. In P. carterae, pCO2 was higher at pH 7.7
than pH 8 and unregulated pH (Table 1). When grown at
controlled pH, total alkalinity, pCO2, and total carbon
declined in both strains in the afternoon (Table 1). In E.
huxleyi, growth rate and all productivities were highest in
the unregulated pH treatment, even though less pCO2 and
total carbon was available to the cells when grown at
pH 7.8 (Table 1).

Cell lipid per total dry weight remained constant
between 21% and 24% of dry weight in P. carterae,
whereas in E. huxleyi, the lipid content increase from 19%
to 26% of total dry weight between the unregulated pH
(pH 8.1–8.3) and pH 7.8. The highest amount of CaCO3 per
total dry weight (11%) was at pH 8 in P. carterae, whereas
in E. huxleyi, CaCO3 per total dry weight remained at 12%
in both the unregulated pH and pH 7.8 cultures.

Fig. 2 Growth (circles) and
medium pH (squares) of a
Pleurochrysis carterae and b
Emiliania huxleyi grown in a
plate-type photobioreactor under
different pH conditions con-
trolled by a pH-stat system with
CO2 addition
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Raceway pond

Two raceway ponds of P. carterae operated in parallel were
set up and starting on 28 September 2003. One pond had no
pH control, and in the other, the pH was controlled by CO2

addition using a pH-stat. The light profile and medium
temperature of cultures grown in raceway ponds have been
reported previously by Moheimani and Borowitzka
(2006a). The changes in cell density and pH variations in
the raceway ponds are shown in Fig. 3, and the effects of

Table 1 Carbon chemistry, mean growth rates, and productivities of P. carterae and E. huxleyi grown in a plate photobioreactor at different pH

pH Total alkalinity
(μmol kg−1)

pCO2

(μatm)
Total inorganic
carbon (μmol kg−1)

n Specific growth
rate (day−1)

Productivity
(mg L−1 day−1)

Dry weight Lipid CaCO3

P. carterae Unregulated

Morning (8.3) 3,176.6 267.3 2,589.1
10 0.62±0.00 290±17 71±14 24.1±13.11

Afternoon (9.5) 2,905.0 2.6 1,344.2

pH 8

Morning 2,703.4 603.2 2,703.4
8 0.76±0.00 510±13 121±20 61.0±17.27

Afternoon 2,064.6 460.6 2,064.6

pH 7.7

Morning 3,090.4 1,350.2 2,921.2
10 0.50±0.01 410±9 88±19 40.9±12.08

Afternoon 1,940.3 834.6 1,805.7

E. huxleyi Unregulated

Morning (8.4) 2,509.3 152.1 1,934.3
7 0.98±0.01 310±23 61±13 40.0±1.90

Afternoon (8.0) 1,522.3 290.1 1,300.4

pH 7.8

Morning 2,485.2 834.6 2,991.6
10 0.76±0.00 230±16 59±13 28.7±0.81

Afternoon 2,289.5 765.9 2,104.4

Fig. 3 Pleurochrysis carterae
growth (circles) and daily me-
dium pH range (squares) in
outdoor raceway ponds under a
unregulated pH (control) condi-
tion and b under different pH
conditions controlled by a pH-
stat using CO2 addition
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different pH on growth rates and productivities are summa-
rized in Table 2. The pH in both ponds was unregulated
between 1 and 15 October 2003 (see Fig. 3). During this
period, the pH increased during the day from pH 8.3 to
pH 10.9 and decreased to the initial pH of 8.3 during the
night. The pH decreased 2 pH units after each dilution and
then reached the maximum daily pH less than 2 h thereafter.
There was no difference in maximum cell concentration,
growth rate, and productivity between the control and
experimental raceway ponds during the unregulated pH
period (see Table 2).

Between 16 October and 9 November 2003, the pH was
set to pH 9.6 in the experimental pond, while the pH in the
control pond remained unregulated (Fig. 3). This resulted in
a significantly higher growth rate, total dry weight
productivity, lipid productivity, and CaCO3 productivity in
the pH-regulated pond compared to the control pond (one-
way ANOVA, P<0.05; Table 2). There was no difference
between the maximum cell density between the two ponds
at this pH (one-way ANOVA, P>0.05).

Between 10 November and 7 December 2003, the pH in
the experimental pond was decreased to pH 9.0 (Fig. 3b).
While no difference was observed in growth rate and
maximum cell concentration between the two ponds (one-
way ANOVA, P>0.05), the pH-regulated pond achieved
significantly higher dry weight, lipid, and CaCO3 produc-
tivities (one-way ANOVA, P<0.05; Table 2).

Between 8 and 26 December 2003, the pH was further
decreased to pH 8.5 in the experimental pond (Fig. 3).
Growing P. carterae at this pH resulted in reduction of cell
number from 7×105 to 3×105 cells mL−1 in less than
12 days (Fig. 3b). Due to this reduction, dilution of the
experimental pond was not possible (Fig. 3b). However, the
control pond (unregulated pH) could be diluted five times

during the same period of time (Fig. 3a). Shifting the pH
from 8.5 back to pH 9.6 in the experimental pond resulted
in a recovery of growth of P. carterae (Fig. 3b).

The pH changes by CO2 addition did not affect the cell
lipid and CaCO3 content. Total lipid was between 32% and
34% of total dry weight, and CaCO3 was between 9.9% and
10.2% of total dry weight in both ponds.

Diurnal cycle (biomass and pH)

Over a diurnal cycle, the pH of the culture medium
remained constant in the range of pH 8.3 to 8.5 in the E.
huxleyi culture (Fig. 4c). On the other hand, in the P.
carterae culture, the pH of the culture medium increased
during the light period from pH 7.8 to 10.1 in the plate
photobioreactor and from pH 8.2 to 11 in the raceway pond
(Fig. 4a, b). During the dark period, the pH decreased to
pH 8.0±0.2 by the end of the night (Fig. 4a, b). In E.
huxleyi, the coccolith concentration increased from the start
of light period, and there appeared to be little decalcifica-
tion during the night (Fig. 4c). In P. carterae cultures, the
coccolith concentration increased from 2×105 to 9×
105 coccoliths mL−1 during the light period (Fig. 4a, b).
During the first 2 h of the dark period, coccolith number
declined to 3×105 coccoliths mL−1 (Fig. 4a, b). This loss in
the number of coccoliths was most likely due to decalci-
fication in the first 5 h of the dark period together with a
decrease in the pH of the culture medium (Fig. 4a, b).
Coccolith numbers then started to increase so that by
sunrise, the coccolith number was >50% of that reached
during the day. In contrast, there was a very much smaller
decline in coccolith numbers in the dark period in E.
huxleyi, and coccolith numbers only increased after the
onset of light (Fig. 4c). The cell dry weight of both P.

Table 2 Mean growth rates and productivities of control and experimental raceway ponds at different pH

Cultivation period n pH range Specific growth
rate (day−1)

Maximum cell
concentration
(cells×105 mL−1)

Productivity
(mg L−1 day−1)

Dry weigh Lipid CaCO3

Control pond 1 Oct 2003–15 Oct 2003 10 8.3–10.9 0.532 6.2 170 56.1 16.8

16 Oct 2003–9/1 Nov 2003 13 8.3–10.9 0.545 7.9 180 59.4 17.5

10 Nov 2003–7 Dec 2003 12 8.3–10.9 0.591 8.02 180 63.0 17.7

8/1 Dec 2003–26 Dec 2003 10 8.3–10.9 0.518 8.1 190 64.6 18.9

27 Dec 2003–5 Jan 2004 5 8.3–10.9 0.528 7.9 170 56.1 16.3

Experimental pond 1 Oct 2003–15 Oct 2003 10 8.3–10.9 0.539 6.3 170 56.1 16.8

16 Oct 2003–9/1 Nov 2003 13 9.6±0.2 0.592 7.8 230 78.2 22.7

10 Nov 2003–7 Dec 2003 12 9.1±0.2 0.593 7.1 210 69.3 21.0

8/1 Dec 2003–26 Dec 2003 10 8.5±0.2

27 Dec 2003–5 Jan 2004 5 9.6±0.2 0.391
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carterae and E. huxleyi decreased by 55% to 75% during
the dark period followed by an increase during the light
period (data not shown).

Pearson product–moment correlation indicated a signifi-
cant association between the pH of the culture medium and the
coccolith concentration in the culture of P. carterae (r=−0.69,
df=24, P<0.05), whereas there was no correlation between
pH and coccolith concentration in the cultures of E. huxleyi
(r=−0.31, df=24, P>0.05).

Discussion

Regulating the pH at pH 8 by the addition of CO2 increased
both the growth rate and organic and CaCO3 productivity in
P. carterae. Lowering the pH further to pH 7.7 reduced the
growth rate, but the organic and CaCO3 productivity
remained higher than when the cells were grown under
unregulated pH (pH 8.3–9.5) conditions. The E. huxleyi
cultures, however, had the highest growth rate and organic

Fig. 4 Changes in cell concen-
tration (squares), coccolith con-
centration (circles), and pH of the
culture medium (triangles) over
24 h for a Pleurochrysis carterae
grown in a raceway pond (mean
±SE, n=5), b P. carterae grown
in a plate photobioreactor (mean
±SE, n=5), and c E. huxleyi
grown in a plate photobioreactor
(mean±range, n=3)
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and CaCO3 productivities under unregulated pH (pH 8.1–
8.3) conditions. These results suggest that the high pH
values reached in the unregulated cultures of P. carterae lead
to carbon limitation, as at pH 10, there is no free CO2, some
HCO3

−, and the bulk of the Ci is in the form of CO3
2−. The

observed pH changes during a diurnal cycle in actively
growing cultures of P carterae and E. huxleyi indicate
significant differences in carbon uptake and metabolism
between these species. During the light period, P. carterae
significantly increased the pH of the medium (up to pH 11 in
the outdoor cultures), whereas in E. huxleyi, the pH did not
change. Israel and Gonzalez (1996) and Crenshaw (1964)
observed the same differences in the pattern in pH during
growth of P. carterae and E. huxleyi.

Growth of both strains, when grown under controlled
pH, was accompanied by a concomitant decrease in total
carbon and pCO2. While total carbon utilization was the
same between P. carterae and E. huxleyi when grown under
uncontrolled pH, there was a completely different pattern in
pCO2 and pH for these two strains. E. huxleyi decreased the
pH and increased the pCO2 between morning and after-
noon, while the opposite was observed in P. carterae. The
inorganic carbon system is the main buffering system in the
ocean. Alkalinization of the medium is observed in many
photosynthesizing algae and aquatic plants as a result of
either CO2 uptake (with or without an external carbonic
anhydrase) and/or HCO3

− uptake with concurrent OH−

efflux (Borowitzka 1982; Brewer and Goldman 1976). The
precipitation of CaCO3, on the other hand, can lead to
acidification (Gattuso et al. 1995), and this was observed in
our E. huxleyi culture. The interaction between photosyn-
thesis and calcification, and the concomitant C fluxes has
been extensively studied in E. huxleyi and, to a much lesser
extent, in P. carterae and not at all in other coccolitho-
phorid algae (Berry et al. 2002; Borowitzka 1989;
Brownlee and Taylor 2004; Paasche 2002). There is
substantial evidence that the bulk of the carbon for
photosynthesis in E. huxleyi comes from bicarbonate
(Buitenhuis et al. 1999; Sikes and Wheeler 1982), and it
has been suggested that the H+ produced during CaCO3

formation is used to offset any cytoplasmic alkalinization
resulting from HCO3

− utilization for photosynthesis and the

action of carbonic anhydrase in the chloroplast (Berry et al.
2002; Quiroga and Gonzalez 1993).

It has been shown that E. huxleyi has a membrane anion
exchange protein which is involved in active HCO3

−

transport into the cells (Herfort et al. 2002). At low external
Ci concentrations and in stationary phase E. huxleyi cells,
extracellular carbonic anhydrase activity has also been
detected (Herfort et al. 2002; Nimer et al. 1994, 1996,
1997). In contrast, Israel and Gonzalez (1996) have
demonstrated external carbonic anhydrase activity at both
high and low Ci concentrations in a Pleurochrysis sp. E.
huxleyi is also a bicarbonate user which may explain there
was no CA activity detection at high Ci concentration by
Herfort et al. (2002). On the other hand, P. carterae, as
inferred from the observed pH shifts in the current study,
could be predominantly a CO2 user and thus requires an
active external carbonic anhydrase. However, this hypoth-
esis remains to be tested. The apparent differences in C
uptake between E. huxleyi and P. carterae shown here may
also help to explain the differences in the 18O stable
isotopic composition of the coccoliths of these algae
observed by Dudley et al. (1986). If the C for coccolith
formation were not only provided by HCO3

− taken up from
the seawater but were also provided by HCO3

− derived
from CO2 in the cytoplasm, then this could account for the
observed depletion in 18O of the coccolith CaCO3.
Carbonic anhydrase, respiration, and other metabolic
processes are known to discriminate against 18O (Guy et
al. 1989, 1993; Miller et al. 1997).

In E. huxleyi, various studies have found that bicarbon-
ate is used for calcification (Paasche 1964; Sikes et al.
1980) and that CO2 from intracellularly converted bicar-
bonate is the major “C” source for photosynthesis (Dong et
al. 1993; Nimer and Merrett 1992; Sikes et al. 1980). The
net change in the inorganic carbon in the medium is the
product of inorganic “C” uptake by coccolithophorids
subtracted from the respiratory CO2 excreted by cell. Nimer
and Merrett (1993) showed that in E. huxleyi, when
bicarbonate is the main “C” source in media, the stoichem-
istry between photosynthesis and calcification is 1:1
(measured using 14CO2). This means that the same amount
of “C” is used for calcification and photosynthesis. The

Table 3 Summary of P:C ratios for different strains of P. carterae and E. huxleyi

Species Strain P:C ratio Reference Comments

P. carterae CCAP961/2 22.25±9.94 Seki et al. 1995 P:C measured under several nitrate concentrations (n=12)

CCMP645 24.66±6.24 Fabry 2007 P:C measured under several light conditions (n=9)

E. huxleyi SMBA279 1.5 Nimer and Merret 1992

88E 1.25±0.21 Nimer et al. 1996 P:C measured under several nutrient conditions (n=12)

PCC.B11 0.66±0.16 Herfort et al. 2002 P:C measured under several nutrient conditions (n=10)
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photosynthesis to calcification ratios (P:C) of P. carterae
and E. huxleyi are summarized in Table 3. For E. huxleyi,
the P:C ratio is between 0.52 to 1.53, while this ratio is at
least tenfold higher in P. carterae. This is compatible with
the observation of an absence of pH changes in the medium
of actively growing E. huxleyi observed by us in this study.
However, the large alkalinization of the medium in actively
photosynthesizing P. carterae cultures means that CO2

uptake must significantly exceed HCO3
− uptake and

implies that this CO2 is the main C source for photosyn-
thesis, and possibly also for calcification, in this species.
Comparative studies of carbon uptake and use in photo-
synthesis and calcification in Pleurochrysis and other
coccolithophorid algae and compared with the extensively
studied Emiliania are clearly required.

Neither P. carterae nor E. huxleyi could grow at a pH of
less than about pH 7.5, with E. huxleyi appearing to be
slightly more sensitive to low pH. This inhibition could be
due to the inability of these algae to generate sufficient OH−

to neutralize the H+ produced by calcification (Nimer and
Merrett 1993; Sciandra et al. 2003) and thus prevent
acidification of the cytoplasm or due to a direct effect of a
more acidic cytoplasm.

Apparent decalcification during the night as observed in
this study in P. carterae has also been reported for E.
huxleyi (Balch et al. 1996; Linschooten et al. 1991; Paasche
1964; Sekino and Shiraiwa 1994). This decalcification is
probably due to localized acidification caused by respira-
tory CO2 production, resulting in a partial dissolution of the
coccoliths.

This study was part of a larger study examining the
suitability of large-scale cultures of coccolithophorid algae
for CO2 bioremediation (Moheimani and Borowitzka
2006a, b). This study showed that P. carterae CCMP647
could be grown in outdoor raceway cultures for periods of
up to 10 months in semicontinuous culture, whereas E.
huxleyi cultures could not be maintained in this system
(Moheimani and Borowitzka 2006a). The results presented
here show that CO2 addition used to maintain the culture
pH between pH 8.1 and 9.3 increases the specific growth
rate and productivity of P. carterae. P. carterae has shown
to be a reliable microalga when grown in a semicontinuous
mode and at a constant pH in both plate photobioreactor
and raceway ponds. The ability to grow the alga in
semicontinuous culture is very important as this reduces
the overall cost of producing the algae (Borowitzka 1999).

This study has also provided some evidence that P.
carterae seems to markedly differ from E. huxleyi in its
carbon uptake system and carbon concentrating mecha-
nism. An interesting question raised here is whether this
difference is reflected in the evolution of the Haptophyta
(Pleurochrysis is classified in the Coccolithales whereas
Emiliania is in the Isochrydales (Edvardsen et al. 2000)) or

in structural differences in coccolithogenesis (Hawkins and
Lee 2001; Paasche 2002). The implication of this to our
understanding of coccolithophorid calcification and photo-
synthesis and to the potential effects of ocean acidification
due to increases in atmospheric CO2 requires further study.
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