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Abstract We cloned and expressed the gene for an intracel-
lular α-amylase, designated AmyB, from the hyperthermo-
philic bacterium Thermotoga neapolitana in Escherichia
coli. The putative intracellular amylolytic enzyme contained
four regions that are highly conserved among glycoside
hydrolase family (GH) 13 α-amylases. AmyB exhibited
maximum activity at pH 6.5 and 75°C, and its thermostabil-
ity was slightly enhanced by Ca2+. However, Ca2+ was not
required for the activity of AmyB as EDTA had no effect on
enzyme activity. AmyB hydrolyzed the typical substrates for
α-amylase, including soluble starch, amylose, amylopectin,
and glycogen, to liberate maltose and minor amount of
glucose. The hydrolytic pattern of AmyB is most similar to
those of maltogenic amylases (EC 3.2.1.133) among GH 13
α-amylases; however, it can be distinguished by its inability
to hydrolyze pullulan and β-cyclodextrin. AmyB enzymatic
activity was negligible when acarbose, a maltotetraose
analog in which a maltose residue at the nonreducing end
was replaced by acarviosine, was present, indicating that
AmyB cleaves maltose units from the nonreducing end of

maltooligosaccharides. These results indicate that AmyB is a
new type exo-acting intracellular α-amylase possessing
distinct characteristics that distinguish it from typical α-
amylase and cyclodextrin-/pullulan-hydrolyzing enzymes.
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Introduction

Thermotoga neapolitana, a marine hyperthermophile isolated
from geothermally heated biotopes, and T. maritima belong to
the order Thermotogales (Conners et al. 2006). Interestingly,
members of the genus Thermotoga have the largest number of
genes for carbohydrate-active enzymes in free-living prokar-
yotes known to date (Nelson et al. 1999). T. neapolitana and
T. maritima have both been shown to catabolize a wide
variety of α- and β-linked glucans via a fermentative
metabolism (Bibel et al. 1998; Bok et al. 1998; Bronnenmeier
et al. 1995; Chhabra et al. 2001, 2002, 2003; Conners et al.
2005; Duffaud et al. 1997; Gabelsberger et al. 1993; Liebl
2001; McCutchen et al. 1996; Miller et al. 2001; Nguyen
et al. 2001; Parker et al. 2001a, b; Ruile et al. 1997; Veith
et al. 2003; Wassenberg et al. 1997; Yernool et al. 2000).

Genomic and biochemical data suggest that T. maritima
can catabolize α-1,4 linked maltose as well as pullulan and
starch, which contain mixed α-1,4 and α-1,6 linkages
(Bibel et al. 1998; Chhabra et al. 2003). Microarray
analysis of T. maritima revealed apparent specificities for
hydrolases with specific carbon sources and associated
transcriptional regulators for the various pathways (Conners
et al. 2005, 2006). Biochemical characterization of the
specific enzymes that break down α-linked polysaccharides
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preceded the sequencing of the T. maritima genome, and
these works also contributed to the reconstruction of these
various pathways (Bibel et al. 1998; Liebl et al. 1997;
Schumann et al. 1991).

In the amino acid sequence-based classification system
for carbohydrate active enzymes the vast majority of α-
amylases are sorted into the glycoside hydrolase family
(GH) 13 (Henrissat 1991). All enzymes of this family share
a (β/α)8-barrel as the common supersecondary structure.
Some α-amylases are also classified into GH 57. This
enzyme family is considerably smaller than GH 13 and less
well investigated. Among the starch-degrading enzymes of
T. maritima described in the literature thus far are three α-
amylases; an extracellular lipoprotein Amy13A (KEGG
Database entry TM1840) and two enzymes Amy13B
(TM1650) and Amy57C (TM1438) located in the cytoplasm
(Ballschmiter et al. 2006; Liebl et al. 1997; Lim et al. 2003).
Amy13A, a Ca2+-requiring membrane-bound α-amylase,
hydrolyzes extracellular starch in an endo-type fashion.
However, it exhibits less activity in the context of more
highly branched polysaccharides such as glycogen, amylo-
pectin, and pullulan (Liebl et al. 1997; Schumann et al.
1991). The activity of intracellular α-amylases Amy13B and
Amy57C appears to complement that of an α-amylase that
hydrolyzes amylose and starch, but their catalytic properties
have not been studied in details (Ballschmiter et al. 2006;
Lim et al. 2003). It is believed that these two enzymes may
be involved in the utilization of maltodextrin or storage
polysaccharides like glycogen, but the physiological roles of
the intracellular amylases are still unknown.

In this study, the gene coding for an Amy13B homolog
from T. neapolitana was cloned and expressed in E. coli to
study its biochemical and catalytic properties. The enzy-
matic characteristics of the T. neapolitana intracellular α-
amylase (AmyB) provide evidence that AmyB is a new
type exo-acting α-amylase that possesses distinct character-
istics from typical α-amylases (EC 3.2.1.1) and cyclodex-
trin (CD)-hydrolyzing enzymes such as maltogenic amylase
(MAase, EC 3.2.1.133), cyclodextrinase (CDase, EC
3.2.1.54), and neopullulanase (EC 3.2.1.135).

Materials and methods

Bacterial strains and culture conditions

Thermotoga neapolitana Korean Culture Center of Micro-
organisms (KCCM) 41025 was obtained from the KCCM
and cultivated under anaerobic conditions as described
previously (Park et al. 2005a, b). Escherichia coli BL21
(DE3) was used as the heterologous host for protein
overexpression. E. coli transformants were grown in
Luria–Bertani broth [1% (w/v) Bacto-tryptone, 0.5% (w/v)

yeast extract, 0.5% (w/v) NaCl] containing kanamycin
(50 μg ml−1) at 37°C. Plasmid pET-29b(+) (Novagen, San
Diego, CA) was used as the cloning and expression vector.

Cloning and expression of the T. neapolitana amyB gene

T. neapolitana genomic DNA was prepared using the
GenomiPhi DNA Amplification Kit (GE Healthcare, Piscat-
away, NJ). The gene encoding AmyB (TM1650 homolog)
was identified in the T. neapolitana genome sequence using
two amylase-specific internal primers MA2 (5′-GAC GGY
TGG CGB YTN GAT GT-3′) and Deg2 (5′- ACR CGM
GGC WGR TCR TGG TT-3′), and protein blast searches.
AmyB-specific oligonucleotide primers, TNamyB-F and
TNamyB-R, were designed to flank the 5′ and 3′ ends of
TM1650 sequence and the gene was amplified by PCR
using Taq polymerase and T. neapolitana genomic DNA as
a template. The amplified DNA fragment was cloned into
the pGEM-T vector (Promega, Madison, WI). For the
overexpression of AmyB protein in E. coli, the forward
primer (amy-N, 5′- GGT ACC ATG AAC CTC AAA AAC
CTG ATA ATATAC-3′) and the reverse primer (amy-R, 5′-
GAA TTC TCA GTA GAG CAC GAA AGA AAG TAT
CAG AGG-3′) were designed containing KpnI and EcoRI
restriction sites (underlined), respectively, for directional
cloning into the expression vector pET-29b(+). The result-
ing plasmid was named pET-AmyB. The nucleotide
sequence of the PCR-generated gene was determined using
the BigDye terminator cycle sequencing kit and an ABI 377
Prism DNA Sequencer (AME Bioscience Ltd., Bedford-
shire, UK). Detailed bioinformatic analyses of the gene and
the deduced amino acid sequences of various genes and
proteins were performed using DNASIS, PROSIS (v7.0,
Hitachi Software, Tokyo, Japan) and CLUSTAL programs
(Thompson et al. 1994).

Purification of the recombinant AmyB enzyme

The recombinant E. coli BL21(DE3) strain carrying pET-
AmyB was grown in 2 l of liquid culture with kanamycin
selection in a 5-l baffled flask at 37°C. The T7 promoter of
the plasmid was induced with 0.2 mM isopropyl-1-thio-β-
D-galactoside at an optical density (600 nm) of 0.6. After
12 h of induction, the cells were harvested by centrifugation
(10,000×g, 20 min, 4°C) and resuspended in 20 mM
sodium phosphate buffer (pH 6.5). Cells were broken by a
twofold passage through a French pressure cell (American
Instruments, Silver Spring, MD). The crude cell extract was
centrifuged at 12,000×g (20 min, 4°C) to remove cell debris.
The supernatant was then incubated at 80°C for 30 min to
denature thermolabile host proteins and centrifuged again at
12,000×g (20 min, 4°C) to remove denatured protein from
the extract. The resulting supernatant was dialyzed against
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20 mM sodium phosphate (pH 6.5) at 4°C for overnight and
subjected to cation-exchange chromatography using a
HiTrap SP HP column (GE Healthcare/Amersham, Freiburg,
Germany) equilibrated with the same buffer. Elution was
carried out with a 0 to 1.0 M NaCl gradient in the same
buffer in 15 column volumes at a flow rate of 1.0 ml min−1.

The molecular mass and the purity of the recombinant
AmyB protein was estimated by gel electrophoresis in a
12% (w/v) sodium dodecyl sulfate-polyacrylamide (SDS-
PAGE) gel. To determine the native molecular mass of the
purified protein, analytical size exclusion chromatography
was carried out using a Sephacryl S-200 column (GE
Healthcare). An isocratic gradient of 20 mM Tris-HCl
(pH 8.0) with the addition of 0.15 M NaCl was applied.
The protein concentration was determined according to the
Bradford method (Bradford 1976), with bovine serum
albumin as a standard.

Enzyme assay

Enzyme activity was assayed at 75°C in 50 mM sodium
phosphate buffer (pH 6.5) with 3,5-dintrosalicylic acid as
described by Miller (Miller 1959). The reaction mixture
(0.5 ml) was composed of 0.1 ml of 0.5% (wt/vol) soluble
starch as a substrate and 0.1 ml of enzyme solution
(43 U ml−1). The reaction mixture was incubated for
30 min at 75°C to facilitate the enzymatic reaction, and
was terminated by quenching on ice. Color development
was measured at 575 nm, and the specific activity was
calculated using maltose as a standard. One unit of AmyB
was defined as the amount of enzyme that released 1 nmol
of reducing sugar equivalents per minute under the
described test conditions.

Effects of pH and temperature on the activity and stability
of AmyB

The influence of pH on the activity of AmyB was measured
at 75°C in sodium acetate (pH 4.5 to 5.5), MES (pH 5.5
to 6.5), N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic
acid (HEPES; pH 6.5 to 8.0) and Tris-HCl (pH 8.0 to 9.0).
The pH of each buffer system was adjusted at 75°C using
the standard enzyme assay conditions described above. The
influence of temperature on the activity of AmyB was
determined in 50 mM sodium phosphate buffer (pH 6.5)
ranging from 50°C to 95°C. The thermostability of the
enzyme was analyzed by incubating the enzyme solution
(0.1 mg ml−1 in 50 mM sodium phosphate buffer, pH 6.5)
at 80°C, 90°C, 95°C, and 100°C. Aliquots were taken at
every hour and placed immediately in an ice-water bath to
halt enzymatic activity. The residual soluble starch-
hydrolyzing activities of the aliquots were measured at the
optimal temperature condition. The effect of various metal

ions and chemical reagents on enzyme activity was also
examined. The sodium phosphate buffer was replaced by
HEPES buffer in order to avoid precipitation. The concen-
tration of metal ions and chemical reagents was 1 mM
except for urea (2 M) and SDS (2%).

Hydrolytic patterns of AmyB

To examine the hydrolytic patterns of AmyB, purified
AmyB (43 U ml−1) was incubated with 0.5 ml of 0.5%
(wt/vol) maltooligosaccharides (maltotriose to maltohep-
taose), soluble starch, amylose, amylopectin, glycogen,
pullulan, and β-cyclodextrin in 50 mM sodium phosphate
buffer (pH 6.5). Each reaction was incubated at 75°C for
16 h, and subsequently placed immediately in an ice-water
bath to stop the reaction. The resulting reaction products
were analyzed by thin-layer chromatography (TLC) on
Whatman K5F silica gel plates (Whatman, Madistone, UK)
with 1-propanol/ethyl acetate/H2O (6:2:3, vol/vol/vol) as the
solvent system. After irrigating twice, the TLC plate was
dried and visualized by dipping it into a solution containing
0.3% (wt/vol) N-(1-naphthyl)-ethylenediamine and 5% (v/v)
H2SO4 in methanol and then heating for 5 min at 120°C
(Robyt and Mukerjea 1994). For the labeled maltohexaose
reaction, maltohexaose labeled with [14C]-glucose at the
reducing end was prepared as previously described (Park
et al. 2005a, b). The enzymatic reaction was carried out at
0.5% [14C]-maltohexaose in a 50 mM sodium phosphate
buffer (pH 6.5) at 75°C and stopped immediately in an ice-
water bath. The reaction products were separated by TLC
and developed as described above. To visualize radioactive
intermediates, the TLC plate was placed on an imaging
plate for 12 h and the radioactivity of each spot was
measured using an image analyzer (Typhoon; Bio-Rad,
Hercules, CA).

Kinetic parameters of AmyB

Kinetic parameters of AmyB for maltotriose, maltopen-
taose, maltoheptaose, and soluble starch were determined.
Samples (0.5 ml) from the reaction mixture containing
enzyme and substrate in 50 mM sodium phosphate buffer
(pH 6.5) at 75°C were taken at timed intervals of 90 s, and
the reaction was immediately stopped by the addition of an
equal volume of 0.1 M HCl on ice. After neutralizing by
adding an equal volume of 0.1 N NaOH, the amount of
glucose and maltose released from maltooligosaccharides
was assayed by the glucose oxidase–peroxidase method
(Miwa et al. 1972) and HPLC, respectively. In brief, 0.1 ml
of enzyme solution was added to 0.4 ml of substrate
solution. The hydrolysis reaction was performed and then
mixed with 1 ml of the glucose oxidase/peroxidase
solution. After incubation for 30 min at 37°C, the reaction
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was stopped by adding 1 ml of 12 N H2SO4 and the product
absorbance was measured at 540 nm. The amount of
reducing sugars produced from soluble starch (average
molecular weight, 10,000) was measured by the copper-
bicinchoninate method (Fox and Robyt 1991). In the case
of p-nitrophenyl-α-D-hexaoside (pNPG6), the absorbance
was measured at 405 nm with p-nitrophenol as a standard.

Kinetic data were converted to Lineweaver–Burk plots
with the SigmaPlot program (version 5.0; SPSS Inc.,
Chicago, IL). The Km values were calculated from the
slopes of the curves, and the catalytic turnover values (kcat)
were calculated by dividing the maximal reaction velocities
by the total amount of enzyme in the reaction mixture.

Nucleotide sequence accession number

The nucleotide sequence of and the deduced amino acid
sequence encoded by amyB gene in T. neapolitana have been
submitted to GenBank under accession no. EU871663.

Results

Comparison of AmyB with various amylolytic enzymes

The T. neapolitana genome was screened for amylase genes
using two amylase-specific internal primers. The sequence
analysis of a 299-bp PCR fragment was attributed to the
amy13B gene (KEGG database number TM1650) of T.
maritima. Based on the genomic sequence of T. maritima,
the entire T. neapolitana gene encoding AmyB was
successfully amplified by PCR using AmyB-specific oligo-
nucleotide primers (TNamyB-F and TNamyB-R) and se-
quenced. It was expected that the open reading frame of
AmyB (1,269 bp) would encode a single polypeptide of 422
amino acids with an estimated molecular mass of 50,119 Da.
The deduced amino acid sequence of the T. neapolitana

AmyB shares 86% identity with that of Amy13B from
T. maritima MSB8, 86% identity with an Amy13B homolog
(TRQ2_1179) from Thermotoga sp. RQ2, and 82% identity
with an Amy13B homolog (Tpet_1141) from T. petrophila
RKU-1. However, it exhibited unexpectedly low sequence
similarity (5−15% identity) with other GH 13 amylolytic
enzymes, including α-glucosidase (EC 3.2.1.20; Peist et al.
1996), α-amylase (EC 3.2.1.1; Stam et al. 2006), oligo-1,6-
glucosidase (EC 3.2.1.10; Oslancová and Janecek 2002),
maltogenic amylase (EC 3.2.1.133; Park et al. 2000) and
CD-/pullulan-hydrolyzing enzymes (Lee et al. 2002a, b; Park
et al. 2000). Interestingly, a multiple sequence alignment of
AmyB with closely related enzymes revealed that an extra
N-terminal domain (Kim et al. 2001) known to exist in CD-
hydrolyzing enzymes and is involved in the oligomerization
of the enzyme, did not exist in AmyB from T. neapolitana.
The structure/function and evolutionary relationships within
GH 13 amylolytic enzymes have revealed the existence of
the conserved sequence regions (Janecek 1994, 1995, 2002).
Although four well-known conserved regions (I, II, III, and
IV) and invariant catalytic residues of GH 13 were evident
(Cha et al. 1998; Janecek 2002), additional three conserved
sequence regions (V, VI, and VII) have also been known.
These regions are thought to be important for the sequence
features characteristic of certain enzyme specificities from
the family. The examination of the variations of the residues
in these three conserved regions among GH 13 enzymes
indicates that AmyB is a new type of amylolytic enzyme
(Fig. 1).

Expression of AmyB in E. coli

The AmyB protein was highly expressed in E. coli BL21
(DE3) harboring pET-AmyB (Fig. 2). Heat treatment (80°C
for 30 min) was shown to efficiently exclude substantial
amounts of heat-labile host proteins from cell-free extracts,
and the protein was further purified using HiTrap SP HP

Fig. 1 Comparison of AmyB and related other GH 13 amylolytic
enzymes. The invariant sequences are highlighted in black and white
inversion, and the catalytic triad is signified by asterisks. The highly
conserved sequences are emphasized by boxes. Amy13A Thermotoga
maritima extracellular α-amylase (CAA72194), Amy13B Thermotoga
maritima intracellular α-amylase (AAD36717), AmyB T. neapolitana
intracellular α-amylase (ACF75909), Aspergillus oryzae Taka_α-
amylase A (BAA00336), Bacillus circulans strain 8, cyclodextrin

glucanotransferase (CAA48401), Bacillus cereus, oligo-1,6-glucosidase
(CAA37583), Pseudomonas stutzeri maltotetraohydrolase
(AAA25707), Pseudomonas amyloderamosa isoamylase (AAA25854),
Thermoactinomyces vulgaris R-47 neopullulanase (BAA02473), Ther-
mus sp. IM6501 maltogenic amylase (AAC15072), Bacillus stearother-
mophilus maltogenic α-amylase (AAA22233). Multiple alignment was
performed using Clustal W2 and visualized using ESPript (http://espript.
ibcp.fr/ESPript/ESPript/)
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column chromatography. The purified enzyme showed a
single protein band on SDS-PAGE (Fig. 2), and the
molecular mass of purified AmyB was estimated to be
approximately 48 kDa. The same molecular mass was
found via gel filtration chromatography, suggesting that the
enzyme is monomeric.

Enzymatic properties of AmyB

The pH range at which the recombinant AmyB was active
was determined using soluble starch as the substrate. As
shown in Fig. 3a, the maximum activity was observed at
pH 6.5. More than 50% of the maximum activity was
obtained in the range between pH 5.0 and 8.5. The optimal
temperature of AmyB was approximately 75°C, and relatively
low activities were observed above 90°C (Fig. 3b). However,
AmyB exhibited remarkable thermal stability, retaining its full
activity after 7 h of incubation at 90°C (Fig. 3c). The half-life
of AmyB was determined to be 50.2 and 28 h at 95°C and
100°C, respectively. This result implies that the recombinant

enzyme was not only successfully expressed in E. coli but it
also preserved its thermostability. The effect of various metal
ions on enzyme activity was also examined. Ca2+ at a
concentration of 1 mM had a positive effect on AmyB
activity; however, Zn2+, Mg 2+, and Cu2+ reduced the activity
to 70.4%, 69.4%, and 52.2%, respectively, while Co2+, Mn2+,
and Hg2+ completely inactivated the enzyme. However, the
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Fig. 2 SDS-PAGE analysis of recombinant AmyB. Lane M, protein
size standard; lane 1, cellular proteins from crude extract; lane 2,
proteins after heat treatment; lane 3, proteins after cation exchange
chromatography
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The values are shown as the specific activity of AmyB. b To determine
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as the specific activity of AmyB. c To determine the thermostability of
AmyB, purified enzyme was incubated at 80°C (filled circle), 90°C
(empty circle), 95°C (filled inverted triangle), and 100°C (empty
triangle) in 50 mM sodium phosphate buffer (pH 6.5). After various
time intervals, samples were withdrawn and the residual activity was
measured at 75°C under the standard conditions of the assay
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addition of EDTA did not inhibit AmyB activity, indicating
that Ca2+, although stimulating, was not required for activity
of the recombinant enzyme. Urea (2 M) had a strong
inhibitory effect, whereas DTT, 2-mercaptoethanol (1 mM),
and SDS (2%) had no effect on activity (Table 1).

The enzymatic activity of AmyB was examined with
various substrates typically used for analyzing the hydro-
lytic activity of α-amylases, such as maltooligosaccharides,
soluble starch, amylose, amylopectin, glycogen, pullulan,
and β-cyclodextrin (Fig. 4). AmyB hydrolyzed soluble
starch, amylose, amylopectin, and glycogen; typical sub-
strates for α-amylases that produce mainly maltose with
minor amounts of glucose (Fig. 4, lanes 3 to 6). In contrast,
pullulan and β-cyclodextrin, substrates easily metabolized
by CD-/pullulan-hydrolyzing enzymes such as MAase, was
barely degraded by AmyB. This hydrolytic pattern was also
confirmed by the measurement of AmyB specific activity.
The specific activities of AmyB toward starch, amylose, and
amylopectin were 18.8, 10.9, and 6.3 U mg−1, respectively.
The degradation of pullulan and β-cyclodextrin was negli-
gible, which was less than 10% of the specific activity of
starch (data not shown). The hydrolysis of maltotriose,
maltopentaose, and maltoheptaose by AmyB resulted in
maltose and glucose products, whereas the hydrolysis of
maltotetraose and maltohexaose yielded only maltose (Fig. 4,
lanes 1 and 2, 9 to 13). The hydrolysis pattern of AmyB with

these substrates is similar to that of MAase, but it can be
distinguished from the MAase in that AmyB cannot hydro-
lyze pullulan and β-cyclodextrin (Table 2). The different
charactersitics between AmyB and MAase (CD hydrolyzing
enzyme) is supported by the structure of primary sequences
which shows the separated branch by evolutionary tree
analysis (see discussion).

Kinetic parameters of AmyB for maltooligosaccharides
and other substrates

The kinetic parametersKm and kcat of AmyB were determined
with starch, maltotriose, maltopentaose, maltoheptaose, and
pNPG6 using Lineweaver-Burk plots (Table 3). The Km

values of AmyB for maltotriose, maltopentaose, and malto-
heptaose were 1.26, 1.69 and 3.37 mM, respectively.
However, the kcat values for maltotriose and maltopentaose
(809 and 283 s−1, respectively) are much faster than those
observed for maltoheptaose, pNPG6, and starch. Moreover,
the kcat value for maltotriose was the fastest among the
maltooligosaccharides. The kcat value for starch was 0.02 s−1,
suggesting that starch is not a favorable substrate for AmyB
compared with other maltooligosaccharides. From the kcat/Km

data, it can be inferred that AmyB efficiently hydrolyzes
maltooligosaccharides that have short glucose unit chain
lengths.

Catalytic pattern of the enzyme reveals that AmyB is a new
type α-amylase

In order to understand the detailed reaction mode of
AmyB, the hydrolysis pattern was further investigated as a
function of time with maltopentaose, maltoheptaose, pNPG6,
and acarbose as substrates. AmyB was incubated with
maltoheptaose at 75°C for various reaction times ranging
from 30 min to 12 h to investigate the change in reaction
products (Fig. 5a). Maltopentaose and maltose appeared first;
with maltotriose and glucose increasing gradually, indicating
the AmyB enzyme is an exo-type enzyme similar to Thermus
maltogenic amylase (ThMA), which liberates maltose resi-
dues from the maltooligosaccharide (Kim et al. 1999).
However, it can be distinguished from the ThMA in that
pullulan and β-cyclodextrin are favorable substrates for
ThMA, but not for AmyB. pNPG6 was used as a substrate to
scrutinize whether AmyB releases maltose from the reducing
or nonreducing end. It was observed that pNPG6 was
initially degraded into maltose and pNPG4, and later,
maltose and p-nitrophenol increased gradually, suggesting
that the enzyme recognizes the maltose moiety at the
nonreducing end of maltooligosaccharides (Fig. 5b). The
ability of AmyB to release maltose units from the nonreduc-
ing end was confirmed using [14C]-maltohexaose, in which a
[14C]-glucose is attached to the maltopentaose by a α-1,4-

Table 1 Effects of metal ions and chemical reagents on AmyB
activity

Metal ion or chemical
reagent

Specific activity
(U mg−1)

Relative activity (%)

Metal ion

None 18.6 100

EDTA 16.9 90.8

Zn2+ 13.1 70.4

Co2+ ND 0

Mg2+ 12.9 69.4

Mn2+ ND 0

Ni2+ 19.4 104.3

Ca2+ 21.9 117.7

Cu2+ 9.7 52.2

Hg2+ ND 0

Chemical reagents

2-mercaptoethanol 18.5 99.5

Dithiothreitol 16.7 89.8

Urea 4.8 25.8

SDS 18.5 99.5

N-bromosuccinimide 17.5 94.1

Concentration of metal ions (as chloride salts) and chemical reagents
was 1 mM except for urea (2 M) and SDS (2%).

ND not detected
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glycosidic linkage at the reducing end. AmyB was incubated
with [14C]-maltohexaose at 75°C for reaction times ranging
from 30 min to 12 h to investigate the change in reaction
products (Fig. 5b). TLC analysis showed that [14C]-
maltotetraose appeared first and [14C]-maltose increased
gradually, providing supporting evidence that AmyB cleaves
maltooligosaccharides to maltose units at the nonreducing
end. Interestingly, when acarbose, a maltotetraose analog in
which the maltose residue at the nonreducing end is replaced
by acarviosine, was used as a substrate, AmyB could not
cleave this substrate (data not shown). This data supports the
previous evidence that AmyB releases the maltose unit at the
nonreducing end. The inability of AmyB to act on acarbose
indicates that the enzyme is sensitive to the type of residue at
the nonreducing end of the substrate.

Discussion

The pathway for α-linked glucan utilization in Thermotoga
maritima has been extensively studied (Bibel et al. 1998;
Chhabra et al. 2003; Conners et al. 2005). Therefore, the
genomic and biochemical data from T. maritima and related
enzymes can be used to predict pathways for the hydrolysis
of α-linked glucans and oligosaccharides. In order to
confirm predicted pathways, studies of the detailed bio-
chemical characteristics of these enzymes are necessary.
Many extracellular amylolytic enzymes of T. maritima have
been studied, and their physiological roles for starch
metabolism have been reported (Chhabra et al. 2002;
Conners et al. 2005, 2006). The broad substrate specificities
of many amylolytic enzymes make them difficult to

G1

G2

G3

G4

G5

M 1 2 3 4 5 6 7 8 M 9 10 11 12 13

G1
G2
G3
G4
G5

Fig. 4 Hydrolysis pattern of AmyB on various substrates. Lane M,
maltooligosaccharide standards (glucose to maltopentaose); lanes 1 and
9, maltotriose; lanes 2 and 10, maltotetraose; lane 3, soluble starch; lane
4, amylose; lane 5, amylopectin; lane 6, glycogen; lane 7, pullulan; lane

8, β-cyclodextrin; lane 11, maltopentaose; lane 12, maltohexaose; lane
13, maltoheptaose. AmyB was incubated with the various substrates at a
concentration of 0.5% (wt/vol) at 75°C for 16 h

Table 2 Overall comparisons of α-amylase, glucosidase, MAase, and AmyB

AmyB Amy13A TMG ThMA PFTA

Action mode Maltose from nonreducing end Random Glucose from reducing end Maltose from reducing end Random

Major product(s) from

Maltooligosaccharide G2 G1, G2 G1 G2 G2, G4

Pullulan ND Panose ND Panose Panose

β-Cyclodextrin ND NA G1 Maltose G7

Acarbose ND NA PTS PTS PTS

N-terminal domain No No No Yes Yes

Oligomeric state Monomer Monomer Monomer Dimer Dimer

Optimal temp (oC) 75 85 85 60 90

Optimal pH 6.5 7.0 6.5 6.0 4.5

AmyB T. neapolitana intracellular α-amylase, Amy13A T. maritima extracellular α-amylase (Liebl et al. 1997), TMG T. maritima glucosidase (Lee
et al. 2002a, b), ThMA maltogenic amylase from Thermus sp. strain IM6501 (Kim et al. 1999), PFTA thermostable α-amylase from Pyrococcus
furiosus (Yang et al. 2004). G1 glucose, G2 maltose, G4 maltotetraose, PTS acarviosine-glucose, ND not detected, NA not available
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determine which enzymes are required for the breakdown
of starch into glucose or maltose for subsequent use in
central metabolism. Until now, the physiological role of
intracellular forms of these enzymes has not been clearly
understood, although two enzymes (Amy13B and
Amy57C) have been found in T. maritima (Ballschmiter
et al. 2006; Lim et al. 2003). The aim of this study was to
characterize a putative intracellular α-amylase of the
hyperthermophilic bacterium T. neapolitana and elucidate
the possible physiological role of this enzyme.

The putative intracellular α-amylase AmyB (TM1650
homolog) from T. neapolitana was successfully overex-
pressed in E. coli and biochemically characterized. AmyB
exhibited maximum activity at 75°C and a pH of 6.5. Its
thermostability was slightly enhanced by Ca2+ as observed
in the Amy13B of T. maritima (Lim et al. 2003). However,
a strong inhibitory effect was not observed with EDTA

indicating that Ca2+ was not required for activity of T.
neapolitana AmyB, unlike the dependence of Ca2+ for α-
amylase (EC 3.2.1.1; Boel et al. 1990; Nielsen and Borchert
2000) and maltogenic amylase (EC 3.2.1.133; Tang et al.
2006) in the GH 13 family. Although Amy13B from T.
maritima has been reported to hydrolyze starch, the activity
was not extensively studied in terms of the hydrolyzed end
products and hydrolyzing capacity for other α-glucans.
Based on our results, AmyB displays unique features in
many aspects. Although four highly conserved regions
found in GH 13 family enzymes are present in AmyB, the
amino acid sequence of AmyB has little similarity with α-
amylases from other organisms as already described by Lim
et al. (Lim et al. 2003). AmyB also lacks the N-terminal
domain, which exists in other CD-/pullulan-hydrolyzing
enzymes and is known to be involved in oligomerization of
the enzyme (Kim et al. 2001; Yang et al. 2004). In terms of
catalytic action, AmyB is quite different from CD-/
pullulan-hydrolyzing enzymes such as MAase, CDase,
and neopullulanase. AmyB was hydrolytically active on a
variety of α-1,4-linked glucans. Apart from starch (relative
activity 100%), the enzyme also cleaved amylose (58%),
amylopectin (34%), and glycogen (17%) while the hydrol-
yses of pullulan and β-cyclodextrin, one of the preferred
substrates of CD-/pullulan-hydrolyzing enzymes, were
negligible (less than 10%). Acarbose is not degraded by
AmyB, which is in marked contrast to its hydrolysis by
CD-/pullulan-hydrolyzing enzymes and T. maritima gluco-
sidase (TMG), which liberate glucose residues at the
reducing end from maltooligosaccharides (Lee et al.
2002a, b). In phylogenetic analyses of GH 13 family
enzymes, AmyB has its own separate branch with Amy13A

Table 3 Kinetic parameters of AmyB hydrolysis of various substrates

Substrates Km (mM) kcat (s
−1) kcat/Km

(s−1 mM−1)

Starcha 0.07±0.006 0.02±0.004 0.286

Maltotriose (a, b) 1.26±0.14 809±16 642.1

Maltopentaose (b) 1.69±0.90 283±7 167.5

Maltoheptaose (b) 3.37±0.30 25±2 7.5

pNPG6 (c) 2.46±0.16 34±1 13.9

Kinetic parameters were determined in 50 mM sodium phosphate
buffer (pH 6.5) at 75°C using the glucose oxidase/peroxidase method
(a), HPLC (b), and absorbance measurement at 405 nm (c)
aKm was calculated from the number-average molecular weight
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G5

M 1 2 3 4 5 6 7 8

G6
G7

9 10 11 12

G7G5

G1
G2
G3
G4
G5

M 1 2 3 4 5 6 7

pNPG1

pNPG4

pNPG6

pNPG6

8 9 10 11 12 13 14

*G6

*G2

*G4

[14C]-G6

a b

Fig. 5 AmyB hydrolysis products of maltopentaose (G5), maltohep-
taose (G7), p-nitrophenyl-α-D-maltohexaoside (pNPG6), and [14C]-
maltohexaose ([14C]-G6) as a function of reaction time. a Lane M,
maltooligosaccharide standards (glucose to maltoheptaose); lanes 1–6,
hydrolysis product of maltopentaose at different reaction times (0, 0.5,
1, 1.5, 2, and 12 h, respectively); lanes 7–12, hydrolysis product of
maltoheptaose at different reaction times (0, 0.5, 1, 2, 4, and 12 h,

respectively). b Lane M, maltooligosaccharide standards (glucose to
maltopentaose); lane 1, pNPG1; lanes 2–7, hydrolysis product of
pNPG6 at different reaction times (0, 0.5, 1, 1.5, 2, and 12 h,
respectively); lanes 8–14, hydrolysis product of [14C]-maltohexaose at
different reaction times (0, 0.5, 1, 1.5, 2, 3, and 12 h, respectively).
AmyB was incubated with 1% (wt/vol) maltoheptaose and pNPG6 or
0.5% (wt/vol) maltopentaose and [14C]-maltohexaose at 75°C
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and Amy13B from T. maritima apart from the other clusters
for typical bacterial α-amylases, archaeal α-amylases,
bacterial or archaeal CD-hydrolyzing enzymes, and CD-
producing enzymes (CGTases; Fig. 6). The phylogenetic
tree also supports the result of distinct catalytic properties

of AmyB compared with many other amylolytic enzymes
described thus far.

The kinetic data of AmyB activity with maltooligosac-
charides explains that molecules with long chain length,
including maltooligosaccharides and starch, are not favor-

Amy13B

AmyB

1000

Amy13A

0.1

Fig. 6 Phylogenetic relationship of AmyB with members of the GH13
family. Phylip format tree outputs from the CLUSTAL X analysis were
visualized with TreeViewPPC based on the distance matrix using the
neighbor-joining method. The bar at the lower left corner indicates the
substitution rate (substitution/site). Bootstrap values (based on 1,000
bootstrap trials) are shown at each node. The unrooted phylogenetic tree
was built from entire sequences of the following enzymes: AmyB
represents intracellular α-amylase from Thermotoga neapolitana
(ACF75909), Amy13B Thermotoga maritima intracellular α-amylase
(AAD36717), ThMA maltogenic amylase (MAase) from Thermus sp.
IM6501 (AAC15072), TpMA MAase from Thermoplasma volcanium
(BAB59359), MA1 MAase from B. thermoalkalophilus (AAT94159),
MA2 MAase from B. stearothermophilus (AAC46346), CD1 cyclo-
dextrinase (CDase) from alkalophilic Bacillus sp. I-5 (AAA92925), CD2
CDase from Bacillus stearothermophilus (BAB63955), CD3 CDase from
Thermococcus sp. B1001 (BAB18100), NPL neopullulanase from B.
stearothermophilus (AAK15003), TVAII α-amylase II from Thermoacti-
nomyces vulgarius (BAA02473), PFTA thermostable amylase from
Pyrococcus furiosus (AAL82063), TMG Thermotoga maritima glucosi-
dase (AAD36898), Amy13A Thermotoga maritima α-amylase

(CAA72194), Bacha Bacillus halodurans α-amylase (G84015), Bacsu
α-amylase from B. subtilis (AAQ83841), Bacli α-amylase from B.
liqueniformis (ABF61440), Bacsp α-amylase from Bacillus sp. TS-23
(AAA63900), CGT1 cyclodextrin glucanotransferase (CGTase) from
alkalophilic Bacillus sp. I-5 (AAR32682), CGT2 CGTase from B.
circulans 251 (CAA55023), CGT3 CGTase from B. macerans
(CAA41773), CGT4 CGTase from B. stearothermophilus ET1
(AAD00555), Thavu Thermoactinomyces vulgaris α-amylase
(CAA49465), Thscu Thermomonospora curvata α-amylase
(CAA41881), Essco Escherichia coli α-amylase (AAN82828), Salty
Salmonella typhimurium α-amylase (AAL22523), Shifi Shigella flexineri
α-amylase (AAN45063), Vibch Vibrio cholerae α-amylase (AAF96758),
Yerpe Yersinia pestis α-amylase (AAM87640), Stcmu Streptococcus
mutans α-amylase (AAC35010), Stmco Streptomyces coelicolor α-
amylase (CAB88153), Pycfu Pyrococcus furiosus α-amylase
(AAB67705), Pycsp Pyrococcus sp. KOD1 α-amylase (BAA21130),
Thchy Thermococcus hydrothermalis α-amylase (AAC97877), Thcsp-Rt3
Thermococcus sp. Rt3 α-amylase (AAB87860), Thcsp-AEP Thermococ-
cus sp. AEp11 α-amylase (AAM48113)
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able substrates for AmyB. Instead, maltotriose and malto-
pentaose are more favorable substrates, implying the
enzyme prefers maltooligosaccharide substrates consisting
of short glucose chain lengths. The catalytic pattern on
maltoheptaose, maltopentaose, pNPG6, and [14C]-malto-
hexaose reveals that AmyB recognizes the nonreducing end
of the substrate to successively liberate the maltose residue,
and the type of residue at the nonreducing end seems to be
important for enzymatic activity. The proposed action
pattern of AmyB is summarized in Fig. 7. The results from
kinetic data and the action pattern of AmyB were quite
different from those of the typical extracellular α-amylases.
In Amy13A from T. maritima, the enzyme activity decreased
with decreasing chain length of the maltooligosaccharide
substrate (Liebl et al. 1997). Furthermore, the reaction of
Amy13A proceeded in an endo-type fashion, unlike that of
AmyB. Overall comparisons of MAase, thermostable extra-
cellular α-amylase, glucosidase, and AmyB are listed in
Table 2. Together, these findings suggest that AmyB is a new
type exo-acting α-amylase that shares some of the enzymatic
characteristics of both typical α-amylases and MAases,
however based on the data in this study, it can be easily
distinguished from these enzymes.

On the basis of its substrate specificity and the kinetic
studies for maltooligosaccharides, AmyB may be involved
in either utilization of maltooligosaccharides transported
through membrane following hydrolysis of extracellular α-
glucan or metabolism of storage α-glucan in T. neapolitana.
In the first scenario, maltooligosaccharides transported via
maltose and maltotriose ABC transporters can be degraded
into maltose and glucose by AmyB along with an exo-acting
intracellular α-glucosidase (TM1068) and a α-glucosidase
(TM1834), which are active on maltose and maltotriose but
not starch, amylopectin or amylose. Sugars liberated from
these enzymes can then be further metabolized through the
Embden-Meyerhof or Entner-Doudoroff pathways (Bibel
et al. 1998; Chhabra et al. 2002; Selig et al. 1997). However,
carbohydrate-induced microarrays in T. maritima indicated
that Amy13B (TM1650) and a putative α-glucosidase
(Amy4C, TM1834) were not regulated by starch or maltose,
whereas the extracellular α-amylase Amy13A (TM1840), an
exo-acting intracellular α-glucosidase (TM1068), a 4-α-
glucanotransferase (TM0364), and a pullulanase (TM1845)
were upregulated in the presence of maltose or starch
(Chhabra et al. 2003). Therefore, AmyB could be more
likely involved in the breakdown of storage α-glucans like
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glycogen. In E. coli, 4-α-glucanotransferase (MalQ) uses
maltose and glucose from endogenously produced malto-
triose and higher maltodextrins; maltodextrin phosphorylase
(MalP) then hydrolyzes the resulting maltodextrins to
glucose-1-phoshate using free phosphate (Dipple and Boos
2005). Orthologs of 4-α-glucanotransferase (TM0364 and
TM0767) and maltodextrin phosphorylase (TM1168) for
the synthesis and degradation of α-glucan are found in
T. maritima (Bibel et al. 1998). Our study showed that
AmyB can hydrolyze various types of α-1,4-glucans to
maltose. This activity of AmyB is also comparable to the β-
amylase in plants, which plays a critical role for the
degradation of glucans released from starch granules to
produce maltose. The difference between AmyB and β-
amylase is an ability to hydrolyze maltotriose. When malto-
pentaose and pNPG6 were used as substrates, β-amylase
could not hydrolyze maltotriose, but AmyB further hydro-
lyzed maltotriose into glucose and maltose (data not shown).
Therefore, AmyB could be highly applicable in producing
maltose syrup by bioconversion of starch.

Since there is no further uptake of maltodextrins from the
environment in this scenario, AmyB is likely to be involved in
the breakdown of endogenous α-glucans-like glycogen with
the cooperative action of a debranching enzyme and α-
glucosidase (TM1834) to generate glucose as the energy
source (Bibel et al. 1998). Future efforts should be focused on
the roles of putative homologous proteins that respond to
synthesis and breakdown of intracellular storage α-glucans
to elucidate the physiological role of the multiple intracellu-
lar amylases found in this organism.
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