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Abstract The aerobic sludge granules cultivated at high
organic loading rates could effectively convert 100–
700 mg l−1 nitrite to nitrogen gas with 400 or
1,200 mg l−1 dosed acetate. The denitrifying microbial
community structure of the so-cultivated granules was
investigated by 16S rRNA gene sequences and localized
using fluorescence in situ hybridization (FISH). The 16S
rRNA gene phylotypes in the clone library and FISH
probes used exhibited high diversity among the bacteria and
denitrifying communities, with the members of Betapro-
teobacteria predominant that were closely related to
families Comamonadaceae, Nitrosomonadaceae, Alcalige-
naceae, and Rhodocyclaceae. The confocal laser scanning
microscope and staining test revealed that active microbial
community principally distributed at 200–250 μm beneath
the outer surface, embedded in extracellular polymeric
substances.

Keywords Denitrifiers . Aerobic granules .Microbial
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Introduction

Denitrifying bacteria converts nitrite into nitrogen gas by
enzymatic pathway consisting three successive steps
involving nitrite reductase, nitric oxide reductase, and
nitrous oxide reductase (Mellor et al. 1992; Shapeligh et
al. 1987).
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The dissolved oxygen level affects the expression of
nitrite reductase and nitrous oxide reductase, hence the
denitrification efficiency of nitrite, too. High levels of
nitrite inhibit denitrification process in wastewater treat-
ment (Glass et al. 1997). A biological treatment process that
can denitrify nitrite at high concentrations is desirable.

The aerobic sludge granulation technology had several
advantages over conventional wastewater treatment sys-
tems, including possessing a dense and strong microbial
structure, good settleability, high biomass retention, toler-
ance to high organic loading rate (OLR), and to high levels
of toxic substances (Liu and Tay 2004; Adav et al. 2008).
Aerobic granules were used to conduct simultaneous
nitrification–denitrification process for wastewaters (Beun
et al. 2001; Tsuneda et al. 2003; de Kreuk et al. 2005;
Mosquera-Corral et al. 2005; Adav et al. 2009). Denitrify-
ing bacteria thus present in excess quantity in cultivated
aerobic granules. The microbial diversity in acetate fed
aerobic sludge granules is seldom reported.

This work aims at cultivating stable aerobic granules that
can degrade high concentrations of nitrite and at analyzing
microbial community of acetate utilizing denitrifiers using
16S rRNA gene amplification and cloning. The spatial
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distributions of typical denitrifiers were probed using
fluorescent in situ hybridization (FISH) probes.

Materials and methods

Reactor start-up

Aerobic-activated sludge was obtained from a local
municipal wastewater treatment plant in Taipei, Taiwan.
The sludge sample (1 l in each reactor) was seeded in
column-type sequential batch reactors (120×6 cm). The
column reactor was fed with synthetic wastewater contain-
ing acetate as the sole carbon source with the following
media composition (in gl−1): sodium acetate, 0.4;
(NH4)2SO4, 1.0; NaCl, 0.2; MgSO4•7H2O, 0.2; FeCl3,
0.02; CaCl2•2H2O, 0.01; K2HPO4, 1.65; KH2PO4, 1.35; pH
6.8±0.2; and micronutrients, 1.0 ml l−1 (Moy et al. 2002).
The chemical oxygen demand (COD) concentration of this
initial feed was 292±17 mgl−1 and was increased to attain
higher OLR by proportionally adjusting the concentration
of each chemical ingredient except buffer constitutes
(K2HPO4 and KH2PO4). Fine air bubbles for aeration and
mixing were fed through the reactor bottom at superficial
velocity of 3.0 cm s−1. The reactors were operated
sequentially in 4-h cycles with 5-min settling, 10-min
effluent withdrawal, and 5-min filling, and the remaining
time in a cycle was the reaction time. The volumetric
exchange ratio of liquid was 50%.

PCR amplification of 16S rRNA gene sequences
and library construction

The DNA from granules were extracted via enzymatic
lysis using extraction buffer (100 mM Tris–HCl at pH
8.0, 100 mM EDTA, and 1.5 M NaCl) containing
Proteinase K (10 mg ml−1; Amresco Inc., Solon, OH,
USA), as described previously (Adav et al. 2007). The
isolated DNA was purified by Gene-Spin™ (Protect
Technology Co. Ltd, USA). PCR amplification of 16S
rRNA gene sequences was carried out using the primers
F27 (5′-CCA GAG TTT GAT CMT GGC TCA G-3′) and
R1492 (5′-TAC CTT GTT ACG ACT T-3). PCR ampli-
fication was performed as recommended by Polz and
Cavanaugh (1998) to reduce bias in amplification. Briefly,
50-μl reaction volumes contained PCR buffer with
1.5 mM MgCl2, 200 μM dNTPs, 100 ng genomic DNA,
0.5 U Taq DNA polymerase, and 1 μM of each primer.
PCR amplification were performed in Eppendorf master-
cycler (Eppendorf AG, Hamburg, Germany) under the
following conditions: one cycle of 95°C for 3 min; 25
cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 90 s;

and one cycle of 10 min at 72°C. PCR products were
purified, cloned using the Qiagen PCR cloning kit
(Qiagen, Valencia, CA) as per the manufacturer’s instruc-
tions, and transformed into Escherichia coli TOP10F cells
(Invitrogen, Carlsbad, CA).

In total, 102 clones were sequenced using the ABI Prism
model 3730 (version 3.2). The 16S rRNA gene sequences were
aligned by the multiple alignments ClustalW. Phylogenetic
trees based on 16S rRNA gene sequences were constructed by
the neighbor-joining method using the MEGA software. To
estimate the confidence of the tree topologies, bootstrap re-
sampling analysis for 1,000 replicates was performed. The
gene sequences of the clones were deposited in GenBank
under accession numbers GQ891759 to GQ891860.

FISH and CLSM imaging

Sludge granule samples were washed with deionized water
and fixed with 4% paraformaldehyde. The fixed sludge
granule samples were then dehydrated by successive
passages through 50%, 80%, and 100% ethanol (10 min
each) and were subsequently embedded in Shandon
cryomatrix (Thermo Scientific, Pittsburg, PA, USA) and
frozen at −20°C. The frozen sludge granules were then cut
into 40-μm-thick sections with a cryotome (model CS-
3306, Thermo Shandon, Runcorn, UK). The sections of
sludge samples were immobilized on glass slides coated
with polysine for FISH experiments. The hybridization was
performed as described previously (Amann et al. 1990).
The probes and formamide concentration used in this study
were listed in Table 1. The samples were hybridized using
hybridization buffer (0.9 M NaCl, 100 mM Tris–HCl at pH
7.4, 0.01% sodium dodecyl sulfate) containing 50 ng μl−1

of fluorescently labeled probes and incubated for 30 min.
The samples were washed with washing buffer (0.9 M
NaCl, 100 mM Tris–HCl at pH7.4, 0.01% sodium dodecyl
sulfate) and ringed with Milli-Q water. The cells hybridized
with the probes were observed with a confocal laser
scanning microscope (Leica TCS SP5 Confocal Spectral
Microscope Imaging System, Germany).

Analytical methods

The dry weight of granules, volatile suspended solids
(VSS), sludge volume index (SVI), and nitrate was
measured according to Standard Methods (APHA 1998).
The granules were sampled, washed with distilled water,
and inoculated in 21 serum bottles (bottle volume, 200 ml)
containing 100 ml synthetic wastewater supplemented with
400 mgl−1 acetate at different NO2–N concentrations. The
test bottles were sealed with a butyl rubber stopper and
incubated at room temperature (25±2ºC). At fixed time
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interval, concentration of NO2–N in filtered samples was
determined by high-performance liquid chromatography
(Ecom LCP 4100 Pump, C18 column, LCD 2083) with
10 mM NaH2PO4 in acetonitrile/water (150:850v/v) as
described by Tsikas et al. (1999). Similarly, experiments
were performed with different acetate concentrations. The
size of sludge granules was measured by a laser particle
size analysis system (Mastersizer Series 2600; Malvern,
Instruments, Worcestershire, UK) or an image analysis
system. Washed granules were prepared for scanning
electron microscopic (SEM; Jeol JSM-5310, Tokyo, Japan)
observation via fixing with 2.5% glutaraldehyde for 2 h and
dehydration via successive passages through 30%, 50%,
75%, 85%, 90%, 95%, and 100% ethanol followed by
critical drying in critical point dryer (HCP-2, Hitachi Co.
Ltd., Tokyo, Japan).

Results

Reactor performance and granules characteristics

During the first week of reactor operation, most biomass
was floc-like and small aggregates approximately 400–
600 μm in size emerged in second week. With the
beginning of sludge granulation, the COD removal rate
increased from 60% to 75–80% in the test reactors. The
granule size, SVI (Fig. 1) and settling velocity increased
with reactor operation period and remain stable. Further
reactor operation for 90 days, the COD removal rate ranged
between 95.8% and 96.5%.The matured sludge granules
had smooth surfaces without surface filaments and distinct-
shaped various cell morphotypes, including rods and cocci
(Fig. 2). At the end of first month of rector operation, COD
removal rate was 95.5%. The settling velocity of the
granule was 47.2±7.3 mh−1.

The batch test of the granules showed nitrification–
denitrification potential. At the initial concentration of
300 mg l−1 NO2

−–N and the supplement of 1,200 mg l−1

acetate, NO2
−–N removal rate was 2.35±0.05 mg NO2

−–
N g−1 VSS h−1. While the corresponding value for NO2

−–N
removal at 400 mg l−1 acetate supplement was 1.18±
0.02 mg NO2

−–N g−1 VSS h−1 (Fig. 3). The granules could
denitrify 600 mg NO2

−–N in 105 h when supplied with
acetate 1,200 mgl−1. In denitrification test with the initial
concentration of 100–700 mgl−1 NO3

−–N, complete deni-
trification without accumulation of nitrite was achieved
(data not shown).

Bacterial diversity in aerobic sludge granule

The matured granules of size 3.5–5.0 mm from the SBR
reactor that exhibited >95% COD removal rate at OLR
19.5 kg m−3day−1 were used to analyze the microbial
diversity. In total, 102 randomly selected bacterial clones
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Fig. 1 Granule mean size and mixed liquor SVI values during
granulation process. Sequencing batch reactor

Table 1 The probes used in this study

Probe Sequence (5′–3′) rRNA
target site

Specificity Formamide (%) Reference

EUB338 GCTGCCTCCCGTAGGAGT 16S, 338–355 Most bacteria 20 Amann et al. 1990

DEN220 GGCCGCTCCGTCCGC 16S, 220–234 Acetate-denitrifying cluster and
some members of the
Comamonadaceae family

40 Ginige et al. 2005

DEN220a TCGGCCGCTCCGGAAGC 16S, 220–236 Acetate-denitrifying cluster and
some members of the
Rhodocyclaceae family

45 Ginige et al. 2005

DEN581 TGTCTTACTAAACCGCCTGC 16S, 581–600 Acetate-denitrifying cluster 45 Ginige et al. 2005

DEN1454 CCGTGGCAATCGCCCCCC 16S, 1454–1471 Acetate-denitrifying cluster 40 Ginige et al. 2005

AT1458 GAATCTCACCGTGGTAAGCGC 16S, 1458–1478 Azoarcus–Thauera cluster in
the Betaproteobacteria

50 Rabus et al. 1999
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from bacterial 16S rRNA gene clone libraries were
analyzed. The compositions of the bacterial 16S rRNA
gene libraries for the aerobic granules showed many
sequences with high sequence similarity (97–99%) to
sequences of uncultivated microorganisms. The microbial
community composition in aerobic sludge granules dem-
onstrated dominancy of Proteobacteria and exhibited 21
phylotypes. Of 102 clones, 66 clone sequences belong to
phylum Proteobacteria (64.7%), 34 clones to Bacteroidetes

(33.3%), and only two clones affiliated to Firmicutes phyla
(2.0%). The Proteobacteria-related clone sequences were
further grouped into Alphaproteobacteria, Betaproteobac-
teria, and Gammaproteobacteria.

Proteobcteria

Of the 53 clone sequences that related to the Betaproteo-
bacteria, mostly belong to members of families that include
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Fig. 3 Batch testing of denitrification by aerobic sludge granules under anoxic condition with acetate

Fig. 2 Scanning electron micrograph of sludge aerobic granule (a) and different cell morphotypes (b–f)
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denitrifying bacterial community, such as Rhodocyclaceae
(one), Comamonadaceae (44), Nitrosomonadaceae (three),
Alcaligenaceae (two), and Incertae sedis (two), while one
sequence was unclassified Betaproteobacteria. The clone
sequences (48) belonging to Burkholderiales showed
dominancy of acetate-denitrifying clusters of members
belonging to Comamonadaceae family (44), two clone
sequences (G-23 and G-64) belong to genus Pelomonas;
one each was affiliated to Alcaligenes (clone G-27) and
Castellaniella genus (G-78). Phylotypes G-50 clustered
within family Rhodocyclaceae (99% bootstrap) with
Azoarcus sp. by 95% bootstrap. The clone sequences
G-65, G-18, G-61, G-77, and G-58 clustered within
Comamonadaceae family and were similar to Comamonas
sp. The clone sequence G-14 affiliated with Delftia
acidovorans (92%), while the other two clone sequences
(G-64 and G-23) formed a separate sub-cluster with iron-
reducing bacterium by 96% bootstrap value. Table 2 and
Fig. 3 indicate the relative abundances of acetate utilizing
members of the family Comamonadaceae in the acetate fed
aerobic granule. Three clone sequences (G-10, G-67, and
G-22) were closely related with members of family Nitro-
somonadaceae and had 96% and 99% sequence similarity
with Nitrosomonas sp. Phylotype G-78 clustered with the
members of the family Alcaligenaceae.

The Alphaproteobacteria represents 2.9% of clone
library. Three sequences belonged to Alphaproteobacteria

with 97–99% similarity to strains affiliated to family
Hyphomicrobiaceae. Clone G-90 had sequence similarity
of 99% with strain Hyphomicrobium denitrificans strain
DSM 1869, while clone G-21 and G-26 exhibited 97%
sequence similarity with Devosia sp.

Ten sequences were affiliated with the Gammaproteobac-
teria. Seven sequences were related to family Pseudomona-
daceae (Chryseomonas, 14.3%; Pseudomonas, 71.4%; and
unclassified Pseudomonadaceae genus, 14.3%); six clones
were related to strain Pseudomonas and one clone to
Chryseomonas; and three belonged to Xanthomonadaceae
family. The clone sequence G-24 and G-11clustered within
Xanthomonadaceae family, G-24 clustered with Thermomo-
nas sp. by 98% bootstrap while G-11 with Rhodonobacter sp.

Non-proteobacteria

Of the total 102 clone sequences, 34 grouped within
Bacteroidetes and two under Firmicute. The Bacteroidetes
were further categorized under class Flavobacteria (two),
Bacteroidetes (four), Sphingobacteria (27), and unclassified
Bacteroidetes (one). The two clone sequences (G-38 and G-
54) clustered within Lactococcus with 100% bootstrap
value. The three phylotypes grouped within Dysgonomonas
gadei group. The clone sequence G-103 clustered with
Cryomorphaceae bacterium with 92% bootstrap. The
analysis of the clone sequences belonging to Sphingobac-

Table 2 Clone library of 16S rRNA genes constructed from the aerobic sludge granules

Phylum (95% confidence
threshold)

Family No. of
clones

Best match in GenBank Range of %
similarity

GenBank
accession no.

Firmicutes Streptococcaceae 2 Lactococcus sp. YM05004 97–98 EU689105

Bacteroidetes Flavobacteriaceae 1

Bacteroidetes Cryomorphaceae 1 Chryseobacterium sp. OS11 96 EF491961

Bacteroidetes Porphyromonadaceae 4 Uncultured Dysgonomonas sp. 95–99 AM268127

Bacteroidetes Crenotrichaceae 1 Terrimonas ferruginea; type strain:
DSM 30193

94 AM230484

Bacteroidetes Sphingobacteriaceae 1 Pedobacter sp. PhyCEm-147 96 AM921632

Bacteroidetes Flexibacteraceae 2 Leadbetterella byssophila strain 4M15 98–99 AY854022

Bacteroidetes Saprospiraceae 3 Uncultured Saprospiraceae bacterium
clone Epr33

95–98 EU177727

Bacteroidetes Unclassified Sphingobacteriales 13 Uncultured bacterium 95–98 FM174351

Proteobacteria Hyphomicrobiaceae 3 Devosia sp. 64 V 16 S 97–97 EF540476

Proteobacteria Pseudomonadaceae 7 Pseudomonas fluorescens SBW25 95–99 AM181176

Proteobacteria Xanthomonadaceae 3 Thermomonas fusca strain R-10289 95–98 NR025577

Proteobacteria Rhodocyclaceae 1 Azoarcus sp. XQ1 99 EU878233

Proteobacteria Nitrosomonadaceae 3 Nitrosomonas eutropha C91 97–99 NR027566

Proteobacteria Alcaligenaceae 2 Alcaligenes sp. F78 96–98 EU443097

Proteobacteria Comamonadaceae 44 Acidovorax sp. C1 1 96–100 AJ457191

Proteobacteria Incertae sedis 2 Pelomonas saccharophila strain del-2 97–99 FJ513082
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Fig. 4 Phylum Proteobacteria neighbor-joining phylogentic tree of
16S rRNA gene sequences. The sequences from the present study
and close relatives were aligned by multiple alignments ClustalW.

Bootstrap analyses were conducted on 1,000 samples, and
percentage greater than 50% are indicated at the nodes. Scale
bar, 0.02 changes per nucleotide position
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teriales (27) revealed 3.7% Crenotrichaceae, 3.7% Sphin-
gobacteriaceae, 7.4% Flexibacteraceae, and 74.1% Sapro-
spiraceae family members, while others (11.1%) were
unclassified (Table 2 and Fig. 4).

Spatial distribution of microorganisms in granules

FISH, using EUB and Cy3-labeled DEN581 probes,
revealed that the outer layer of 250 μm (Fig. 5a) was
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Fig. 5 Non-Proteobacteria neighbor-joining phylogentic tree of
16S rRNA gene sequences. The sequences from the present study
and close relatives were aligned by multiple alignments ClustalW.

Bootstrap analyses were conducted on 1,000 samples, and
percentage greater than 50% are indicated at the nodes. Scale
bar, 0.02 changes per nucleotide position
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dominated by acetate-denitrifying bacterial community.
The hybridization with probe DEB220 specific for
acetate-denitrifying cluster and some members of the
Comamonadaceae family demonstrated that members of
Comamonadaceae family clustered within 100–200 μm
granule depth (Fig. 5b). Some members of acetate-
denitrifying community with Rhodocyclaceae and Coma-
monadaceae family members were clustered very close to
each other at the granule interior within 100–200 μm
granule depth (Fig. 5c, d). The layered structure of acetate-
denitrifying cluster and members of Rhodocyclaceae and
Comamonadaceae families was repeatedly observed in all
the granular sections analyzed. The cells hybridized with
probe AT1458, specific for Azoarcus–Thauera, were
numerically important bacteria and were located in core
region of the granule (Figs. 6 and 7).

Discussion

The abundance and dominancy of the denitrifying
bacterial community in cultivated aerobic granules was

likely due to the denitrification activity within the
granules at high dosed level of ammonium and sufficient
electron donor for denitrification. Majority of non-
proteobacterial clone sequences belong to Bacteroidetes,

Fig. 6 CLSM image of in situ
functional analyses of denitrify-
ing bacteria in the SBR sludge
granule. a Hybridized with both
the EUB (red) and DEN581
(yellow) probe targeting
acetate-denitrifying cluster,
bar=200 μm; b hybridized with
EUB (red) and DEN220 probe
targeting Comamonadaceae
family members(yellow),
bar=300 μm; c granule from
denitrification batch test under
anoxic condition,
dual-hybridized for total bacteria
(red) and Rhodocyclaceae
family members (pink),
bar=75 μm; d granule from
denitrification batch test under
anoxic condition hybridized
with EUB (red), probe DEN220
targeting Comamonadaceae
family members (yellow), and
probe DEN220a targeting
Rhodocyclaceae family
members (pink), bar=75 μm

Fig. 7 FISH-CLSM image of granule from denitrification batch test
under anoxic condition, hybridized with EUB (red), probe AT1458
(pink), and DEN 1454 (yellow), bar=75 μm
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which are obligate anaerobes, indicating the presence of
anoxic core in the granule (Adav et al. 2009). The
majorities (64.7%) of the 16S rRNA gene sequences from
clone analyzed were denitrifying microbial community
within Proteobacteria phylum, and 51.9% were from the
families Comamonadaceae. Denitrifying representatives
of Alpha-, Beta-, and Gammaproteobacteria, Firmicutes,
and Bacteroidetes were found in the sludge granules, and
apart from genera known to harbor denitrifiers, such as
Pseudomonas, Comamonas, and Acidovorax, genera less
frequently observed in cultivation studies of denitrifiers
were encountered prominently in this study. The major
strains assigned for the clones in Comamonadaceae
family were Comamonas, Alicycliphilus, Diaphorobacter,
and Delftia. Similarly, Kim et al. (2006) reported members
of Acidovorax, Alicycliphilus, Comamonas, and Diaphor-
obacter strain in denitrifying activated sludge, while Park
et al. (2005) reported denitrifying Thauera sp. with
dominancy of Hydrogenophaga sp. in autohydrogenotro-
phic biofilm reactor. The other clone sequences within
protobacteria phylum were affiliated with the members of
families Nitrosomonadaceae under Betaproteobacteria
and Hyphomicrobiaceae, Pseudomonadaceae, and Xan-
thomonadaceae. A significant positive correlation be-
tween the SBR denitrification rates and the abundance of
the denitrifiers was demonstrated. According to Otlanabo
(1993), various species of Achromobacter, Agrobacterium,
Alcaligenes, Bacillus, Chromobacterium, Flavobacterium,
Hyphomicrobium, Pseudomonas, and Vibrio are responsi-
ble for denitrification.

Researchers attempted to identify denitrifiers in
activated sludge (Drysdale et al. 2001; Etchebehere et
al. 2001, 2002; Khan and Hiraishi 2002; Khan et al. 2002;
Ginige et al. 2005). Our finding and that of Ginige et al.
(2005) suggested that the members of the Comamonada-
ceae family play a major role in denitrification processes
in the presence of acetate. The present study also
identified members of Nitrosomonadaceae and Alcalige-
naceae within Betaproteobacteria, which was not reported
in related works. Members of denitrifying Fe(II) oxidizers
that belong to Xanthomonadaceae and denitrifying Pseu-
domonas sp. of Pseudomonadaceae family were identified
in the present study that may be attributable to the strong
binding strength of EPS matrix of aerobic granules. The
present study also identified members of families Flavo-
bacteriaceae, Porphyromonadaceae, Flexibacteraceae,
and Saprospiraceae within Bacteroidetes phylum that also
involved in the processes of denitrification (Mills et al.
2008). The clone sequences belonging to Azoarcus were
identified in aerobic sludge granule, corresponding to the
works by Wagner and Loy (2002) on activated sludge.

The clone analysis from our acetate fed SBR differs
from the reactor fed with methanol (Ginige et al. 2009).

The denitrifying microbial community depends on the fed
major carbon sources and electron donor. The acetate can
be degraded by microbes using tricarboxylic acid cycle
and is one of the best carbon sources for denitrification
(Grabinskaloniewska 1991). The granules cultivated at
high OLR are composed of diverse denitrifying microbial
community and are able to degrade high-level nitrogenous
compound from wastewaters.
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